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Abstract

Decision makers involved in complex decision making problems usually provide information about their preferences

by eliciting their knowledge with different assessments. Usually, the complexity of these decision problems implies

uncertainty that in many occasions has been successfully modelled by means of linguistic information, mainly based

on fuzzy based linguistic approaches. However, classically these approaches just allow the elicitation of simple

assessments composed by either one label or a modifier with a label. Nevertheless, the necessity of more complex

linguistic expressions for eliciting decision makers’ knowledge has led to some extensions of classical approaches

that allow the construction of expressions and elicitation of preferences in a closer way to human beings cognitive

process. This paper provides an overview of the broadest fuzzy linguistic approaches for modelling complex linguistic

preferences together some challenges that future proposals should achieve to improve complex linguistic modelling

in decision making.

Keywords: Fuzzy Linguistic Approach, Fuzzy Logic, Computing with Words, Decision Making, Preference Mod-

elling

1. Introduction

In spite of decision making processes have been an ob-

ject of research during many years, new requirements

and challenges within the topic arise often, because of

new problems and new necessities of decision makers.

Nowadays the complexity of decision making problems

is not only due to the existence of multiple and conflict-

ing goals and the necessity of dealing with huge amounts

of information and alternatives, but also because of time

pressure, lack of knowledge and so on. It implies that

these problems are ill-structured whose definition frame-

work often involves uncertainty, vagueness and incom-

plete information that cannot be properly modelled by

probabilistic models. In such decision situations with

non-probabilistic uncertainty the use of linguistic infor-

mation has provided successful results in different fields
10,24,30,31. To model and cope with the inherent uncer-

tainty and vagueness of linguistic descriptors, it has been

extensively used the fuzzy linguistic approach 2,47 based

on the fuzzy sets theory 17. Hence, decision making prob-

lems could use the fuzzy linguistic approach in its solving

International Journal of Computational Intelligence Systems, Vol. 9, Supplement 1 (2016), 81-94

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

81

D
ow

nl
oa

de
d 

by
 [

G
he

nt
 U

ni
ve

rs
ity

],
 [

R
os

a 
R

od
ri

gu
ez

] 
at

 0
6:

45
 2

6 
A

pr
il 

20
16

 



R.M. Rodrı́guez et al. / Overview for modelling complex linguistic preferences in DM

process whenever its fuzzy representation would be ade-

quate for the decision situations.

The usefulness of using a fuzzy representation to

model linguistically preferences in decision making

comes from the interpretation of the semantics of a fuzzy

set as a degree of preference 8, such that the fuzzy se-

mantics represents the values of a decision variable more

o less preferred. Therefore, by using the interpretation

of degree of preference for semantics of fuzzy sets, the

use of fuzzy linguistic labels to express the intensity of

preference for a given alternative in a decision-making

problem seems natural.

The use of linguistic information in decision making

implies to carry out computing with words (CW) pro-

cesses. CW is defined as a methodology for reasoning,

computing and making decisions using information de-

scribed in natural language 29. Therefore, it emulates hu-

man cognitive processes to improve solving processes of

problems dealing with uncertainty. Thus, CW has been

applied as computational basis to decision making prob-

lems that deal with linguistic information 22,26, because

it provides tools close to human beings reasoning pro-

cesses related to decision making, enhances the reliability

and flexibility of classical decision models and improves

the resolution of decision making under uncertainty with

linguistic information. Consequently, different linguis-

tic computational models have been developed to manage

linguistic decision making 14,20,37,41,43.

Across specialized literature different fuzzy linguis-

tic based approaches for modelling preferences in deci-

sion making and computational models for CW processes

can be found 18,22,26,28,32, however these approaches pro-

vide just either simple terms or labels that hardly can

express in many complex decision situations the deci-

sion makers’ knowledge in a proper and adequate way

according to decision makers’ aims. Hence, recently

different researchers have proposed different attempts to

facilitate the elicitation of linguistic preferences by ex-

pressions to some extent more elaborated than simple

labels 20,33,38,42,49. Such extensions have used differ-

ent fuzzy tools to model and compute with such lin-

guistic expressions in a closer way to decision makers’

needs. This paper aims at providing an overview of the

fuzzy approaches that model complex linguistic expres-

sions together with their computational models. Eventu-

ally several challenges related to the modelling of com-

plex linguistic expressions within decision making are

also pointed out.

This paper is structured as follows: Section 2 pro-

vides a brief review of the use of fuzzy linguistic informa-

tion in decision making. Section 3 presents an overview

of different fuzzy based approaches for modelling com-

plex linguistic expressions paying attention to their com-

putational models. Section 4 points out different chal-

lenges that must be achieved for improving this linguistic

modelling in decision making problems, and finally Sec-

tion 5 concludes this paper.

2. Decision Making and Linguistic Information

The introductory section pointed out that complex real

world decision making problems are often ill-structured
problems that cannot be solved straightforwardly because

of the uncertainty, vagueness and incomplete information

involved. In such a type of decision making problems,

the use of linguistic descriptors by decision makers is

a straightforward and natural tool to elicit their prefer-

ences on the alternatives. The fuzzy linguistic approach
2,47 which is based on the fuzzy sets theory 17, has been

widely used to model and manage the vagueness and in-

herent uncertainty of the linguistic descriptors by linguis-

tic variables.

Therefore, before providing an overview about differ-

ent fuzzy based approaches to model complex linguistic

preferences, this section reviews in short necessary con-

cepts to understand such approaches. First, a brief revi-

sion of fuzzy linguistic approach is provided. Afterwards,

the decision making solving scheme used when linguis-

tic information takes part in the decision process is re-

viewed and eventually classical fuzzy linguistic compu-

tational models are shown.

2.1. Fuzzy Linguistic Approach

The fuzzy linguistic approach 47 based on the fuzzy set

theory is a common approach for modelling the linguis-

tic information by using the concept of linguistic variable
47, “a variable whose values are not numbers, but words
or sentences in a natural or artificial language”. A lin-

guistic value is less precise than a number, but it is closer

to human cognitive processes used to solve successfully

problems dealing with uncertainty. Formally a linguistic

variable is defined as follows:
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Definition 1. 48: A linguistic variable is characterized by

a quintuple (V,T(V),U,G,M) in which V is the name of the

variable; T(V) (or simply T) denotes the term set of V,

i.e., the set of names of linguistic values of V, with each

value being a fuzzy variable denoted generically by X and

ranging across a universe of discourse U which is associ-

ated with the base variable u; G is a syntactic rule (which
usually takes the form of a grammar) for generating the

names of values of H; and M is a semantic rule for asso-

ciating its meaning with each V, M(X), which is a fuzzy

subset of U.

The use of linguistic variables needs the selection of

appropriate linguistic descriptors for the term set, includ-

ing the analysis of their granularity of uncertainty, and

their syntax and semantics. The former commonly noted

as, g+ 1, determines the level of discrimination among

different counts of uncertainty modeled by the linguistic

descriptors in the linguistic term set, S = {s0, . . . ,sg}. A

fine granule means a high level of discrimination, how-

ever a coarse granule means a low discrimination level.

The selection of the syntax and suitable semantics are

crucial to determine the validity of the fuzzy linguistic

approach, and exist different approaches to choose the

linguistic descriptors and different ways to define their

linguistic semantics 21,44,47. The semantics of the terms

is represented by fuzzy numbers, described by member-

ship functions. The linguistic assessments given by users

are just approximate ones. A way to characterize a fuzzy

number is to use a representation based on parameters of

its membership function 3. Figure 1 shows an example

of a linguistic term set with the syntax and semantics de-

fined.

� ���� ���� ��� ���� ��	� �


��
�
� ����������� ������ ���� ��������� �������

Fig. 1. A linguistic term set of 7 labels

2.2. Linguistic decision making solving scheme

A classical decision making solving scheme consists of

two main steps 35:

1. An aggregation phase that aggregates the values

provided by the decision makers to obtain a col-

lective assessment for the alternatives.

2. An exploitation phase of the collective assessments

to rank, sort or choose the best one/s among the al-

ternatives.

The use of linguistic information in decision making

modifies the previous solving scheme adding two new

steps: (i) selecting the linguistic term set and its seman-

tics and (ii) selecting the aggregation operator for linguis-

tic information. Therefore, the linguistic decision making

solving scheme is composed by 4 steps (see Fig. 2).

• Selecting the linguistic term set and the semantics: In

this step, the linguistic domain in which decision mak-

ers provide their assessments about the alternatives is

defined according to each specific decision problem.

• Selecting the aggregation operator for linguistic infor-
mation: A proper linguistic aggregation operator is se-

lected to aggregate the linguistic assessments provided

by decision makers in accordance to the goal of the

problem.

• Aggregation: The linguistic assessments are aggre-

gated by using the aggregation operator previously se-

lected to obtain a collective value for each alternative

of the decision problem.

• Exploitation: The collective values obtained in the pre-

vious aggregation step are ranked to select the best al-

ternative(s).

2.3. Linguistic computing models

The linguistic decision making solving scheme depicted

in Figure 2 shows the necessity of developing linguistic

computing models to operate with linguistic information.

Different linguistic computing models have been devel-

oped to facilitate such processes. Here a brief revision of

the most extended models to deal with linguistic variables

are revised.

2.3.1. Classical linguistic computing models

Initially, two linguistic computing models based on the

fuzzy linguistic approach 47 were defined to perform CW

processes.

1. Linguistic computing model based on membership
functions: It makes the computations with linguis-

tic terms by operating directly on their membership

functions using the Extension Principle 16. The use
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Fig. 2. Linguistic decision making solving scheme

of fuzzy arithmetic based on the Extension Princi-

ple increases the vagueness of the results. There-

fore, the results obtained are fuzzy numbers that

usually do not match with any linguistic term in

the initial linguistic term set. Taking into account

these results, there are two possible ways:

• If in the decision problem, it is more relevant to

obtain precise results than interpretable ones, the

results are expressed by fuzzy numbers 1.

• If an interpretable and linguistic result is re-

quired, then it is necessary an approximation

function, app1(·), to associate the fuzzy result

with a linguistic term in S 23:

Sn F̃−→ F(R)
app1(·)−−−−→ S

where Sn symbolizes the n Cartesian product of

S, F̃ is an aggregation operator based on the Ex-

tension Principle and F(R) the set of fuzzy sets

over the set of real numbers R.

The approximation process implies a loss of infor-

mation and lack of accuracy of the results.

A later computational approach based on member-

ship functions for linguistic information is the one

based on type-2 fuzzy sets. This computational

model makes use of type-2 fuzzy sets to model

the linguistic assessments 27,39. The use of type-

2 fuzzy sets has been justified in order to improve

the modelling and management of the uncertainty

in linguistic information 28,39. The majority of

the contributions dealing with this fuzzy represen-

tation use interval type-2 fuzzy sets which main-

tain the uncertainty modelling properties of general

type-2 fuzzy sets, but reducing the computational

efforts that are needed to operate with them. Differ-

ent aggregation operators for type-2 representation

were introduced in 7,50. As the type-1 linguistic

based representation, the type-2 fuzzy sets compu-

tational based model needs to approximate the re-

sulting type-2 fuzzy set from a linguistic operation

by mapping the result into a linguistic assessment

producing a loss of information.

2. Symbolic linguistic computing model: Symbolic

models have been widely used in CW, because they

are simple and provide interpretable results. Such

models use the ordered structure of the linguis-

tic term set, S = {s0,s1, . . . ,sg} where si < s j if

i < j, to carry out the computations. The inter-

mediate results are numerical values γ ∈ [0,g], that

must be approximated by an approximation func-

tion app2(·) to obtain a numerical value.

app2 : [0,g]→{0, . . . ,g}

Yager in 45 introduced the symbolic model based

on ordinal scales and max-min operators, it obtains

linguistic results easy to understand, but their accu-

racy is low because they are computed by using the

maximum or minimum values ignoring the inter-

mediated ones. Later on, the linguistic symbolic

computational model based on convex combina-

tions was introduced by Delgado et al. 5, which

directly acts over the label indexes, {0, . . . ,g}, of

the linguistic term set, S = {s0, . . . ,sg}, in a recur-

sive way producing a real value on the granularity

interval, [0,g], of the linguistic term set S. It is wor-

thy to note that this model usually assumes that the

cardinality of the linguistic term set is odd and that

linguistic labels are symmetrically placed around a

middle term. The result of a symbolic convex com-

bination aggregation usually does not match with a

term of the label set S, therefore it is also necessary

to introduce an approximation function app2(·) for

obtaining a solution in the linguistic term set S.
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Hence, similarly to the linguistic computing based

on membership functions, the approximation pro-

cess in the symbolic based models produces loss of

information.

Therefore, both types of linguistic classical comput-

ing models produce loss of information due to the ap-

proximation processes and hence a lack of accuracy in

the results. This loss of information is produced because

the information representation model of the fuzzy lin-

guistic approach is discrete in a continuous domain. In

order to overcome these limitations different linguistic

computing models have been proposed in the literature
26, the most widely used in decision making with linguis-

tic information is the 2-tuple linguistic model 14,? that is

briefly revised below, because some of the proposals to

deal with complex linguistic expressions either extend it

or are based on it.

2.3.2. 2-tuple linguistic model

As it was aforementioned, the 2-tuple linguistic model
14 was developed to avoid the loss of information and

the lack of accuracy that present the classical computing

models in the CW processes. Many approaches that deal

with complex linguistic expressions either make or can

make use of it, thus a short revision about the model it is

introduced.

The 2-tuple linguistic model represents the linguistic

information by means of a pair of values (s,α), where s
is a linguistic term and α is a numerical value that repre-

sents the symbolic translation.

Definition 2. 14,22 The symbolic translation is a numeri-

cal value assessed in [−0.5,0.5) that supports the “differ-

ence of information” between a counting of information

β assessed in the interval of granularity [0,g] of the lin-

guistic term set S = {s0, . . . ,sg} and the closest value in

{0, . . . ,g} which indicates the index of the closest linguis-

tic term in S.

This model defines a set of functions to facilitate the

computations with 2-tuple linguistic values.

Definition 3. 14 Let S = {s0, . . . ,sg} be a set of linguistic

terms. The 2-tuple linguistic set associated with S is de-

fined as S = S× [−0.5,0.5). The function Δ : [0,g]−→ S
is given by

Δ(β ) = (si,α), with

{
i = round (β ),
α = β − i,

(1)

where round assigns to β the closest integer number

i ∈ {0, . . . ,g} to β .

Remark 1. Δ is a bijective function and Δ−1 : S −→ [0,g]
is defined by Δ−1(si,α) = i+α .

The 2-tuple linguistic model has defined a symbolic

computational model based on the functions Δ and Δ−1

and defines a negation operator, several aggregation oper-

ators and the comparison between two 2-tuple linguistic

values 14.

Example 1. Let us suppose an example where decision

makers provide their assessments by using the linguistic

term set shown in Figure 1. The assessments provided are

{low,very high,medium}. These linguistic terms are ag-

gregated by using the 2-tuple arithmetic mean (see 25 for

further detail). The result is x = (medium,0.33) which is

represented in Figure 3.

� ���� ���� ��� ���� ��	� �
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Fig. 3. A 2-tuple linguistic value

3. Modelling Complex Linguistic Preferences

So far, it has been shown that the use of fuzzy linguistic

information and its computational models (see Section 2)

have been not only broadly used to model and manage

the uncertainty in real world decision problems but also

to solve such problems in different fields 9,12. Notwith-

standing, some researchers have indicated the necessity

of introducing some improvements to model the elicita-

tion of linguistic information in decision making. Be-

cause decision makers involved in the problems are lim-

ited to express their knowledge by using only a simple

linguistic term and often this type of modelling is not

enough to reflect the knowledge and preference that they

really want to elicit. Additionally, another limitation of

current linguistic preference modelling approaches based

on the fuzzy linguistic approach consists of the linguistic

terms that can be used by decision makers in the decision

problem are defined a priory, thus decision makers can-

not express their preferences in a more flexible and richer
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way if it is necessary to elicit the preferences in a more

elaborated way.

In order to face these restrictions, different proposals

that facilitate the elicitation of elaborated linguistic pref-

erences with complex linguistic expressions have been

introduced in the literature 20,33,38,42,49. Such propos-

als focus their performance on very different points of

view that can be used by decision makers according to

their needs in each specific problem. Hence this sec-

tion provides an overview of the most important propos-

als to model complex linguistic preferences pointing out

the way to construct such expressions and the computing

models used by them in order to accomplish the processes

of CW in decision making. Additionally, some comments

for analysing the main features of each proposal are intro-

duced.

3.1. Proportional 2-tuple linguistic model

The first model that attracts our attention for modelling

expressions more elaborated than a single term is the pro-

portional 2-tuple linguistic model introduced by Wang

and Hao in 41. Such a model is a generalization and ex-

tension of the 2-tuple linguistic model in which the lin-

guistic modelling is based on the use of proportions of

two adjacent linguistic terms represented by two pairs of

values.

3.1.1. Representation model

In this model the information is represented by a propor-

tional 2-tuple value which has a linguistic term in each

pair that represents the linguistic information and a nu-

merical value that indicates its proportion in the expres-

sion.

Definition 4. 41 Let S = {s0, . . . ,sg} be an ordinal term

set, I = [0,1] and

IS ≡ I ×S = {(α,si) : α ∈ [0,1] and i = {0, . . . ,g} (2)

where S is the ordered set of g+ 1 ordinal terms. Given

a pair of two consecutive ordinal terms (si,si+1), any

two elements (α,si), (β ,si+1) of IS is called a symbolic

proportion pair, and α,β are called a pair of symbolic

proportions of the pair (si,si+1) if α + β = 1. A sym-

bolic proportion pair (α,si), (1−α,si+1) is denoted by

(αsi,(1−α)si+1) and the set of all the symbolic propor-

tion pairs is denoted by S, i.e., S = {(αsi,(1−α)si+1) :

α ∈ [0,1] and i = {0, . . . ,g−1}.

Remark 2. The ordinal term si, i = {2, . . . ,g− 1}, can

be represented both (0si−1,1si) and (1si,0si+1).

S is called the ordinal proportional 2-tuple set generated

by S and the members of S, ordinal proportional 2-tuple
values, that are used to represent the ordinal information.

This model also defines some functions to make eas-

ier the operations with this type of information.

Definition 5. 42 Let S = {s0, . . . ,sg} be an ordinal term

set and S be the ordinal proportional 2-tuple set generated

by S. The function π : S → [0,g] is defined as follows,

π((αsi,(1−α)si+1)) = i+(1−α), (3)

where i = {0, . . . ,g−1},α ∈ [0,1] and π is called the po-

sition index function of ordinal 2-tuple.

The position index function π is bijective and its in-

verse π−1 : [0,g]→ S is defined as follows,

π−1(x) = ((1−β )si,β si+1) (4)

where i = E(x), being E the integer part function, β =

x− i.

Example 2. By using the linguistic term set depicted in

Figure 1, some assessments represented by proportional

2-tuple values might be,

(0.66 medium,0.33 good)
(0.25 good,0.75 very good)

3.1.2. Computational model

A computational model based on the functions π and π−1

was also defined with the following operations 42.

1. Comparison of proportional 2-tuple values

The comparison of linguistic information repre-

sented by proportional 2-tuple value is carried out

as follows:

Let S = {s0, . . . ,sg} be an ordinal term set and S be

the ordinal proportional 2-tuple set generated by S.

For any (αsi,(1−α)si+1),(β s j,(1−β )s j+1) ∈ S,

defines (αsi,(1−α)si+1) < (β s j,(1−β )s j+1) ⇔
αi+ (1−α)(i+ 1) < β j + (1− β )( j + 1) ⇔ i+
(1−α)< j+(1−β ).
Therefore, for any two proportional 2-tuple values

(αsi,(1−α)si+1) and (β s j,(1−β )s j+1):

• if i < j, then
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(a) (αsi,(1−α)si+1),(β s j,(1−β )s j+1) repre-

sents the same information when i = j − 1

and α = 0,β = 1

(b) (αsi,(1−α)si+1)< (β s j,(1−β )s j+1) oth-

erwise

• if i = j, then

(a) if α = β then (αsi,(1−α)si+1),(β s j,(1−
β )s j+1) represents the same information

(b) if α < β then (αsi,(1 − α)si+1) <

(β s j,(1−β )s j+1)

(c) if α > β then (αsi,(1 − α)si+1) >

(β s j,(1−β )s j+1)

2. Negation operator of a proportional 2-tuple value

The negation of a proportional 2-tuple value is de-

fined as:

Neg((αsi,(1−α)si+1)) = ((1−α)sg−i−1,αsg−i),

(5)

where g+1 is the cardinality of S, S = {s0, . . . ,sg}.

3. Proportional 2-tuple aggregation operators

Several aggregation operators were defined by

Wang and Hao to accomplish CW processes. The

definitions of these aggregation operators are based

on canonical characteristic values of linguistic

terms. To do so, similar corresponding aggregation

operators developed in 14 were defined to aggregate

ordinal 2-tuple values by means of their position

indexes 42.

In 42 was also introduced a relationship between the

proportional 2-tuple linguistic model and the 2-tuple lin-

guistic model 14.

Definition 6. 42 Let S be a 2-tuple linguistic set and S the

ordinal proportional 2-tuple set generated by S, the func-

tion h : S → S is defined as follows,

h(αsi,(1−α)si+1) =

{
(si+1,−α) i f 0 � α � 0.5

(si,1−α) i f 0.5 < α � 1.
(6)

h is a bijective function and π = Δ−1 ◦h. The proof of this

relationship can be found in 42.

3.1.3. Analysis of proportional 2-tuple expressions

The expressions represented by this model are still simple

and far from common linguistic expressions used by hu-

man beings, because from the linguistic point of view de-

cision makers do not provide naturally such expressions

but rather they can be computed either from other linguis-

tic representations or after a specific training expert might

provide them directly. However, it was an interesting and

initial step to provide a way to improve the elicitation of

linguistic information.

3.2. Linguistic model based on fuzzy relation

A second step for dealing with the modelling of elabo-

rated linguistic expressions was introduced by Tang and

Zheng 38.

3.2.1. Representation model

Tang and Zheng proposed a linguistic model that gen-

erates linguistic expressions from a set of linguistic

terms S = {s0, . . . ,sg}, using logical connectives, such as

(∨,∧,¬,−→), whose semantics are represented by fuzzy

relations R, that describe the degree of similarity between

two linguistic terms si and s j. The set of all linguistic ex-

pressions is denoted as LE.

Definition 7. 38 Let LE be the set of linguistic expressions

which is defined recursively as follows:

1. si ∈ LE for i = {0, . . . ,g},

2. if θ ,φ ∈ LE then ¬θ ,θ ∨φ ,θ ∧φ ,θ −→ φ ∈ LE.

A formal definition of this set is the following one.

Definition 8. 38 Any linguistic expression θ ∈ LE is as-

sociated with a set of subsets of S, denoted λ (θ) and de-

fined recursively as follows,

1. λ (si) = {Z ⊆ S|si ∈ Z}∀i = {0, . . . ,g},

2. λ (θ ∧φ) = λ (θ)∩λ (φ),

3. λ (θ ∨φ) = λ (θ)∪λ (φ),

4. λ (θ → φ) = λ (θ)∪λ (φ),

5. λ (¬θ) = λ (θ).
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Example 3. Some examples of linguistic expressions

in LE generated from the linguistic term set S shown in

Figure 1 could be the following ones:

¬good ∨ very good

medium∧good

3.2.2. Computational model

A fuzzy relation R= (ri j)n×n is defined on S where the el-

ements ri j ∈ [0,1] of R represent the degree of similarity

between the linguistic terms si and s j. Therefore, ri j is de-

noted as r(si,s j). A membership function Fsi(·) = r(si, ·)
on S can be obtained for each si.

There is also a correspondence between fuzzy sets

and consonant mass assignment functions 11.

Definition 9. 38 Let Fsi be a membership function that

achieves its value in {λ1, . . . ,λz} such as 1 = λ1 > λ2 >

.. . > λz � 0. A consonant mass assignment function msi

for the membership function Fsi can be obtained as fol-

lows,

msi(Zk) = λk −λk+1,k = {1, . . . ,z} (7)

where the focal element Zk is the λk-cut set of Fsi .

Zk = {sh|Fsi(sh)� λk}. (8)

And from the consonant mass assignment function

msi , a membership function Fsi could be obtained as fol-

lows,

Fsi(s j) = ∑
si∈Z

msi(Z) (9)

This equation can be rewritten as the following one,

r(s j,si) = ∑
Z∈λ (s j)

msi(Z) (10)

The fuzzy relation R on S can be generalized to the

fuzzy relation R on LE.

Definition 10. 38 Let θ ,φ ∈ LE be any two linguistic ex-

pressions, the degree similarity between θ and φ is de-

fined recursively as follows,

1. r(θ ,si)=∑Z∈λ (θ) msi(Z), if φ = si,

2. r(θ ,φ )=∑Z∈λ (θ) mφ (Z), being the mass assignment

function mφ obtained from the membership func-

tion Fφ (·) = r(φ , ·) on S.

Some properties of this computational linguistic

model are defined in 38 to simplify the inference process

for the fuzzy relation R on linguistic expressions.

3.2.3. Analysis of fuzzy relation based expressions

The linguistic expressions provided by this approach are

more elaborated and flexible than previous one (Section

3.1), but their formalization is still far from common lan-

guage used by decision makers in decision making, un-

less for mathematician experts that are familiar with logic

expressions. Therefore, it can be very useful in some de-

cision problems in which logic expressions are close to

the decision makers and the solving process.

3.3. A fuzzy-set approach to treat determinacy and
consistency of linguistic terms

As it has been previously mentioned Ma et al. 20 also

pointed out that the use of predefined linguistic terms

facilitates the elicitation of linguistic information, but

it limits to decision makers to express their preferences

freely, because they have to select one linguistic term

from the predefined linguistic term set, that might not

matching with his/her opinion, and he/she might think in

several linguistic terms at the same time. Consequently, a

new approach that increases the flexibility of the linguis-

tic expressions allowing to use more than one linguistic

term was proposed.

3.3.1. Representation model

This idea consists of decision makers provide their pref-

erences on all the alternatives by using 0 or 1 for each

linguistic term. Table 1 shows a general representation

of such a model, where X = {x1, . . . ,xn} is the set of al-

ternatives, si ∈ S = {s0, . . . ,sg} is the linguistic term set

and ek ∈ E = {e1, . . . ,em} is the set of decision makers.

Therefore, vk,i(xr) = 1 means that the decision maker ek

assigns the corresponding linguistic term si ∈ S to the al-

ternative xr ∈ X , and 0 in otherwise. The selected linguis-

tic terms are then used to generate synthesized comments.

Example 4. By using the linguistic term set depicted in

Figure 1, a decision maker might provide the synthesized
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Table 1: Synthesized comments.

s0 s1 · · · sg synthesized comment

x1 vk,1(x1) vk,2(x1) · · · vk,g(x1) ck,1
x2 vk,1(x2) vk,2(x2) · · · vk,g(x2) ck,2
...

...
... · · · ...

...

xn vk,1(xn) vk,2(xn) · · · vk,g(xn) ck,n

Table 2: Synthesized comments.

nothing very bad bad medium good very good perfect Comment

0 0 1 1 0 0 0 Commonly
0 0 0 0 0 1 1 Excellent

comments shown in Table 2.

3.3.2. Computational model

The computational model of this linguistic approach is

based on a fuzzy model and two novel concepts namely

determinacy and consistency.

The concept of determinacy indicates the understand-

able degree that the decision maker has on the linguistic

terms. For instance, if a decision maker provides his/her

preference using only one linguistic term, it means that

he/she is sure about the usage of the linguistic terms.

However, if the decision maker uses more than one lin-

guistic term, it is because of he/she cannot select one

from the set. Formally, it is defined as follows.

Definition 11. 20 The determinacy of a linguistic term

si ∈ S presented by a decision maker k ∈ E is,

Detk(si) = 1−
(∫

U
FsidU

)/∫
U

dU, (11)

where
∫

U Fsi dU is the fuzzy integral of Fsi on U .

The consistency is related to the rationality of the

preferences provided by the decision makers. The lin-

guistic terms obtained by the decision maker should be

consistent, otherwise the final result might lead to wrong

conclusions in the decision making problem.

Definition 12. 20 Let S be a set of linguistic terms and

Fsi , i = {0, . . . ,g} be the corresponding fuzzy sets of si,

the consistency of S is,

Conk(S) =
∨
{α :

g⋂
i=0

(Fsi)α 
= /0}, (12)

being (Fsi)α the α-cut of Fsi , i = {0, . . . ,g}.

In order to represent the synthesized comments Ma et

al. proposed a strategy similar to the voting strategy in

data fusion 46 which uses the definitions of consistency
and determinacy.

Definition 13. Let xr an alternative, ek a decision maker,

and S the linguistic term set that the decision maker uses

to provide his/her opinions, the synthesized comment is,

Comk(xr) = {(si,Dsynck(si)) : si ∈ S∗k ,
Dsynck(si) = Detk(si)∗Detk(S∗)∗Conk(S∗)}

where S∗ ⊆ S and S∗ = {si ∈ S : vk,i(xr) = 1}.
The set of synthesized comments {Comk(xr) : k =

1, . . . ,m} of all decision makers can be aggregated by us-

ing any aggregation operator defined in 14,13,46.

3.3.3. Analysis of expressions based on synthesized
comments

This model is initially quite flexible and suitable to

achieve the aim of modelling rich and flexible expres-

sions for eliciting complex linguistic preferences because

it allows to build expressions close to natural language

used by experts in decision making. However, there is not

any formal process or rule defined to fix the syntax of the

synthesized comments obtained from multiple linguistic

terms that makes this model hard to use in different de-

cision situations with different decision makers chasing

comparable results.
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3.4. Linguistic distribution

Keeping in mind the proportional 2-tuple linguistic model

presented by Wang and Hao 42, Dong et al. developed a

generalization of such a model introducing the concept of

distribution assessment 6.

3.4.1. Representation model

The representation of this model consists of assigning

symbolic proportions to all the terms of the linguistic

term set. To do so, the definition of distribution assess-

ment is proposed.

Definition 14. 49 Let S = {s0, . . . ,sg} be a linguistic term

set, a distribution assessment, m, of S is defined as fol-

lows, m = {(si,βi)|i = {0, . . . ,g}} where si ∈ S, βi � 0,

∑g
i=0 βi = 1 and βi is the symbolic proportion of si.

An example of the representation of this model is the

following one.

Example 5. Let’s suppose that 10 students has

to evaluate to their teacher by using the linguis-

tic term set S, depicted in Figure 1, two of them

provide very good, five provide good and the re-

maining ones say bad. The evaluation could be

defined using the following distribution assessment,

{(nothing,0),(very bad,0),(bad,0.3),(medium,0),

(good,0.5),(very good,0.2),(per f ect,0)}

3.4.2. Computational model

A computational model was also proposed to carry out

operations with distribution assessments.

1. A comparison law

To compare two distribution assessments, it was

necessary to introduce the definition of Expecta-
tion.

Definition 15. 49 Let m = {(si,βi}, i = {0, . . . ,g}
where si ∈ S, βi � 0, ∑g

i=0 βi = 1, be a distribution

assessment of S. The expectation of m is,

E(m) =
g

∑
i=0

βisi (13)

Let m1 and m2 be two distribution assessments of

S, then,

• If E(m1)< E(m2), then m1 is smaller than m2

• If E(m1) = E(m2), then m1 and m2 have the

same expectation.

2. A negation operator

Neg({si,βi},si ∈ S) = {(si,β−i, i = {0, . . . ,g}}
(14)

3. Aggregation operators of distribution assessments

Several aggregation operators to aggregate this

type of information were defined in 49.

Dong et al. also studied some consistency measures,

such as additive and multiplicative consistency for a dis-

tribution linguistic preference relation 49, and they pro-

posed a consensus model which identifies those distribu-

tion linguistic preference relations that less contribute to

achieve the consensus level and modifies them until the

consensus level is reached.

3.4.3. Analysis of expressions based on linguistic
distributions

The linguistic distributions allow to keep linguistic infor-

mation in a broad sense taking into account more than a

single term in a similar but more complete way than the

proportional 2-tuple (see Section 3.1). Hence its inter-

pretability of the linguistic information is still far from

common language used by decision makers in decision

making problems despite it can be useful in managing

computational processes for keeping as much informa-

tion as possible.

3.5. Complex Linguistic Expressions based on
Hesitant Fuzzy Linguistic Term Sets

The linguistic computing models revised previously try

to use linguistic expressions richer than single linguis-

tic terms, but some of them provide linguistic expres-

sions far from the common language used by human be-

ings in decision making problems or they do not explain

how the linguistic expressions are built formally. An-

other linguistic model was proposed in 33 to construct

complex linguistic expressions, based on the use of Hes-

itant Fuzzy Linguistic Term Sets (HFLTS) 33 that models
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decision maker’s hesitancy when elicits linguistic pref-

erences. Such complex linguistic expressions not only

achieve the improvements pointed out by Ma et al. 20,

but also provide decision makers greater flexibility to ex-

press their preferences by means of context-free gram-

mars that fix the rules to generate comparative linguistic

expressions similar to the natural language used by deci-

sion makers in decision making problems.

3.5.1. Representation model

The following context-free grammar GH , generates com-

parative linguistic expressions suitable to provide prefer-

ences in decision making problems.

Definition 16. 34 Let GH be a context-free grammar and

S = {s0, . . . ,sg} a linguistic term set. The elements of

GH = (VN ,VT , I,P) are defined as follows:

VN = {〈primary term〉,〈composite term〉,
〈unary relation〉,〈binary relation〉,〈con junction〉}

VT = {lower than,greater than,at least,at most,
between,and,s0,s1, . . . ,sg}

I ∈VN

P = {I ::= 〈primary term〉|〈composite term〉
〈composite term〉 ::= 〈unary relation〉〈primary term〉|

〈binary relation〉〈primary term〉〈con junction〉
〈primary term〉

〈primary term〉 ::= s0|s1| . . . |sg

〈unary relation〉 ::= lower than|greater than|at least|
at most

〈binary relation〉 ::= between
〈con junction〉 ::= and}
The comparative linguistic expressions generated by

GH cannot be straightforwardly used to make compu-

tations, therefore, they are transformed into HFLTS by

means of a transformation function, EGH .

Definition 17. 33 Let S = {s0, . . . ,sg} be a linguistic term

set, a HFLTS, HS, is defined as an ordered finite subset of

consecutive linguistic terms of S,

HS = {si,si+1, . . . ,s j} such that, sk ∈ S, k ∈ {i, . . . , j}
The transformation function EGH , was defined as fol-

lows.

Definition 18. 33 Let EGH be a function that transforms

comparative linguistic expressions, ll, obtained by GH ,

into HFLTS, HS, where S is the linguistic term set used

by GH and Sll is the set of linguistic expressions gener-

ated by GH ,

EGH : Sll −→ HS

The comparative linguistic expressions generated

through the context-free grammar GH , are transformed

into HFLTS by using the following transformations:

• EGH (si) = {si|si ∈ S}
• EGH (at most si) = {s j|s j ∈ S and s j � si}
• EGH (lower than si) = {s j|s j ∈ S and s j < si}
• EGH (at least si) = {s j|s j ∈ S and s j � si}
• EGH (greater than si) = {s j|s j ∈ S and s j > si}
• EGH (between si and s j) = {sk|sk ∈ S and si � sk � s j}

Example 6. By using the context-free grammar GH , and

the linguistic term set shown in Figure 1, some compara-

tive linguistic expressions might be,

ll1 = between medium and very good
ll2 = at least bad

The transformation of these comparative linguistic

expressions into HFLTS are,

EGH (between medium and very good) =

{medium,good,very good}
EGH (at least bad) = {nothing,very bad,bad}

3.5.2. Computational model

Different computation models can be used to operate with

HFLTS depending on its representation, such as an enve-

lope that is an interval value 33 or the fuzzy envelope 19.

Due to the interest in fuzzy based representations of this

paper the fuzzy envelope is revised:

Definition 19. 19 Let HS = {si,si+1, . . .,s j} be a HFLTS,

so that sk∈S =
{

s0, . . .,sg
}

, k∈{i, . . ., j}.

envF (HS) = T (a,b,c,d), (15)

where T (·) is a trapezoidal or triangular fuzzy member-

ship function (see 19 for further details).

The concept of fuzzy envelope envF(HS) of an

HFLTS facilitates the CW processes with HFLTS 19 be-

cause it represents the comparative linguistic expressions

by means of a fuzzy membership function obtained of ag-

gregating the linguistic terms that compound the HFLTS

and hence the computations can be carried out by the Ex-

tension Principle 25 (see Section 2.3.1).
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3.5.3. Extension of Hesitant Fuzzy Linguistic Term Sets

Recently, the concept of HFLTS has been extended to use

non-consecutive linguistic terms 40. This generalization

is called Extended Hesitant Fuzzy Linguistic Term Set

(EHFLTS) and it is defined as follows.

Definition 20. 40 Let S be a linguistic term set, a EHFLTS

is an ordered subset of linguistic terms of S, such that,

EHS = {si|si ∈ S}.

This extension was proposed to fuse the preferences

provided by different decision makers by using the union

operation. The idea consists of combining the HFLTS

provided for each decision maker to obtain a EHFLTS

that represent the collective preference of the group. Sev-

eral aggregation operators for EHFLTS have been defined

in 40.

Note that this model deals with multiple linguistic

terms, but does not provide linguistic expressions simi-

lar to the common language.

3.5.4. Analysis of complex linguistic expressions based
on HFLTS

It is clear that the comparative linguistic expressions gen-

erated by GH and represented by HFLTS provide an im-

portant flexibility to decision makers when eliciting pref-

erences, together a clear formalization of the way of gen-

erating expressions that could be close to the expressions

used by human beings in decision making depending on

the grammar used for such a generation.

4. Challenges and Future in Modelling Complex
Linguistic Preferences

The management of uncertain and vague information is

always hard and complex, therefore the modelling of in-

formation in such an environment presents important dif-

ficulties that the fuzzy linguistic modelling has tackled

successfully in many decision situations. However, it is

clear that the use of simple fuzzy linguistic preferences

composed by a single term is not always suitable to rep-

resent the real preferences of the decision makers.

Across this paper it has been shown different pro-

posals to model linguistic preferences by means of more

elaborated expressions than a single linguistic term. It

is easy to observe that each different proposal treats the

preference modelling from very different perspectives, all

of them quite interesting in specific decision situations.

However, despite the different linguistic modelling pro-

posals for complex linguistic preferences introduced in

the specialized literature, it seems necessary a further re-

search looking for some aspects that have not been con-

sidered yet:

• Some proposals are very flexible to construct linguistic

expressions such as in Sections 3.3 and 3.4, but there

is not formal processes to build expressions either are

far from common language. However, other proposals

as comparative linguistic expressions (Section 3.5) are

well formalized by means of context-free grammars,

but are not so rich as previous ones. Hence, it is im-

portant to keep working on proposals able to keep fea-

tures of the latter and increase its flexibility as the for-

mer. Maybe a way to do that, it will be the use of richer

grammars than context-free grammars 4,15.

• So far, most of problems dealing with uncertain infor-

mation have applied a determined technique to model

and manage such a uncertainty. However, it is clear

that in real world problems the use of only one tech-

nique is not realistic, because of multiple perspec-

tives in which a problem can be solved, hence fur-

ther research on the use of multiple linguistic mod-

elling proposals to model complex linguistic prefer-

ences could suit better different real-world decision

problems. Therefore, another important challenge to

deal with complex linguistic information in uncertain

decision making problems, is the development of hy-

brid modelling and computing proposals to improve

the results, such hybridization could include the inter-

operability among different types of expressions and

their computational models.

• Across this overview the proposals revised aim at pro-

viding richer and more flexible syntax to decision mak-

ers, for eliciting their knowledge, based on a fuzzy se-

mantics. All of them provide a unique meaning for the

complex expressions elaborated with each approach,

however in CW literature it has been thoroughly dis-

cussed that words means different things for different
people 25,29,36 because of different reasons. Therefore,

the current approaches for eliciting linguistic com-

plex expressions should consider this fact and provide

mechanisms for representing and managing those dif-
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ferent meanings for the linguistic expressions in the

problems. Maybe this challenge can be initially tack-

led by integrating the view of multi-granular linguistic

scales and later on by researching on the use of type-

2 fuzzy sets. Other approaches and ideas can enrich

previous ideas for this challenge.

Even though, there would be other challenges to point

out, the previous ones could be the most interesting ones

from a decision making and decision analysis point of

view.

5. Conclusions

The need to model linguistically preferences in complex

decision problems has led to many ways of linguistic

modelling and computational approaches in which fuzzy

based approaches play a key role. However, most of these

approaches provide a priori fixed vocabularies that deci-

sion makers are forced to use for eliciting their prefer-

ences and usually in a very simple way. To overcome

this drawback the ability to generate flexible and com-

plex linguistic expressions to elicit preferences has been

recently researched. An overview of the most important

fuzzy proposals to deal with this type of preferences has

been provided in this paper and pointed out the different

points of view used in each proposal to model these com-

plex preferences. Eventually some challenges have been

introduced for further research.
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