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Abstract—Global optimization is a very important topic in
research due to its wide applications in many real-world prob-
lems in science and engineering. Among optimization problems,
dimensionality is one of the most crucial issues that increases the
difficulty of the optimization process. Thus, Large-Scale Global
Optimization, optimization with a great number of variables,
arises as a field that is getting an increasing interest. In this
paper, we propose a new hybrid algorithm especially designed to
tackle this type of optimization problems. The proposal combines,
in a iterative way, a modern Differential Evolution algorithm with
one local search method chosen from a set of different search
methods. The selection of the local search method is dynamic and
takes into account the improvement obtained by each of them in
the previous intensification phase, to identify the most adequate
in each case for the problem. Experiments are carried out using
the CEC’2013 Large-Scale Global Optimization benchmark, and
the proposal is compared with other state-of-the-art algorithms,
showing that the synergy among the different components of
our proposal leads to better and more robust results than more
complex algorithms. In particular, it improves the results of
the current winner of previous Large-Scale Global Optimization
competitions, Multiple Offspring Sampling, MOS, obtaining very
good results, especially in the most difficult problems.

Index Terms—Large-scale Global Optimization, Differential
Evolution, Memetic Computing, Hybridization.

I. INTRODUCTION

Continuous optimization is an important research field be-

cause it appears in many real-world optimization problems

in very different knowledge areas. In this kind of problems,

the solution can be formulated as a vector of a certain length

of continuous variables within a domain search. Evolutionary

Algorithms [1] such as Differential Evolution, DE [2], [3], are

very useful for solving this type of problems, because they

can obtain accurate solutions in complex problems without

specific information about them, something very important

in many real-world problems [4]. However, they are very

sensitive to the size of the problem, as the domain search

increases exponentially with the number of dimensions.

Large-Scale Global Optimization, LSGO, is a particular

category of global optimization in which the problem size

reaches (or exceeds) one thousand of variables. In this type

of optimization the efficiency of the search techniques is

crucial, due to the huge domain search to explore. In recent

years, many LSGO special sessions are been carried out

with different algorithms specially designed for this type of

optimization. One algorithmic design technique that is gaining

a lot of attention is the partitioning of the problem into smaller

ones. One example of this is the different grouping variable

techniques developed by some authors [5], [6]. However, the

current state-of-art and winner of LSGO competitions since

2013, Multiple Offspring Sampling, MOS [7], [8], follows a

different approach: it dynamically combines different search

techniques that are used simultaneously and their participation

in the overall search process is adjusted according to their part

performance.

In this paper we propose a new algorithm, SHADE with an

iterative Local Search, SHADE-ILS, that combines the explo-

ration power of a recent DE algorithm with the exploitation

ability of several local search, LS, methods. At each iteration

of the algorithm, the DE is applied to evolve the population

of candidate solutions and a LS is used to improve the current

best solution. The LS techniques is selected at each iteration

according to the previous relative improvement obtained by

the applications of each LS method.

This algorithm is based on the one proposed in [9], IHDEL-

S, but with a number of important differences: First, the se-

lection of the LS to apply at each iteration has been improved,

as will be shown later. Second, a new restart mechanism that

detects stagnation has been introduced. Finally, in this proposal

a more powerful DE, SHADE [10] is applied instead of the

previously DE algorithm, SaDE [11].

We have compared the proposed method with IHDELS,

and also with other reference algorithms using the CEC’2013

benchmark for LSGO [12]. The results obtained show that

the new algorithm improves previous proposals. Moreover,

SHADE-ILS improves the results of the current winner of past

LSGO competitions, Multiple Offspring Optimization, MOS

[7], [8], which, as far as the authors are concerned, had not

been improved since its proposal back in 2013, which gives

and idea of how difficult this is.

This work has the following structure: In Section II, the

SHADE-ILS algorithm is described in detail, highlighting the

main differences with the previous algorithm. In Section III,

we analyze the results obtained by our proposal compared with

other reference state-of-the-art algorithms. Finally, in Section
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IV main conclusions and future work are summarized.

II. PROPOSAL

In this section we are going to describe the proposed

algorithms, SHADE-ILS, highlighting the changes from the

original IHDELS. For detailed information on this previous

version of the algorithm, the author is referred to [9].

Algorithm 1 General algorithm SHADE-ILS

1: population← random(dim, popsize)
2: initial solution← (upper + lower)/2
3: current best← LS(initial solution)
4: best solution← current best
5: while totalevals < maxevals do

6: current best← SHADE(population, current best)
7: previous← current best.fitness
8: improvement← previous− current best.fitness.

9: Chose the LS method to apply in this iteration.

10: current best← LS(population, current best)
11: Update probability of applying LS for next iterations.

12: if better(current best, best solution) then

13: current best← best solution.

14: end if

15: if Must restart then

16: Restart and update current best.
17: end if

18: end while

Algorithm 1 shows the general scheme of the algorithm. As

can be observed, the algorithm applies, in an iterative way, DE

and a LS method, exploring all the variables at the same time

(an important difference compared to algorithms using variable

grouping techniques). Another important characteristic is that

the algorithm maintains the same population between DE

calls. Additionally, the parameters of the LS method are also

maintained when it is applied multiple times to the same

solution (except when the algorithm is restarted). Thus, the

workflow of the algorithm can be summarized in two steps:

• An exploratory technique is first applied to explore the

search space. We choose the recent SHADE [10] algo-

rithm because it is simple and self-adapts its parameters.

There is a reducing-population version, L-SHADE [13]

very popular in the field of continuous optimization.

However, in our case, the population size adjustment

would reduce too quickly the exploration.

• An intensification LS algorithm is chosen at each iteration

from two different LS methods. One is the MTS LS-

1 algorithm [14], especially designed for LSGO. The

other one is the classic L-BFGS-B [15] that uses an

approximation of the gradient to improve the search.

These methods are complementary: MTS is very fast

and appropriated for separable problems, but it is very

sensitive to rotations. However, while L-BFGS-B is less

powerful it is less sensitive to rotations.

This overall algorithmic framework described in Algorithm

1 is shared between this and the previous proposal [9].

However, as stated before, there are three main differences

between these proposals: the DE used (SHADE instead of

SaDE) (line 6), the selection of the LS method (lines 9, 11),

and the restart mechanism (lines 15-17). In the following, we

provide details of the main features of our new proposal.

A. Exploratory Algorithm: SHADE

In this work we apply SHADE as the exploratory compo-

nent. This DE algorithm has the following advantages:

• It has a very advanced self-adaptation of the DE param-

eters, CR and F, allowing for a good adaptation to each

problem. The only required parameter is the population

size.

• The mutation operator takes into account previous solu-

tions stored in an archive, increasing thus the diversity of

the new solutions.

• The mutation operator is biased towards not always

selecting the best solution. Instead, it randomly selects

among the best p solutions.

A detailed description of the SHADE algorithm can be

found in [10].

In recent new versions of SHADE, some authors consider

it to be too exploratory and thus a lineal population reduction

is usually applied [13], [16]. However, in our case, we are

interested in the algorithm as the exploratory component

because we have another intensification algorithm, so the

population reduction is not needed to improve its performance.

Furthermore, we have tested both SHADE and L-SHADE,

obtaining the best results with SHADE.

B. LS Method selection

In IHDELS, the selection of the LS method at each step was

carried out with a certain probability to chose each LS method

(line 9) PLS . This value is initialized as PLS = 1

|LS|
, where

|LS| is the number of LS methods (2 in our case). Also, at

each iteration (line 11) the improvement for each LS method

is computed as:

ILS =
fitness(BeforeLS)− fitness(AfterLS)

BeforeLS

(1)

Then, the probability of choosing each LS was updated as

a function of the average ILS for each LS method.

In our new proposal the improvement of each LS method

is obtained in the same way (Equation 1). However, instead

of using the average ILS for each LS algorithm, it selects the

LS with largest ILS in its last application. This criterion is

both simpler and, in our experiments, more efficient than the

previous one. Moreover, when a LS method quickly decreases

its performance, the use of the average ILS takes more time to

detect this change, whereas using the previous ILS provides

a faster adaptation (a LS method is applied until the previous

application is worse than the improvement of the other LS

method).
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C. Restart mechanism

In IHDELS, the restart criterion (line 16) was only met

when no improvement was obtained during a full iteration.

However, in real-parameter optimization it is common to keep

slightly improving the best solution by very small factors,

which is normally not enough. This made the restart mech-

anism to be actually applied in just a few cases, and in those

cases, the restart did not actually improve the results.

In this work, we propose a new restart mechanism that is

applied when, during three consecutive iterations, the ratio of

improvement (considering both the DE and the LS application)

is lower than 5%. In those cases, the restart mechanism is

applied as follows:

• A solution sol from the population is randomly selected.

• A small disturbing is done to sol with a normal distri-

bution with mean 0 and 10% over the domain range as

standard deviation: currentbest = sol+randi·0.1·(b−a),
where randi returns a random number randi ∈ [0, 1] and

[a, b] is the domain search.

• The population of the DE algorithm is randomly restarted.

• The adaptive parameters of the LS methods are restarted

to their default values.

Usually, algorithms restart again from a randomly solution

(or a disturbed solution from the current best). We propose

to choose randomly a solution of the population used by the

DE. The idea is to chose a relative good solution in the

population but still not improved by the LS method. Then,

a small modification to this solution is carried out to avoid

the population to be too similar.

Additionally, when the LS does not improve the current

best at all, its self-adapted parameters are also restarted.

Considering three full iterations as the criterion to restart the

full population follows the rationale of allowing the algorithm

to apply both local search methods and also to restart their

parameters. If no significant improvements are obtained after

that, the restart of the population as described previously takes

place.

III. EXPERIMENTATION

Experiments have been carried out using the benchmark

and the experimental conditions used in the CEC2013 LSGO

competition [12]. This benchmark is made up of 15 optimiza-

tion functions with 1000 dimensions, and several degrees of

separability, from completely separable functions to fully-non-

separable ones.

• Fully separable functions: f1 − f3.

• Partially separable functions: with a separable subcom-

ponent (f4 − f7) and without separable subcomponents

(f8 − f11).

• Overlapping functions: f12 − f14.

• Non-separable functions: f15.

A report with detailed information on the benchmark can

be found in [12].

Each algorithm is run for each function 51 times, and each

run finishes when a maximum number of evaluations, fitness

evaluations, FEs, is reached (3 ·106 in this case). Additionally,

the best fitness is measured at different milestones (in terms of

FEs). In particular, the following milestones are considered for

our proposal: {1.2, 3.0, 6.0, 9.0, 12, 15, 18, 21, 24, 27, 30}·105.

The best fitness for each milestone is automatically recorded

by the benchmark code. However, in previous competitions

only a subset of the milestones was considered: 1.2 · 105,

6.0 · 105, 3.0 · 106, so we are going to use only these last

milestones to allow a straightforward comparison with state-

of-the-art algorithms.

The parameters values used in this experimentation are

shown in Table I. It can be observed that each iteration uses

50000 evaluations (of which 25000 are for DE and the other

25000 for the LS method). The remaining parameters shared

by IHDELS and the proposed SHADE-ILS are kept the same.

TABLE I: Parameters values

Algorithm Parameter Description value

DE popsize Population size 100
Shared FEDE FEs in DE application 25000
Parameters FELS FEs in LS application 25000

MTSIstep Initial stepsize for MTS-LS1 20

IHDELS FreqLS Frequency of prob. update 10

SHADE-ILS RestartN Times without improvement 3
IHDELS Threshold Minimum ratio improvement 5%

The results of our proposal are summarized in Table VII,

as requested by the organizers of the WCCI 2018 LSGO

Competition.

In the following sections we discuss on these results. First,

we are going to analyze the influence of the different compo-

nents of our proposal, paying special attention to the restart

mechanism. Then, we are going to compare our results against

those of the previous version of the algorithm, IHDELS.

Finally, we compare our proposal against the current unbeaten

winner of LSGO Competitions, MOS. Due to page limits, our

analysis will be limited to when the maximum number of FEs

has been reached: 3.0 · 106 FEs.

A. Influence of the different components

In this section, we analyze the contribution of each of the

subcomponents of SHADE-ILS to the overall results.

First, we are going to study the contribution of the new

restart mechanism and illustrate the main differences when

compared with the previous method by taking into account

several representative functions (Figure 1). There are some

functions, such as F4, in which the new restart mechanism

improves the old one but keeping a similar convergence trend.

In other cases, such as, for example, function F5, the new

restart technique allows the algorithm to fully explore a basin

of attraction, which leads to very fast improvements of the

best solution. Finally, we have observed, for several functions

(such as F9 or F12) that the new restart mechanism is able to

significantly increase the convergence speed of the algorithm.

Now, we are going to compare the influence of the different

components individually. Table II shows the results obtained
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Fig. 1: Average error using the new and the old restart mechanisms

Evaluations

M
e
a
n
 E

rr
o
r

Function: 04

New Restart Old Restart

1.20e+5 3.00e+66.00e+5

1.00e+8

1.00e+9

1.00e+10

1.00e+11

Highcharts.com

Evaluations

M
e
a
n
 E

rr
o
r

Function: 05

New Restart Old Restart

1.20e+5 3.00e+66.00e+5

1.25e+6

1.50e+6

1.75e+6

2.00e+6

2.25e+6

2.50e+6

2.75e+6

Highcharts.com

Evaluations

M
e
a
n
 E

rr
o
r

Function: 09

New Restart Old Restart

1.20e+5 3.00e+66.00e+5

1.50e+8

1.75e+8

2.00e+8

2.25e+8

2.50e+8

2.75e+8

3.00e+8

Highcharts.com

Evaluations

M
e
a
n
 E

rr
o
r

Function: 12

New Restart Old Restart

1.20e+5 3.00e+66.00e+5

4.00e+1

1.00e+2

2.00e+2

4.00e+2

1.00e+3

2.00e+3

4.00e+3

Highcharts.com

by original IHDELS version and the different improvements

referred in Section II (from right to left):

• Original IHDELS proposed in 2015 [9], that uses SaDE

and the original restart mechanism.

• Algorithm exchanging SaDE by SHADE but keeping the

same restart mechanism.

• Algorithm with the new restart mechanism but using the

SaDE algorithm instead of SHADE.

• Final proposal, using both SHADE instead of SaDE and

the new restart mechanism.

In the previous analysis we did not incorporate the selection

method for the LS method because the differences were not as

clear as for the other improvements. However, we decided to

keep that change because it reduces the algorithmic complexity

and removes one parameter (FreqLS) without deteriorating

the results.

By observing Table II we can make the following conclu-

sions on the influence of each of the components:

• The change in the restart mechanism has a more impor-

tant effect than that on the DE component.

• The use of SHADE instead of SaDE greatly reduces the

error using any restart mechanism, especially in non-

separable and overlapping functions.

• The combination using both SHADE and the new restart

mechanism clearly beats any other alternative. Thus, it

TABLE II: Results for the 3 · 106 FEs milestones and the

different combinations of the components of the algorithm

Func. Using SHADE Using SaDE Using SHADE IHDELS
+New Restart +New Restart +Old Restart

F1 2.69e-24 1.21e-24 1.76e-28 4.80e-29

F2 1.00e+03 1.26e+03 1.40e+03 1.27e+03
F3 2.01e+01 2.01e+01 2.01e+01 2.00e+01

F4 1.48e+08 1.58e+08 2.99e+08 3.09e+08
F5 1.39e+06 3.07e+06 1.76e+06 9.68e+06
F6 1.02e+06 1.03e+06 1.03e+06 1.03e+06
F7 7.41e+01 8.35e+01 2.44e+02 3.18e+04

F8 3.17e+11 3.59e+11 8.55e+11 1.36e+12
F9 1.64e+08 2.48e+08 2.09e+08 7.12e+08
F10 9.18e+07 9.19e+07 9.25e+07 9.19e+07
F11 5.11e+05 4.76e+05 5.20e+05 9.87e+06

F12 6.18e+01 1.10e+02 3.42e+02 5.16e+02
F13 1.00e+05 1.34e+05 9.61e+05 4.02e+06
F14 5.76e+06 6.14e+06 7.40e+06 1.48e+07

F15 6.25e+05 8.69e+05 1.01e+06 3.13e+06

Better 12 1 0 2

can be observed that the good results are obtained by

these two components when used simultaneously.

• The proposed algorithm considering both improvements

obtains the best results in 12 of the 15 functions, and in
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the other functions the differences are very small.

To summarize, the different components of SHADE-ILS,

especially the new restart mechanism and the use of SHADE

instead of SaDE, are able to improve the results of previous

IHDELS. Furthermore, the combination of all these compo-

nents obtains the best overall results, which are significantly

better than any of the other combinations on their own.

B. Comparing SHADE-ILS against IHDELS

Although SHADE-ILS is an average a 15% slower (see Ta-

ble III), Table II show that SHADE-ILS is better than IHDELS

in 13 of the 15 functions (with minimum difference in the other

two). Besides, the improvements of SHADE-ILS are especially

important in the most difficult functions, obtaining an error

at least one order of magnitude lower in many of them (see,

for example, functions F5, F7, F8, F11, F12, F13, F14, or F15),

obtaining as total error the half of obtained by IHDELS.

Finally, by changing the method of selection of the LS

algorithm, SHADE-ILS has one less parameter, FeqLS , while

keeping a more robust behavior.

TABLE III: Time required for each algorithm and function

Difference
Function SHADE-ILS IHDELS (in %)

F1 13m30s 18m50s -29
F2 26m09s 22m44s 13
F3 25m07s 22m38s 9
F4 22m23s 19m34s 12
F5 26m28s 23m31s 11
F6 26m30s 21m32s 18
F7 11m58s 8m01s 33
F8 27m18s 23m06s 15
F9 32m03s 27m16s 14
F10 31m20s 24m47s 20
F11 25m20s 20m43s 18
F12 6m21s 2m23s 62
F13 25m04s 20m43s 17
F14 25m13s 20m34s 18
F15 19m43s 15m33s 21

C. Comparing SHADE-ILS against MOS

In this section we are going to compare our proposal against

MOS, the state-of-the-art algorithm in LSGO and, since 2013,

the winner of all the LSGO competitions. No other algorithm

in these LSGO competitions has been able to improve its

results, so it is the clear reference algorithm to compare to.

In Tables IV-VI we provide the results of SHADE-ILS and

MOS for the different milestones (1.2 ·105, 6 ·105, and 3 ·106,

respectively), obtaining the following conclusions:

• While MOS obtains better results at 1.2 · 105 FEs, both

algorithms are very similar at 6 · 105 FEs, and for the

maximum number of FEs, 3 · 106, SHADE-ILS gets the

best results in 10 of the 15 functions.

• While MOS continues to be better in separable functions

(f1-f3) SHADE-ILS is better for more complex ones:

with the exception of functions f6, f10, SHADE-ILS is

clearly better in all the other functions.

TABLE IV: Results obtained by SHADE-ILS against MOS

for FEs=1.2 · 105

Functions IHSHADELS MOS

F1 6.10e+04 2.71e+07
F2 2.65e+03 2.64e+03

F3 2.03e+01 7.85e+00

F4 3.13e+10 3.47e+10
F5 2.50e+06 6.96e+06
F6 1.05e+06 3.11e+05

F7 3.95e+08 3.46e+08

F8 2.12e+14 3.72e+14
F9 2.88e+08 4.29e+08
F10 9.43e+07 1.16e+06

F11 6.55e+09 3.13e+09

F12 2.67e+03 1.16e+04
F13 1.29e+10 8.37e+09

F14 1.62e+11 4.61e+10

F15 9.12e+07 1.45e+07

TABLE V: Results obtained by SHADE-ILS against MOS for

FEs=6 · 105

Functions SHADE-ILS MOS

F1 3.71e-23 3.48e+00
F2 1.80e+03 1.78e+03

F3 2.01e+01 1.33e-10

F4 1.54e+09 2.56e+09
F5 2.29e+06 6.95e+06
F6 1.04e+06 1.48e+05

F7 9.25e+05 8.19e+06

F8 6.93e+12 8.41e+13
F9 2.50e+08 3.84e+08
F10 9.29e+07 9.03e+05

F11 1.37e+08 8.05e+08

F12 1.28e+03 2.20e+03
F13 5.68e+07 8.10e+08
F14 6.97e+07 2.03e+08

F15 1.22e+07 6.26e+06

• SHADE-ILS is very competitive in more functions, es-

pecially in overlapping and non-separable ones. Not only

it improves MOS in many cases, but also results are at

least one order of magnitude lower in many cases.

D. Overall comparison

To conclude this study, we are going to apply the LSGO

competition comparative procedure. In recent LSGO competi-

tions, since CEC’2013, all the algorithms are assigned points

using the following process:

1) For each function, algorithms are sorted by their average

mean error.

2) Each algorithm is given a certain number of points,

according to its ranking, and following the F-1 criterion:

25 points to the best algorithm, 18 points to the runner-

up, 15 to the third one, etc.

3) The results for each function aggregated for all the

algorithms to obtain their overall score.
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TABLE VI: Results obtained by SHADE-ILS against MOS

for FEs=3 · 106

Functions SHADE-ILS MOS

F1 2.69e-24 0.00e+00

F2 1.00e+03 8.32e+02

F3 2.01e+01 9.17e-13

F4 1.48e+08 1.74e+08
F5 1.39e+06 6.94e+06
F6 1.02e+06 1.48e+05

F7 7.41e+01 1.62e+04

F8 3.17e+11 8.00e+12
F9 1.64e+08 3.83e+08
F10 9.18e+07 9.02e+05

F11 5.11e+05 5.22e+07

F12 6.18e+01 2.47e+02
F13 1.00e+05 3.40e+06
F14 5.76e+06 2.56e+07

F15 6.25e+05 2.35e+06

4) Algorithms are compared (for example, with bar plots,

or stacked bar plots) for each considered milestone.

According to the previous procedure, we have conducted

an overall comparison considering the following algorithms:

Original IHDELS [9], MOS algorithm [7], and our proposal,

SHADE-ILS.

The results of this comparative are shown in Figure 2. In

this figure, it can be observed that SHADE-ILS obtains the

best results for FEs = 6 ·105 and 3 ·106, obtaining the highest

number of points in most of the categories.

IV. CONCLUSIONS

In this paper we have proposed a new optimization algorith-

m especially designed for Large Scale Global Optimization,

SHADE-ILS, that combines the global exploration ability of an

adaptive DE algorithm with two intensification LS methods to

continuously improve the results. In each iteration, it evolves

the population with SHADE and then it chooses the LS with

the best relative improvement during the last activation phase

to improve the current best solution found by SHADE. A

restart mechanism has been incorporated to the algorithm to

allow the exploration of new regions of the search space when

the search gets stagnated (i.e., when the relative improvement

is low during several consecutive iterations). The restart selects

one solution for slightly modification before applying the

aforementioned local search methods to it.

In the experimental section we have tested and analyzed

SHADE-ILS using the benchmark proposed for the CEC’2013

competition on LSGO. First, we have compared the contribu-

tion of each modification on top of the original IHDELS (se-

lection of SHADE vs SaDE, restart mechanism) to improve the

results, concluding that they significantly contribute to improve

the results. To continue, we have compared our proposal with

several reference algorithms for LSGO, including the current

winner in previous competitions, MOS. In this comparison,

SHADE-ILS obtains the best overall results, beating MOS

for the first time since CEC’2013. This comparison reveals

that SHADE-ILS is especially good for the most complex

functions, with overlapping and non-separable components,

achieving not only the minimum error for most of them, but

also an error one order of magnitude lower than the previous

one.

As a future work, we are going to try new LS methods to

accelerate the convergence rate of the algorithm and to obtain

better results in more non-separable functions.
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Fig. 2: Comparison using the CEC’2013 benchmark criterion

Algorithm

V
a
lu

e
s

Accuracy: 1.200e+05

Non-separable Functions Overlapping Functions
Functions with no separable subcomponents
Functions with a separable subcomponent Unimodal

IHDELS_2015 MOS SHADE-ILS VMODE

0

100

200

300

400

Highcharts.com

Algorithm

V
a
lu

e
s

Accuracy: 6.000e+05

Non-separable Functions Overlapping Functions
Functions with no separable subcomponents
Functions with a separable subcomponent Unimodal

IHDELS_2015 MOS SHADE-ILS VMODE

0

100

200

300

400

Highcharts.com

Algorithm

V
a
lu

e
s

Accuracy: 3.000e+06

Non-separable Functions Overlapping Functions
Functions with no separable subcomponents
Functions with a separable subcomponent Unimodal

IHDELS_2015 MOS SHADE-ILS VMODE

0

100

200

300

400

Highcharts.com

2018 IEEE Congress on Evolutionary Computation (CEC) 1258



TABLE VII: Results for SHADE-ILS in the LSGO competition

Milestone Category f1 f2 f3 f4

1.20e+05

Best 1.554524e+04 2.245803e+03 2.008179e+01 1.534228e+10
Median 6.071679e+04 2.565400e+03 2.011079e+01 2.598669e+10
Worst 1.415877e+05 3.070720e+03 2.116410e+01 7.496997e+10
Mean 6.095098e+04 2.652277e+03 2.027693e+01 3.128835e+10
Std 3.034470e+04 2.172362e+02 3.922866e-01 1.425941e+10

6.00e+05

Best 0.000000e+00 1.425385e+03 2.002992e+01 7.601136e+08
Median 5.073051e-25 1.736995e+03 2.007101e+01 1.258685e+09
Worst 2.271773e-22 2.443857e+03 2.010646e+01 4.259609e+09
Mean 3.711293e-23 1.798330e+03 2.007314e+01 1.543243e+09
Std 6.423024e-23 2.927754e+02 2.242370e-02 8.217022e+08

3.00e+06

Best 0.000000e+00 8.528490e+02 2.002992e+01 5.946007e+07
Median 0.000000e+00 9.884556e+02 2.005106e+01 1.151292e+08
Worst 6.733050e-23 1.206723e+03 2.007981e+01 3.855623e+08
Mean 2.693810e-24 9.999068e+02 2.005302e+01 1.478005e+08
Std 1.346598e-23 8.895892e+01 1.115749e-02 8.720936e+07

Milestone Category f5 f6 f7 f8

1.20e+05

Best 1.529992e+06 1.037335e+06 1.746284e+08 3.219394e+13
Median 2.504248e+06 1.048820e+06 3.611175e+08 1.617712e+14
Worst 3.276053e+06 1.062440e+06 9.456264e+08 1.061200e+15
Mean 2.498303e+06 1.050208e+06 3.948877e+08 2.120319e+14
Std 3.851667e+05 6.675342e+03 1.537156e+08 2.038719e+14

6.00e+05

Best 1.294038e+06 1.016493e+06 4.721704e+05 8.823931e+11
Median 2.284612e+06 1.039437e+06 7.657899e+05 6.174521e+12
Worst 3.081915e+06 1.050850e+06 2.703706e+06 1.943808e+13
Mean 2.285643e+06 1.037430e+06 9.250783e+05 6.926913e+12
Std 3.669225e+05 8.346071e+03 4.728707e+05 4.277637e+12

3.00e+06

Best 1.092659e+06 1.002988e+06 7.645817e+00 1.814530e+10
Median 1.412629e+06 1.024128e+06 5.463577e+01 2.784808e+11
Worst 1.863953e+06 1.041058e+06 1.990906e+02 1.325738e+12
Mean 1.391026e+06 1.023325e+06 7.405165e+01 3.172915e+11
Std 2.030262e+05 1.188233e+04 5.456678e+01 3.061763e+11

Milestone Category f9 f10 f11 f12

1.20e+05

Best 2.153293e+08 9.317447e+07 1.982077e+09 2.093383e+03
Median 2.884172e+08 9.432947e+07 4.230243e+09 2.574926e+03
Worst 3.518991e+08 9.499023e+07 3.463071e+10 4.076292e+03
Mean 2.881798e+08 9.427664e+07 6.550365e+09 2.673992e+03
Std 3.484803e+07 4.899115e+05 7.258259e+09 4.864545e+02

6.00e+05

Best 1.930272e+08 9.075412e+07 7.850823e+07 5.974687e+02
Median 2.511487e+08 9.300100e+07 1.240306e+08 1.327719e+03
Worst 3.068166e+08 9.388529e+07 2.728405e+08 1.885590e+03
Mean 2.498807e+08 9.288852e+07 1.371227e+08 1.280923e+03
Std 3.082944e+07 7.639143e+05 4.737705e+07 2.981148e+02

3.00e+06

Best 1.298556e+08 9.058256e+07 3.102985e+05 8.531649e-20
Median 1.629812e+08 9.197457e+07 4.499355e+05 3.986624e+00
Worst 1.939016e+08 9.309367e+07 1.426263e+06 2.986941e+02
Mean 1.635679e+08 9.181196e+07 5.105254e+05 6.182378e+01
Std 1.567818e+07 6.930247e+05 2.248730e+05 1.039156e+02

Milestone Category f13 f14 f15

1.20e+05

Best 4.740663e+09 5.152026e+10 6.119018e+07
Median 1.302811e+10 1.138420e+11 8.108226e+07
Worst 2.566986e+10 5.119414e+11 1.576511e+08
Mean 1.287682e+10 1.618907e+11 9.124505e+07
Std 5.970486e+09 1.082795e+11 2.566399e+07

6.00e+05

Best 1.721130e+07 4.623974e+07 5.755326e+06
Median 4.100592e+07 6.416073e+07 1.286620e+07
Worst 3.841661e+08 1.244856e+08 3.101329e+07
Mean 5.678643e+07 6.967345e+07 1.217493e+07
Std 7.269764e+07 1.824442e+07 6.300782e+06

3.00e+06

Best 3.516991e+04 4.925270e+06 3.910423e+05
Median 8.276128e+04 5.745030e+06 6.090023e+05
Worst 3.313440e+05 6.390782e+06 1.560353e+06
Mean 1.002738e+05 5.760313e+06 6.254099e+05
Std 7.187405e+04 3.757684e+05 2.402833e+05
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