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cDepartment of Computer Science, University of Extremadura, Mérida, Spain

dDepartment of Methodology of Behavioral Sciences, University of Granada, Granada,
Spain

Abstract

Over the past few years, the task of conceiving effective attacks to complex
networks has arisen as an optimization problem. Attacks are modelled as the
process of removing a number k of vertices, from the graph that represents
the network, and the goal is to maximise or minimise the value of a predefined
metric over the graph. In this work, we present an optimization problem that
concerns the selection of nodes to be removed to minimise the maximum
betweenness centrality value of the residual graph. This metric evaluates the
participation of the nodes in the communications through the shortest paths
of the network.

To address the problem we propose an artificial bee colony algorithm,
which is a swarm intelligence approach inspired in the foraging behaviour of
honeybees. In this framework, bees produce new candidate solutions for the
problem by exploring the vicinity of previous ones, called food sources. The
proposed method exploits useful problem knowledge in this neighbourhood
exploration by considering the partial destruction and heuristic reconstruc-
tion of selected solutions. The performance of the method, with respect to
other models from the literature that can be adapted to face this problem,
such as sequential centrality-based attacks, module-based attacks, a genetic
algorithm, a simulated annealing approach, and a variable neighbourhood
search, is empirically shown.
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1. Introduction

Network theory and its applications arise in a variety of scientific fields
(such as physics, engineering, sociology, psychology, criminology, epidemiol-
ogy, biology, and many others), due to the inherent network’s ability to log-
ically represent important relationships (edges) between structural elements
(nodes) of complex systems. The optimization of procedures for efficiently
breaking complex networks is attracting much attention from a practical
point of view (Deng et al., 2016). For instance, these methods may help
intelligence agencies to cripple jihadist terrorist networks (Arulselvan et al.,
2009), or they may be useful to design vaccination strategies to restrain the
spread of pandemic diseases (Ventresca and Aleman, 2014; Garćıa-Mart́ınez
et al., 2015). In terms of network attacks, the challenge is to find a subset
of nodes or edges whose removal would cause great damage to the network.
An efficient and doable way of attacking a graph consists in the deletion of
vertices according to their importance in the structural functioning of the
network, the so called centrality-based attacks (Crucitti et al., 2004; Iyer
et al., 2013).

Centrality indices are fundamental metrics for network analysis. They
refer to how important a vertex is within a network. Some of them, e.g.,
degree centrality, reflect local properties of the structural elements, while
others, like betweenness centrality (BC), give information about the global
relevance on the network structure, since they are based on shortest path
computations. Specifically, BC quantifies the importance of a vertex based
on its occurrence in shortest paths between all the pairs of vertices of the
graph (Anthonisse, 1971; Freeman, 1977). This measure is useful to identify
critical nodes with respect to information transmission between each pair of
nodes in the network. Nodes that act as bridges between groups of nodes will
have a high BC because communication between pairs of nodes in different
groups must go through the bridge. Precisely, BC has been applied in a
previous research work to identify key players in social networks (Krebs,
2002). In general, key players are those nodes in the network that control
the information flow, they are the most popular, and may have some sort of
influence on other nodes.
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In spite of the relevance of the BC metric in network analysis (Borgatti,
2006; Hewett, 2011), few works use it to design effective network attacks (Gu-
nasekara et al., 2015). Instead, most of the literature focuses on maximally
fragmenting the network, based on the concept of critical nodes, into sev-
eral connected components (Arulselvan et al., 2009; Ventresca and Aleman,
2015a; Veremyev et al., 2015). These problems are named critical node de-
tection problems (CNP). This scientific lack may be due to the fact that com-
puting the BC metric is notoriously expensive (the best known algorithm,
presented by Brandes (2001), runs in O(nm)).

In this work, we formulate the Min-Max BC optimization problem as a
CNP case where the objective is to minimize the maximum BC value of the
graph after node removal. The aim is to degrade the network structure in
such a way that the new key players in the residual graph have the minimum
possible influence on the information flow. In other words, the goal is to avoid
the apparition of strong BC leaders in the residual network. Two determinant
facts motivated us to tackle this difficult and appealing problem:

1. The recent development of the artificial bee colony (ABC) algorithm
(Karaboga and Basturk, 2007), which is a novel metaheuristic that has
been successfully used to solve a wide spectrum of NP-hard optimiza-
tion problems (Bansal et al., 2013; Bolaji et al., 2013; Karaboga et al.,
2012a; Rodriguez et al., 2013b). ABC has demonstrated a superior
performance against other classical methods, in terms of both quality
of the solutions and processing time (Karaboga and Basturk, 2008).

2. The apparition of BC update procedures that are able to recompute
the BC values of a graph in response to modifications of its structure
(edge/node insertions and edge/node deletions) faster than calculating
them from scratch (Goel et al., 2015; Kas et al., 2014; Lee et al., 2012,
2016).

As a result, we have developed a competent ABC algorithm aimed at obtain-
ing high quality solutions for the Min-Max BC problem. Its key component
is an effective neighbourhood operator that benefits from the use of a BC
update algorithm to accelerate the ABC convergence towards promising so-
lutions.

The rest of this paper is organized as follows. Section 2 provides an
overview of the literature on strategies to attack complex networks. Section 3
presents the Min-Max BC problem, a new CNP case based on BC that, to the
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best of our knowledge, has not yet been defined in the literature. Section 4
details our ABC algorithm for the Min-Max BC problem. Section 5 reports
the results of the experiments that analyse our ABC algorithm in different
contexts. Section 6 presents the conclusions of the work.

2. The Literature on Network Attacks

Most the the research on network attacks is based on the idea of criti-
cal nodes, which allows the characterization of vulnerability and robustness
of a given network with respect to node removals, caused by adversarial of-
fence, random failures, or natural disasters. This class of problems, CNP, has
extensively been studied in the last decade (Walteros and Pardalos, 2012),
and different cases have been analysed according to the particular interests.
Arulselvan et al. (2009) and Pullan (2015) focused on the minimization of the
total number of pairs of connected vertices. Shen et al. (2012) aimed at max-
imising the number of connected components and minimising the size of the
largest one. Ortiz-Arroyo (2010) worked on the maximisation of the graph
information entropy. Veremyev et al. (2015) analysed the minimisation of a
distance-based connectivity measure such as graph efficiency, Harary index,
characteristic path length, and residual closeness. Gunasekara et al. (2015)
also addressed multi-objective CNP cases that emphasized the maximization
of the average eigenvector centrality and the distance between critical nodes.

However, most of the attention in the CNP literature has been focused
on the particular case defined by Arulselvan et al. (2009), where the optimal
attack maximally fragments the network and simultaneously minimizes the
variance among the number of vertices in the resulting connected compo-
nents. That is, the residual network contains a relatively large set of con-
nected components, each with a similar number of vertices (Ventresca and
Aleman, 2015a). This CNP instance will be referenced as CNP-A. Arulsel-
van et al. (2009) presented an integer linear programming (ILP) model and a
heuristic approach based on a greedy algorithm coupled with a local search-
phase for the CNP-A. Later, the NP-complete nature of this problem (Arul-
selvan et al., 2009) promoted the application of metaheuristics to obtain near
optimal solutions within reasonable computational times: Ventresca (2012)
proposed a population-based incremental learning and a simulated annealing
model, Pullan (2015) designed a multi-start greedy algorithm, and Aringhieri
et al. (2015) presented a variable neighbourhood search approach.
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Centrality-based attacks (Crucitti et al., 2004; Iyer et al., 2013) are an-
other alternative to address CNPs, which target the vertices to be removed
according to a given centrality measure and one of the following strategies:

• In simultaneous targeted attacks, the centrality measure is calculated
for all the vertices in the network, and those k with the highest values
are removed at once.

• In the sequential targeted attacks, only the vertex with the highest
centrality measure is removed at a time, and the process is repeated k
times. Given that each removal probably modifies the centrality values
of the remaining vertices, the metric is computed once for the initial
graph and again after every removal for the remaining vertices.

Iyer et al. (2013) investigated the effect of centrality-based attacks with
different removal schemes and centrality measures, such as degree, BC (de-
fined in Section 3), closeness, and eigenvector, on a wide range of networks.
They found that the sequential removal of the vertex with highest BC was
the most effective method to degrade the network structure. This conclu-
sion was also supported by Ventresca and Aleman (2015b), who analysed the
effects according to six centrality metrics. The sequential BC-based attack
(SBA), whose pseudocode is depicted in Fig. 1, will be considered as baseline
for our proposed approach.

Input: G(V,E), k
Output: S

1 S ← ∅ ;
2 Compute bc(G, v) for every v ∈ V ;
3 while |S| $= k do
4 vmax ← argmax

v∈V \S
bc(GS, v) ;

5 S ← S ∪ {vmax} ;
6 Compute bc(GS, v) for every v ∈ V \ S;
7 end

Figure 1: Pseudocode of SBA
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3. The Min-Max BC Problem

Given an undirected and unweighted graph G(V,E), where V is the set
of nodes (vertices; and |V | = n) and E is the set of edges (|E| = m), the BC
measure of a vertex v ∈ V quantifies its relevance as the fraction of shortest
paths that contain v (Anthonisse, 1971; Freeman, 1977):

bc(G, v) =
∑

s "=t"=v∈V

σst(v)

σst

,

where σst is the number of shortest paths from vertex s to vertex t and σst(v)
is the number of those that contain v.

We define the Min-Max BC optimization problem as the task of deter-
mining the k vertices to be removed to minimise the maximal BC value of
any vertex of the residual graph. Although the Min-Max BC problem is
closely related to BC-based attacks and the SBA method (Section 2), their
goals were oriented towards the network dismantling and it is explicitly pre-
sented here as an optimisation problem. Formally, let S ⊆ V be a subset
of k nodes to be removed from G and denote the corresponding graph by
GS = G(V \ S, {(i, j) ∈ E|i, j ∈ V \ S}), that is, the subgraph of G induced
by the set of remaining nodes V \ S. The Min-Max BC problem consists
of minimizing the maximal BC value of any vertex in GS over the set of all
possible subsets of V with cardinality k:

Min-Max BC(G(V,E)) ≡ min
S⊆V,|S|=k

BC(GS),

with BC(GS) = max
r∈V \S

bc(GS , r).

Notice that, regarding the most studied CNP, we should not expect a
method for the CNP-A to perform well on the Min-Max BC case. We il-
lustrate this fact with the example shown in Fig. 2, which corresponds to a
graph generated by the Erdös-Rényi model with n = 30 (Fig. 2.a). For this
graph, we solved the ILP model of Arulselvan et al. (2009) with IBM ILOG
CPLEX V12.5.1 to obtain an optimal solution for the CNP-A with k = 9,
and then, we computed the BC values of the nodes in the residual graph
(Fig. 2.b). We also run the ABC algorithm proposed in this paper on the
same graph, which addresses the Min-Max BC problem (the corresponding
residual graph is shown in Figure 2.c).

We may see that ABC reduces the maximal BC value more than the
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Figure 2: Erdös-Rényi graph (a) and residual graphs by CPLEX (b) and ABC (c)

optimal solution for the ILP model (the maximal BC for ABC is 19 and it
is 27 for the ILP model). Since the ILP model pursued achieving maximal
network disconnectivity (in fact, it was able to break the graph into more
components than ABC), the evaluation of the reached solution from the point
of view of the Min-Max BC problem shows acceptable quality. However, it
is not as good as the one provided by ABC. Thus, this example justifies
the need for optimizers specifically designed to face the requirements of the
Min-Max BC problem.

4. An Artificial Bee Colony Algorithm for the Min-Max BC Prob-
lem

The ABC model (Karaboga and Basturk, 2007) maintains a set of food
sources, whose positions represent candidate solutions for the addressed prob-
lem, and a set of honeybees, which are computational agents that operate
on food sources to find new candidate solutions. The nectar amount of a
food source corresponds to the quality of its associated solution. Initially,
food sources are randomly sampled from the search space and assigned to an
employed bee. Then, ABC repeatedly iterates through the following stages
until a stopping condition is met:

• Employed bees phase: Employed bees explore the neighbourhood of
their respective food sources seeking better ones. To do this, they apply
a neighbourhood operator that generates a new candidate solution from
the previous one. The solution is evaluated and, if it is better than the
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current food source, the bee abandons its current position to move to
the new food source; otherwise, the bee discards the new candidate
solution. After this exploitation process, employed bees return to the
hive and share their knowledge, the position of food sources and their
nectar amounts, with onlookers bees.

• Onlooker bees phase: Onlookers bees wait for employed bees to share
their information. Each one probabilistically chooses a food source
proportionally according to their nectar amounts and, as employed bees
did, try to discover better food sources in the corresponding vicinity
(using the neighbourhood operator). If the new food source is more
attractive than the previous one, the information of the food source is
updated; otherwise, the new food source is discarded.

• Scout bees phase: If a food source is explored for a certain number
of iterations without any improvement, the food source is abandoned
and the associated employed bee becomes a scout. Then, the scout
searches for a new food source in a more exploratory way, traditionally,
by randomly sampling a new candidate solution from the search space.
Then, the scout bee becomes an employed bee again, associated with
that food source.

The ABC algorithm was originally designed for continuous optimization
problems (Karaboga and Basturk, 2007) and much work has been devoted to
the development of improved models for these problems (Akay and Karaboga,
2012; Banitalebi et al., 2015; Maeda and Tsuda, 2015). However, ABC has
also been successfully applied to many different fields, such as symbolic re-
gression (Karaboga et al., 2012b), clustering (Karaboga and Ozturk, 2011),
binary optimization (Kashan et al., 2012), constrained optimization prob-
lems (Karaboga and Akay, 2011), multi-objective optimization problems (Ak-
bari et al., 2012), the maximally diverse grouping problem (Rodriguez et al.,
2013b), and the cyclic antibandwidth problem (Lozano et al., 2013). More-
over, ABC algorithms are involved in the solution of many real-world prob-
lems such as the composition of medical crews (Delgado-Osuna et al., 2016)
and the design of analog filters (Bose et al., 2014) and circular antenna ar-
rays (Bose et al., 2012), among others. The interested reader may refer to
Karaboga et al. (2012a) for a comprehensive review of its applications.

Recently, some modifications in the algorithmic components of ABC were
presented (Das et al., 2013; Gao et al., 2015; Biswas et al., 2013), which have
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proven to improve the performance of the classical version most of the times.
For example, Das et al. (2013) propose a new ABC model that focuses on
acquiring a better balance between diversification and intensification to suc-
cessfully deal with numerical optimization problems. The proposed ABC in-
corporates: (1) a learning mechanism to develop potentially new food sources
that are formed by combining the components of the solution vector and
those of the best-known food sources, and (2) a new mechanism to modify
onlooker bees position that uses a proximity based perturbation scheme and
a probabilistic weighted selection strategy.

In the following sections, we describe how the ABC framework is adapted
for the Min-Max BC problem. Section 4.1 defines the bees’ neighbourhood
operator. Section 4.2 depicts the general overview of the proposal. Finally,
Section 4.3 gives an account of how move operations are implemented effi-
ciently and highlights the computational complexity issues.

4.1. Destructive-Constructive Neighbourhood Operator

A solution for the Min-Max BC problem is a subset of vertices of an input
graph with cardinality k. To explore the vicinity of a solution, we propose
a neighbourhood operator (see the detailed pseudocode in Fig. 3) that is
to some extent inspired by iterated greedy algorithms (Lozano et al., 2011;
Rodriguez et al., 2013a). Specifically, the operator removes a number of
random components from the solution and then operates like SBA (Fig. 1)
to construct a new complete solution. Notice that destroying S by removing
some of the selected nodes, is actually reconstructing the initial graph with
these nodes and respective arcs.

Firstly, the neighbourhood operator randomly chooses ω vertices from S
(ω is a user parameter dubbed destruction size; Line 1 of Fig. 3). Then,
it initializes the neighbour S ′ with those vertices in S that have not been
selected (Line 2). Finally, it adds nodes to S ′ using the greedy heuristic
(sequential BC-based attack; SBA) one at a time, while its cardinality is less
than k (Lines 3-8). Regarding its complexity, the most expensive operation
is the BC computation (Lines 3 and 7), which is repeated ω times per vicinity
exploration and whose complexity is commented in Section 4.3.

The procedure for determining neighbours in the ABC framework is
problem-specific (Sundar and Singh, 2010). Karaboga and Basturk (2007)
designed the original ABC algorithm specifically for real parameter opti-
mization. In this case, the neighbour of a particular solution is generated
by perturbing one randomly chosen real parameter, while keeping the others

9



Input: G, S, k, ω
Output: S ′

1 R← Select-Random (S, ω);
2 S ′ ← S \R;
3 Compute bc(GS′

, v) for v ∈ V \ S ′;
4 while |S ′| < k do
5 vmax ← argmax

v∈V \S′

bc(GS′

, v) ;

6 S ′ ← S ′ ∪ {vmax} ;
7 Compute bc(GS′

, v) for v ∈ V \ S ′;
8 end

Figure 3: Pseudocode of the neighbourhood operator

unchanged. However, ABC practitioners have devised solution representa-
tions and neighbourhood operators that fit well to each tackled optimization
problem (Karaboga et al., 2012a). Among the different alternatives, spe-
cialised heuristic destructive-constructive procedures have been successfully
applied in the ABC area (Pan et al., 2011; Rodriguez et al., 2013b; Delgado-
Osuna et al., 2016; Tasgetiren et al., 2011), which offer the advantage of
incorporating problem knowledge in the creation of neighbours. In fact,
the incorporation of problem knowledge is essential to get superior results
according to the no free lunch theorems for optimisation (Garćıa-Mart́ınez
et al., 2012), and the use of heuristic constructive procedures as components
of metaheuristics is sometimes necessary to produce practical optimizers for
hard optimization problems (Lozano et al., 2016). Ours is another example
of a destructive-constructive procedure that exploits some problem knowl-
edge when S ′ is being re-constructed (Lines 3-8 of Fig. 3). It considers the
BC values of the vertices of the current residual graph to select those that
will subsequently be removed. Given that these BC values depend on the
solution components that remain in the partial solution S ′, the election of
the vertices to be removed may be different, but still heuristically chosen,
from those in the original solution S.

Additionally, parameter ω may be tuned to adjust the balance between
intensification and diversification promoted by the operator (Blum and Roli,
2003). High values make our operator to diversify the search process by
generating solutions from different regions of the search space, i.e., solutions
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with different characteristics; whereas low values make S and S ′ share many
components, which promotes intensification.

4.2. General Scheme of the Proposed ABC Algorithm

An outline of our proposal is depicted in Figure 4. The algorithm starts
applying SBA (Section 3) to generate an initial feasible solution (Line 1).
Then, it generates a set of solutions, the initial food sources, by employing
the neighbourhood operator with a diversification setting (function Generate-
Neighbouring with a high value for ω, ωdiv) on the best-so-far solution (Lines
2-5). Then, our ABC iterates through the following steps until a termination
criterion is fulfilled:

• Employed bees phase: Each employed bee explores the vicinity of its
associated food source via the neighbourhood operator with an inten-
sification setting, i.e., with a low value for ω (ωint; Line 8). The new
solution is accepted, provided that it is better than the previous food
source (Lines 9-11).

• Onlooker bees phase: Each onlooker bee chooses a food source by binary
tournament (Line 14). This selection mechanism is employed in other
ABC applications because of its simplicity (Rodriguez et al., 2013b;
Tasgetiren et al., 2011), instead of the original roulette wheel method.
Then, onlookers apply the same steps as employed bees, that is, vicinity
exploration and selection of the new candidate solution whenever it is
better (Lines 15-18).

• Scout bees phase: Food sources that have not been improved for a
number of Limit consecutive iterations are abandoned and replaced
with new solutions, which are generated by the neighbourhood operator
with a diversification setting on the best-so-far solution (Lines 20-23).

To enhance the exploitation capability of ABC algorithms, it is common
to invoke a local improvement procedure on some of the generated solu-
tions (Rodriguez et al., 2013b; Delgado-Osuna et al., 2016; Tasgetiren et al.,
2011). Our method applies a local search method after the ABC completion,
following the scheme used by Sundar and Singh (2010), as an attempt to fur-
ther improve the quality of the best found solution (function Local-Search in
Line 28). This procedure is based on the 1-interchange move, which, given a
solution S, exchanges a selected vertex v ∈ S and a not chosen one v′ ∈ V \S.
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Input: G, k, tmax, Limit, NP , ωdiv, ωint

Output: Sb

// Generation of the greedy solution
1 S1 ← SBA (G, k);
// Initialization phase

2 for i = 2 to NP do
3 Sb ← Best-So-Far-Solution ();
4 Si ← Generate-Neighbouring (G, Sb, k,ωdiv);
5 end
6 while computation time tmax not reached do

// Employed bees phase
7 for i = 1 to NP do
8 E ← Generate-Neighbouring (G, Si, k,ωint);
9 if BC(GE) < BC(GSi) then

10 Si ← E;
11 end
12 end

// Onlooker bees phase
13 for i=1 to NP do
14 Sj ← Binary-Tournament (S1, ..., SNP );
15 O ← Generate-Neighbouring (G, Sj, k,ωint);
16 if BC(GO) < BC(GSj ) then
17 Sj ← O;
18 end
19 end

// Scout bees phase
20 for i=1 to NP do
21 if Si has not change for limit iterations then
22 Sb ← Best-So-Far-Solution ();
23 Si ← Generate-Neighbouring(G, Sb, k,ωdiv);
24 end
25 end
26 end
27 Sabc ← Best-So-Far-Solution ();

// Local improvement phase
28 Sb ← Local-Search (Sabc);

Figure 4: Pseudocode of the proposed ABC
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The result is thus a solution S ′ = S ∪ {v′} \ {v}. A first-improvement strat-
egy is considered, i.e., (v, v′) pairs are sequentially examined until the process
finds a solution better than the current one, when it moves to the new solu-
tion. Then the process is repeated until no further improvement is possible,
by means of this operator, or when a time limit is reached.

In summary, our ABC algorithm requires setting the value of the follow-
ing parameters: tmax denotes the computation time limit; NP is the number
of food sources the algorithm maintains, which is equal to the number of
employed and onlooker bees; Limit is the number of iterations without im-
provement before abandoning a food source; and ωdiv and ωint determine the
diversification and intensification settings of the neighbourhood operator, re-
spectively.

4.3. Efficient Implementation and Complexity

Two key procedures of our ABC, the neighbourhood operator (Lines 4, 8,
15, and 23 of Fig. 4) and SBA (Line 1), comprise the following actions over
a graph:

1. To calculate BC for all the vertices in the graph (Line 2 in Fig. 1 and
3 in Fig. 3).

2. To find the vertex with the highest BC and remove it from the graph
(Line 4 in Fig. 1 and 5 in Fig. 3).

3. To re-calculate BC for all the remaining vertices (Line 6 in Fig. 1 and
7 in Fig. 3).

4. To repeat steps 2 and 3 until k vertices are removed from the graph (ω
repetitions in the case of the neighbourhood operator).

Since BC relies heavily on the computation of all the shortest paths, its
computation is notoriously expensive (the best known algorithm (Brandes,
2001) runs in O(nm) time for unweighted graphs). This way, the above
process becomes infeasible from a practical point of view, even for small
graphs. Therefore, it is necessary to incorporate algorithms that provide a
faster BC computing.

Several methods have been proposed to update the BC values after edge
or node insertions or deletions, rather than computing them from scratch, by
exploiting auxiliary data structures. QUBE (Lee et al., 2012) relies on the de-
composition of the graph into disjoint minimum union cycles. The algorithm
uses this decomposition to identify vertices whose centrality may potentially
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change. The authors showed that QUBE could achieve updates several times
faster in comparison with Brandes’ exact algorithm. Unfortunately, QUBE
is limited to the insertion and deletion of non-bridge edges (a bridge edge is
one whose removal increases the number of connected components).

Based on QUBE, Goel et al. (2015) proposed an algorithm that managed
two sets of vertices: one for which betweenness scores can be updated and
another for which they need to be re-computed. This algorithm speeded up
the calculation of BC for real graphs from 7 to 412 times in comparison to
Brandes’ algorithm. Kas et al. (2014) presented a method that kept auxiliary
data structures to represent a directed acyclic subgraph for each vertex of
the graph, containing all the edges that belong to, at least, one shortest path
from the vertex. Then, shortest paths are updated by running a Dijkstra-
like procedure. The proposal empirically achieved a reduction in computation
time orders of thousands with regards to Brandes’ algorithm. However, this
algorithm had a space complexity of O(n(n+m)), which becomes prohibitive
for large graphs.

Recently, Lee et al. (2016) presented another update algorithm that sub-
stantially reduced the number of shortest paths which should be re-computed
when a graph is changed. Interestingly, it does not require any auxiliary data
structure for updating BC. When an edge is updated, the algorithm iden-
tifies a subgraph, called re-calculation subgraph, containing those vertices
and edges whose BC will change, and updates the BC of the edges in the
re-calculation subgraph without computing all-pairs shortest paths. When a
vertex is updated, the algorithm computes the amounts of increases or de-
creases in BC of the edges in a graph by performing a single-source shortest
path computation from the updated vertex. The experimental results showed
that the proposed algorithm outperformed QUBE and Brandes’ algorithm for
all update operations. Specifically, for vertex removals, the algorithm was
about 5 times faster than QUBE, and much faster than Brandes’ method for
vertex insertions.

Given the existence of these BC update methods, we invoke them in the
neighbourhood operator and in the SBA algorithm as follows. First, the
graph associated with the given solution has already got its BC values com-
puted. This required the invocation of Brandes’ algorithm just once per ABC
run, in Line 2 of Fig. 1, because the rest of the operations apply on previ-
ously evaluated candidate solutions. Then in the case of SBA algorithm, BC
values are updated after each vertex removal (SBA removed the vertex with
the highest BC value per iteration). And in the case of the neighbourhood
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operator, BC values are firstly updated after each vertex insertion, because it
starts removing solution components which represents nodes reinserted into
the graph; and then it applies SBA with the BC update method.

We should remark that the use of the algorithm of Lee et al. (2016) in
the neighbourhood operator is especially important, because it is invoked a
large number of times during the ABC search. Particularly, given that BC
values have to be updated 2 · ω times per neighbourhood exploration and
ωint is considered 2 · NP times per ABC iteration, then the complexity of
an ABC iteration is usually bounded by 4 · NP · ωint times the complex-
ity of the BC update method of Lee et al. (2016). This makes the global
complexity of an ABC iteration be orders of O(NP · ωint · nm) in the worst
case (Brandes’ method complexity is considered here). The application of
the neighbourhood operator with a diversification setting (ωdiv) is discarded
because it happens much less frequently, about NP/Limit times per ABC
iteration in average. Nevertheless, it would insert a constant factor, finally
discarded in big O notation.

Finally, the evaluation of the solutions produced by the 1-interchange
move also benefits from this faster BC update methods. This move exchanges
a vertex that belongs to the solution with another that does not. Then, we
apply the algorithm of Lee et al. (2016) to efficiently evaluate such moves,
without recomputing the objective function from scratch. Specifically, this
interchange is implemented as a node deletion and then a node insertion, so
the update method is invoked after each of these operations. Given that the
size of the neighbourhood induced by the 1-interchange move is k · (n − k),
the final complexity of an iteration is O(k · (n− k) · nm).

5. Computational Experiments

This section describes the computational experiments that we conducted
to assess the performance of the ABC algorithm for the Min-Max BC prob-
lem. Firstly, we detail the general experimental setup (Section 5.1), then, we
analyse the results. Our aim is: (1) to analyse the influence of the main pa-
rameters associated with ABC (Section 5.2); and (2) to compare the results
of ABC with other approaches to attack networks (Section 5.3).

5.1. Experimental Setup

The code of all the algorithms has been implemented in C (graph oper-
ations were performed using the open source NetworKit framework devel-
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oped by Staudt et al. (2014)) and the source code has been compiled with
gcc 4.6. The experiments were conducted on a computer with a 3.2 GHz
Intel R© CoreTM i7 processor with 12 GB of RAM running FedoraTM Linux
V15. Six well-known graph models were taken into account to generate the
networks for the experiments:

• Erdös-Rényi model (ER) (Erdös and Rényi, 1959). It produces ran-
dom graphs with a fixed connection probability pc, which determines
whether or not to include the edge e connecting each pair of vertices v,
v′ ∈ V . Although the ER model often produces graphs that lack com-
mon properties observed in real-world networks, it has already been
considered in other studies about complex networks (Ventresca, 2012).

• Clustered random graph model (CR) (Newman, 2009). It is a simple
variation of the Erdös-Rényi model, useful for generating graphs that
have distinctive dense areas with sparse connections between them, i.e.,
communities. Nodes are equally distributed over ns subsets. Then,
nodes from the same subset are connected with probability pin and
nodes from different subsets with a smaller probability, pout.

• Random geometric graph model (RG). A pre-determined number of
points are uniformly sampled from the [0, 1]× [0, 1] space. Then, edges
between nodes whose Euclidean distance is inferior or equal to a given
radius r, are included in the graph.

• Barabási-Albert model (BA) (Barabási and Albert, 1999). It depicts
scale-free networks using a preferential attachment mechanism. At each
iteration, the process generates a new node v that is connected to m
existing nodes in such a way that the more connections a node has, the
more likely it is to be selected. That is, nodes with higher degrees have
a stronger ability to attract new nodes. This rich get richer behaviour
results in networks with a power-law degree distribution where a rela-
tively small number of vertices act as hubs with high connectivity. The
scale-free property is one of the common properties of real-world com-
plex networks, which can be observed in the Internet, social networks,
and airline networks.

• Watts-Strogatz model (WS) (Watts and Strogatz, 1998). It starts with
a ring of n vertices and connects each vertex in the ring to all of its mnn
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nearest neighbours. Then, each edge is considered with probability pr
to rewire one of its endpoints to a randomly chosen node. This model
produces networks that exhibit the small-world property, inducing a
low average geodesic path length between any two vertices and high
clustering coefficients. This property was observed in many real-world
networks (Ventresca, 2012).

• Forest fire model (FF) (Leskovec and Faloutsos, 2007). Like the BA
model, this is also a preferential attachment approach. However, this
model reproduces heavy tailed degree distributions where the network
diameter decreases over time. The FF model seems to be a mix of
the ER and BA models (Ventresca, 2012). It was proposed in order
to model some real networks such as autonomous systems, patent cita-
tions, and affiliation graphs, where they all have the shrinking diameter
and densification power law properties.

We created 12 instance sets, each one with 5 artificial graphs of different
sizes (n = {100, 250, 500, 750, 1000}), using ER (pc = {0.05, 0.2}), CR (one
set with pin = 0.3, pout = 0.1, and ns = 0.3n and another with pin = 0.2,
pout = 0.05, and ns = 0.3n), RG (r = {0.15, 0.3}), BA (m = {4, 5}), WS
(mnn = {4, 5} and pr = 0.1), and FF (one set with forward probability of
0.35 and backward probability of 0.32 and another with forward probability
of 0.45 and backward probability of 0.35). ER, BA, RG, and WS graphs were
generated with NetworkX (Hagberg et al., 2008), CR graphs with NetworKit,
and FF graphs with the igraph software package (Csárdi and Nepusz, 2006).
To distinguish these graph sets, they will be referred to by their class name
and their corresponding parameter values.

5.2. Study of ABC with Different Parameters

In this section, we present a preliminary experiment that was conducted
to set the values of the key parameters of ABC: Limit and ωint (destruction
size of the intensifying neighbourhood operator). We investigated the effects
of varying the ωint parameter, rather those of ωdiv, because ABC invokes
the neighbourhood operator with this setting much more frequently. We
have built 16 ABC configurations with Limit = {0.05n, 0.1n, 0.25n, 0.5n}
and ωint = {0.1k, 0.25k, 0.5k, 0.75k} (note that |S| = k, where S is the
solution to be altered by the operator). Only a few possible combinations
are explored, so the performance might be further improved by examining
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more combinations/values. The value for ωdiv is set to 0.75k and the number
of food sources (NP ) to 20, which is widely used in the literature. With
the purpose of fine-tuning our proposal and avoiding over-fitting, we have
employed only 25 instances of the sets detailed in Section 5.1 (ER-0.2, RG-
0.15, BA-5, WS-5, and FF-0.35/0.32) and restricted k to 0.3n. All the ABC
variants were stopped using a time limit of 3.6n seconds (a third of this time
is reserved for the local search method). Additionally, each algorithm was
executed once for each problem instance.

ωint Limit %D Av. rank. %B

0.5k 0.1n 3.75 5.50 68
0.5k 0.25n 3.82 6.04 64
0.25k 0.1n 7.53 6.42 48
0.25k 0.5n 8.71 6.72 48
0.5k 0.5n 3.90 6.74 64
0.25k 0.25n 5.60 7.20 48
0.1k 0.1n 13.00 7.76 36
0.1k 0.25n 11.21 8.16 44
0.1k 0.5n 11.51 8.18 40
0.75k 0.5n 13.25 9.82 44
0.75k 0.25n 14.54 10.02 36
0.75k 0.1n 15.64 10.22 28
0.1k 0.05n 15.32 10.56 24
0.25k 0.05n 15.35 10.72 36
0.50k 0.05n 16.02 10.80 40
0.75k 0.05n 15.41 11.14 36

Table 1: Results of ABC with different parameter values

We computed the overall best solution value for each problem instance,
BestValue, obtained by the execution of all the methods under consideration.
Then, for each method, we computed the relative deviation between the best
solution value and BestValue (Method−BestV alue

BestV alue
). In Table 1, we report the

average of this relative deviation in percentage across all the instances con-
sidered in each particular experiment (%D), and the percentage of instances
for which the value of the best solution obtained by a given method matches
BestValue (%B). We also show the averaged rankings, computed by the Fried-
man test (Friedman, 1940), obtained by these algorithms (Av. rank.). This
measure is obtained by computing, for each instance, the ranking ra of the
observed results for algorithm a, assigning the ranking 1 to the best of them,
and to the worst the ranking |A| (where A is the set of algorithms). Then,
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an average measure is obtained from the rankings of each algorithm over all
the test problems. For example, if a certain algorithm achieves rankings 1,
3, 1, 4, and 2, on five instances, the averaged ranking is 1+3+1+4+2

5 = 2.20.
Note that the lower the ranking, the better the algorithm.

Results in Table 1 show that the ωint parameter has an important effect
on the quality of the solutions obtained by our ABC. In general, the best
algorithms in terms of the three measures use ωint = 0.25k or 0.5k. The
application of the lowest and highest values for this parameter (0.1k and
0.75k) degrades all the performance measures. Another important remark
is that the lowest value for Limit (0.05n) has negative effects as well (the
four worst ABC variants employ this Limit value). We choose ωint = 0.5k
and Limit = 0.1n for all the remaining experiments, because the best ranked
configuration employs this setting.

5.3. Comparative Study of Algorithms for the Min-Max BC Problem

In this section, we undertake a comparative analysis between ABC and
other algorithms that may be applied to face the Min-Max BC problem from
a practical point of view. In particular, we put our proposal against the con-
structive method SBA (Section 5.3.1), the CNP1 algorithm (Pullan, 2015)
(Section 5.3.2), the module-based attack (Requião da Cunha et al., 2015)
(Section 5.3.3), and three well-known metaheuristics (Section 5.3.4). All in-
stance sets were assumed for these experiments (a total of 60 test graphs).
The raw results of all the methods are provided in Tables A.10-A.12 in Ap-
pendix A (best results are boldfaced).

For the comparison between ABC and any another algorithm X , we con-
sider two performance measures, %Success (%S ) and %Improvement (%I ).
%S represents the percentage of instances for which ABC found strictly bet-
ter solutions than X in a particular instance set, whereas %I is the average
in percentage of the relative deviation between the quality of the solution
reached by ABC and the one of the solution obtained by X (X−ABC

X
) across

those instances where ABC is the winner. Furthermore, we also analyse these
measures for the cases where the performance of X surpasses that of ABC.

5.3.1. ABC versus SBA

SBA is the main method for the Min-Max BC problem so far, given its
relevance in the literature (Veremyev et al., 2015). In fact, this procedure
is invoked inside ABC to obtain an initial solution. Therefore, we look into
whether our ABC algorithm is able to improve the solution provided by this

19



constructive method more carefully. For these experiments, we grouped the
graph instances according to their corresponding model. For each instance
group, Table 2 shows the %I and %S measures when comparing ABC and
SBA with k = {0.1n, 0.3n, 0.5n}. Note that, since SBA is invoked inside
ABC, the reported values for %S when SBA wins are always equal to zero.
The performance measures were also computed for all the tested instances
in a single group in the bottom row.

k = 0.1n k = 0.3n k = 0.5n
ABC wins SBA wins ABC wins SBA wins ABC wins SBA wins

Inst. Set %I %S %I %S %I %S %I %S %I %S %I %S

ER 7.5 100 - 0 20.5 100 - 0 26.2 90 - 0
CR 9 100 - 0 21.6 100 - 0 39.6 100 - 0
RG 57.4 100 - 0 45 100 - 0 61.1 90 - 0
FF 37 90 - 0 67.1 70 - 0 58.7 40 - 0
BA 17.5 100 - 0 47.6 100 - 0 50 20 - 0
WS 66.8 100 - 0 21.7 70 - 0 92.9 70 - 0

All inst. 32.5 98.3 - 0 36.4 90 - 0 52.8 68.3 - 0

Table 2: ABC vs. SBA

We point out the following remarks from Table 2. Taking into account
all the instances, ABC was able to get better results than those of SBA in
98.3% of the cases for k = 0.1n, 90% for k = 0.3n, and 68.3% for k = 0.5n,
with improvements greater than 30% for all the k values. Therefore, we
may conclude that the ABC framework allowed us to conceive an effective
optimizer for the Min-Max BC problem, which acceptably surpasses the most
popular algorithm in the literature that may be employed as a solver for our
problem. We should point out that the low values for %S for the FF and BA
graphs (k = 0.5n) are due to the fact that SBA was able to completely break
many of these networks. It achieved zero as the maximal BC value, which is
an unbeatable situation (see the raw results of these methods in Table A.12).

Next, some graphs are shown in Fig. 5 to illustrate the type of solutions
returned by SBA and ABC. This is done by presenting the graphs before
and after the vertices removal produced by these algorithms. For the sake
of saving space, we restrict the plots to one WS-5 instance with k = 0.2n
(Fig. 5.a) and one BA-5 instance with k = 0.3n (Fig. 5.b), both graphs
having 50 vertices. They are denoted as WS50 and BA50, respectively. The
corresponding residual graphs derived from the ABC solution are shown in
Figures 5.e and 5.f. Those obtained by SBA are outlined in Figures 5.c and
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5.d. Firstly, we may observe that ABC is the winner for the two graphs anal-
ysed (for BA50, ABC achieved a maximal BC of 60 and SBA 158, whereas
for WA50, ABC obtained 22 and SBA 83). Comparing the residual graphs
induced by the two algorithms, we notice that those from ABC show two
determinant properties that favour the reduction of the maximal BC:

• Residual graphs are more fragmented. For WS50, ABC was able to yield
four components (Fig. 5.f) and SBA forced the apparition of just three
(Fig. 5.d). For BA50, ABC returned a graph with six components (Fig.
5.e) and SBA a graph with three (Fig. 5.d). The separation among
components isolates groups of nodes from others, limiting the number
of paths that may pass through relevant vertices. This way, their BC
values decrease and, consequently, the maximal one.

• Residual graphs are denser and have lower diameters. The residual
graphs of ABC have more edges than those of SBA (for WS50, 56
against 52, and for BA50, 58 against 50). The difference in diameter
is very clear as well; especially in the case of BA50 (Figures 5.e and
5.c). In this case, ABC yields a residual graph with a diameter of 6
and SBA one of 11. Note that several geodesic paths with long lengths
are evident in Figure 5.c for the case of SBA, which propitiated the
apparition of nodes with too high BC values. On the other hand, ABC
has discovered that gaining density and reducing diameter are adequate
to cut down the maximal BC.

5.3.2. ABC versus a Metaheuristic for the CNP-A

We saw in Section 3 that the optimal solution for the CNP-A does not
have to produce an accurate solution for the Min-Max BC problem. However,
we might intuit that high-quality solutions for the CNP-A problem might
show promising features as solutions for our problem, since the minimization
of the total number of connected nodes in the graph promotes a decrease in
the BC value of many of them, probably affecting the maximal one. Thus,
investigating the behaviour of algorithms for the CNP-A as solvers for the
Min-Max BC problem deserves attention.

We have implemented a state-of-the-art metaheuristic for the CNP-A,
called CNP1, which was proposed by Pullan (2015). CNP1 is a multi-start
greedy algorithm that maintains a current solution S (a subset of k ver-
tices from V ) and iterates through the main loop that involves the following
operations:
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Figure 5: ABC vs. SBA on WS50 and BA50
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1. Firstly, it constructs S ′ by adding a node from GS to S (notice that S ′

is not a valid solution for the problem, because it removes k + 1 nodes
from G). The node is randomly selected from those components whose
size is greater than the average between those of the largest and the
smallest components ( |Clargest|+|Csmallest|

2 ).
2. Then, the node whose removal from S ′ gives the minimum increase in

the CNP-A objective function is extracted from this set (this way, S ′

turns into a valid solution). Later, S ′ replaces S only if it provides a
better objective function value.

Furthermore, to prevent search stagnation, a partial restart is performed
periodically by generating a new initial solution S. The initial solution is
created by invoking the first step described above k times. CNP1 finishes
when a termination condition is met (e.g., maximum number of iterations or
computation time allowed). The best solution generated during the iterative
process is kept as the overall result.

We have applied CNP1 to the 60 test graphs and used the same CPU
time limit as for ABC (3.6n seconds). The solutions returned by the CNP1
algorithm for the CNP-A problem were evaluated according to the maximal
BC of the residual graphs. Table 3 summarizes the comparison between these
results and those achieved by our ABC.

k = 0.1n k = 0.3n k = 0.5n
ABC wins CNP1 wins ABC wins CNP1 wins ABC wins CNP1 wins

Inst. Set %I %S %I %S %I %S %I %S %I %S %I %S

ER 27.2 90 4.1 10 45.2 90 0.3 10 48 100 - 0
CR 26.9 100 - 0 43.5 90 7.6 10 49.5 100 - 0
RG 58.7 30 38.4 70 81.8 100 - 0 96.9 100 - 0
FF 59.8 80 8.4 20 72 70 22.6 30 91.7 100 - 0
BA 71 100 - 0 89.3 100 - 0 100 100 - 0
WS 81 100 - 0 98.2 100 - 0 100 100 - 0

All inst. 53.8 83.3 28.9 16.7 72.7 91.7 15.2 8.3 81 100 - 0

Table 3: ABC vs. CNP1

The global statistics in Table 3 (bottom row) reveal that the performance
of ABC (in terms of both %S and %I ) surpasses that of CNP1 in terms of
the maximal BC. This is especially noteworthy with respect to the results
for k = 0.3n and k = 0.5n. The algorithmic components of ABC adequately
suit the characteristics of the Min-Max BC problem, showing a profitable
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problem-knowledge exploitation with regards to a competitive method for
a similar problem. CNP1 attempts to fragment the graph into as many
components (with similar sizes) as possible, without paying attention to the
BC values of the nodes in the remaining graph. Interestingly, this way of
acting has clearly been advantageous only when dealing with RG graphs
with k = 0.1n. In this case, CNP1 was able to reach high-quality solutions
that improved those obtained by ABC.

5.3.3. ABC versus MBA

Module-based attack (MBA) (Requião da Cunha et al., 2015) is another
appealing contemporary algorithm that can be employed to solve the Min-
Max BC problem. It follows two essential strategies:

• A community detection algorithm should be applied to identify topo-
logical communities or modular structures by which the network can be
represented; then, only the nodes that participate of inter-community
links are removed in descending order of their BC. The authors argued
that since the concentration of links within the modules is greater than
the concentration of links connecting them, those nodes that connect
different modules (bridge nodes) are the appropriate candidates to be
removed in order to effectively detach the communities of a network.

• At each step, the attack should be focused on the remaining largest
connected component in order to speed up the fragmentation.

In Figure 6, we sketch the algorithm for the Min-Max BC problem based
on these ideas. After the application of the community detection algorithm
(Step 3), a set B with the bridge nodes is built (Line 4). Then, the algorithm
iterates by obtaining a set P with subsets of vertices representing connected
components of the current graph (Line 6). If B is not empty, the largest
component having vertices from this set is chosen (Line 8) and the one with
the highest BC value is definitively selected as the vertex to be removed (Line
9). Note that once a node from a link between two communities is deleted,
its counterpart should be skipped from B (there is no need to remove it),
unless it also participates in other inter-community connections (Requião
da Cunha et al., 2015). The procedure Redundant-Bridge-Nodes (Line 10) is
employed to identify these redundant nodes. When B becomes empty, the
node with the highest BC from the largest component is always the one to be
attacked (Lines 13-14). Finally, we should remark that MBA is a very quick
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Input: G(V,E), k
Output: S

1 S ← ∅ ;
2 Compute bc(G, v) for v ∈ V ;
3 C ← Detect-Communities(G);
4 B ← Bridge-Nodes(C);
5 while |S| $= k do
6 P ← Connected-Components(GS);
7 if |B| $= 0 then
8 P ′ ← argmax

P∈P,P∩B "=∅
|P | ;

9 vmax ← argmax
v∈P ′∩B

bc(G, v) ;

10 R ← Redundant-Bridge-Nodes(vmax, C);
11 B ← B \ (R ∪ {vmax}) ;
12 else
13 P ′ ← argmax

P∈P
|P | ;

14 vmax ← argmax
v∈P ′

bc(G, v) ;

15 end
16 S ← S ∪ {vmax} ;
17 end

Figure 6: Pseudocode of MBA

procedure, since it follows the strategy of simultaneous attacks (BC values
are computed only once in Line 2).

In Table 4, we show the results of the experimental comparison between
ABC and MBA. MBA invoked the community detection by label propa-
gation (Raghavan et al., 2007) as implemented in the NetworKit frame-
work (Staudt et al., 2014). According to the results in Table 4, ABC outper-
forms its competitor on the set formed by all the instances with impressive
%I and %S values, especially when k = 0.3n and k = 0.5n. In general, this
superiority is evident in all instance sets except in the case of the RG graphs
(k = 0.1n), where MBA performs better than ABC for 60% of the instances.
In RG graphs, nodes are only connected to nearby nodes, which promotes
the formation of clusters with few connections to the rest of the graph. Pre-
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k = 0.1n k = 0.3n k = 0.5n
ABC wins MBA wins ABC wins MBA wins ABC wins MBA wins

Inst. Set %I %S %I %S %I %S %I %S %I %S %I %S

ER 16.8 100 - 0 33.1 100 - 0 43.2 100 - 0
CR 17.1 90 - 0 32.9 100 - 0 44.8 100 - 0
BA 47 100 - 0 71.2 100 - 0 99.5 100 - 0
FF 59.1 90 10.6 10 60.2 80 15.4 20 85.8 90 - 0
RG 49.3 40 39.1 60 81.6 100 - 0 97.7 100 - 0
WS 80.2 100 - 0 99.3 100 - 0 100 100 - 0

All inst. 44.7 86.7 35 11.7 63.2 96.7 15.4 3.3 78.4 98.3 - 0

Table 4: ABC vs. MBA

cisely, MBA was specifically designed to perform well in this scenario, which
explains its advantage for this type of networks.

5.3.4. Comparison with Other Metaheuristics

We have implemented three other metaheuristic approaches that may
be conceived for this problem, a steady-state genetic algorithm (SGA), a
simulated annealing algorithm (SA), and a variable neighbourhood search
(VNS). All these optimizers assume the same solution encoding as ABC and
are given the same amount of computational time as that given to our ABC.
Their features are described below.

SGA is a steady-state genetic algorithm (Lozano et al., 2008) that starts
with an initial set of random solutions forming a population of so-called chro-
mosomes of size Np = 60. Later, the population is subject to an evolutionary
loop that adopts the following operations:

1. Select two parents from the population using the binary tournament
selection mechanism. This selection technique is widely used in genetic
algorithms due to its simplicity and ability to escape from local optima.
It selects the fittest chromosome between two that are randomly picked
out from the population.

2. Create an offspring applying the crossover and mutation operators pre-
sented by Wolters (2015). The crossover operator generates an offspring
by first pooling the unique vertices of the two parent solutions, and then
sampling uniformly and randomly a set of k unique vertices from this
pool. Next, the genes of the offspring are mutated with probability
pm = 0.01 by means of the 1-interchange move.
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3. Select an individual from the population and decide if this individ-
ual will be replaced by the offspring. For this decision, we consider
the replace worst strategy, which replaces the worst individual in the
population only if the new individual is better.

SA (Aarts and Korst, 1989; Kirkpatrick et al., 1983; Suman and Kumar,
2006) is said to be the oldest metaheuristic. Its main idea is to scape from
local optima by accepting worse solutions according to a decreasing proba-
bility. Our implementation applies the logistic acceptance criterion and the
1-interchange move. During the run, it applies 1000 geometric cooling steps,
evenly spaced, with a cooling factor that makes the temperature be equal to
0 in the last stage (the smallest positive double value of the programming
language, actually). The initial temperature was set according to the logistic
rule, an initial probability of keeping the best solution set to 0.49, and an
estimation of the fitness difference between two neighbouring solutions cal-
culated as the average of the fitness difference between 10 random solutions
and one of their neighbours each.

VNS (Mladenović and Hansen, 1997) is a metaheuristic that systemati-
cally exploits the idea of neighbourhood change (from a given set of neigh-
bourhood structures), both in the descent to local optima and in the es-
cape from the valleys which contain them. We have designed a simple VNS
algorithm to tackle the Min-Max BC problem that mainly consists of the
following two phases, which work on the current solution Sc:

1. Generation phase: Firstly, the SBA method is executed to generate an
initial solution.

2. Shaking phase: This method applies the destructive-constructive neigh-
bourhood operator on Sc (Section 4.1). In order to get a reactive be-
haviour, the parameter ω is adjusted dynamically depending on the
quality of the solutions obtained. At the beginning of the run, and
every time the best-known solution is improved, ω is set to 0.1k; oth-
erwise, ω is increased by 0.1k. When ω exceeds ωmax, ω gets back to
0.1k. We set ωmax to 0.75k.

In the standard VNS model, the current solution is additionally refined
by a local search method. However, we have opted for a reduced VNS algo-
rithm, which is a simplified VNS variant where local search (the most time-
consuming part of VNS) is removed to improve its search efficiency (Hansen

27



et al., 2010). We should point out that this approach constitutes an al-
ternative way of exploiting the neighborhood structure that becomes the
fundamental component of ABC and, in this way, it may be useful to access
the performance of this operator in a different optimization procedure for
our problem.

In SA and VNS, the evaluation of the solutions is carried out taking
advantage of the implementation issues detailed in Section 4.3. However,
in SGA, the objective function is computed by calling Brandes’ algorithm.
Tables 5, 6, and 7 outline the results for the comparison between ABC and
SGA, SA, and VNS, respectively. We highlight the following observations
concerning these tables.

1. Results in Table 5 clearly depict that ABC exhibits superior perfor-
mance compared to the genetic algorithm, SGA. Specifically, its %S
and %I values are clearly much better.

2. The results of ABC overcome those of SA on the specially structured
BA and WS graphs (Table 6). However, although ABC achieves a
slight advantage on the ER and CR instance sets when k = 0.1n, SA
clearly beats our algorithm when k = 0.3n and k = 0.5n. It seems
that the unstructured topologies of these graphs render the problem
hard, so that the work of the 1-interchange move in the SA framework
became more profitable than those of the more specialised constructive-
destructive neighbourhood operator in ABC. On the other hand, when
the tackled graph presents some kind of structure (case of BA and WS),
the heuristic decisions taken by this operator were adequate to allow
our ABC to get superior performance by an impressive margin.

3. The most significant remark from Table 7 is that ABC achieves better
performance than VNS on the ER, CR and RG instances. In addition,
it reaches better solutions for BA graphs when k = 0.1n and k = 0.3n.
Although both algorithms employ the same neighbourhood operator,
ABC incorporate two differentiated features that may be responsible of
this meaningful advantage: (1) it is a population-based metaheuristic,
and (2) it embeds a local search method based on the 1-interchange
operator. VNS only provides solutions of superior quality for WS in-
stances when k = 0.1n.
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k = 0.1n k = 0.3n k = 0.5n
ABC wins SGA wins ABC wins SGA wins ABC wins SGA wins

Inst. Set %I %S %I %S %I %S %I %S %I %S %I %S

ER 6.0 100 - 0 16.7 100 - 0 20.9 90 6.1 10
CR 8.1 70 2.8 30 15.2 80 6.4 20 25.7 100 - 0
RG 19.4 60 1.1 40 65.7 90 4.2 10 92.7 100 - 0
FF 62.7 80 11.2 20 56.9 90 4.3 10 77.9 100 - 0
BA 51.0 100 - 0 69.6 100 - 0 99.8 100 - 0
WS 59.3 100 - 0 94.5 100 - 0 99.4 100 - 0

All inst. 36.0 85 3.9 15 54.2 93.3 5.3 6.7 70.2 98.3 6.1 1.7

Table 5: ABC vs. SGA

k = 0.1n k = 0.3n k = 0.5n
ABC wins SA wins ABC wins SA wins ABC wins SA wins

Inst. Set %I %S %I %S %I %S %I %S %I %S %I %S

ER 3.2 60 2.0 40 28.9 30 9.2 70 50.3 20 15.7 80
CR 3.1 60 4.7 40 5.8 20 11.3 80 100.0 10 12.9 90
RG 33.1 30 5.4 70 71.1 80 12.9 20 87.9 90 - 0
FF 74.2 50 15.6 50 72.6 50 24.7 50 89.8 60 75.6 30
BA 49.5 100 - 0 60.1 100 - 0 99.7 100 - 0
WS 59.3 100 - 0 92.2 100 - 0 96.2 100 - 0

All inst. 39.9 66.7 7.1 33.3 67.2 63.3 13.8 36.7 91.8 63.3 23.4 33.3

Table 6: ABC vs. SA

5.3.5. Comparative Analysis using Wilcoxon’s Test

The aim of this section is to assess whether the performance differences
previously observed between ABC and its competitors are statistically sig-
nificant. We undertake this study by means of the Wilcoxon matched-pairs
signed ranks test (Garcia et al., 2009), which allows the results of two algo-
rithms to be compared. In statistical terms, this test answers the following
question: Do the two samples represent two different populations? Table 8
summarizes the results of this procedure for a level of significance α = 0.05,
where the values of R+ (associated with ABC) and R− (associated with the
corresponding competitor) of the test are specified. If R− is smaller than
both R+ and the critical value, ABC is statistically better than the other
algorithm (represented with the sign + in the column named Dif? ); if R+

is smaller than both R− and the critical value, our algorithm is statistically
worse than its competitor (represented with the sign −); if neither R+ nor
R− is smaller than the critical value, the test does not find statistical differ-
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k = 0.1n k = 0.3n k = 0.5n
ABC wins VNS wins ABC wins VNS wins ABC wins VNS wins

Inst. Set %I %S %I %S %I %S %I %S %I %S %I %S

ER 7.1 90 0.6 10 12.0 80 7.2 20 19.0 90 - 0
CR 9.5 90 0.0 10 11.7 90 1.4 10 26.4 90 - 0
RG 42.4 90 12.7 10 10.7 60 9.2 40 37.7 70 5.5 20
FF 27.9 70 3.0 10 72.6 50 - 0 71.5 20 25.7 20
BA 15.8 100 - 0 26.6 70 23.8 30 - 0 50 10
WS 7.2 10 14.5 90 12.7 20 18.8 40 - 0 100 20

All inst. 19.8 75 11.3 21.7 22.7 61.7 14.2 23.3 30.2 45.0 44.6 11.7

Table 7: ABC vs. VNS

ences among them (represented with the sign ∼). This non-parametric test
was applied considering the results on two groups of graphs: (1) Random
graphs, formed by the ER, CR, and RG instances and (2) Structured graphs,
composed of the FF, BA, and WS instances.

k = 0.1n k = 0.3n k = 0.5n
Alg. R+ R− Dif? R+ R− Dif? R+ R− Dif?

CNP1 465 0 + 465 0 + 465 0 +
MBA 465 0 + 465 0 + 465 0 +

Random SBA 465 0 + 465 0 + 463 1.5 +
Graphs VNS 433 32 + 378 87 + 416 18.5 +

SGA 384 81 + 449 16 + 460 5 +
SA 207 258 ∼ 241 224 ∼ 226 209 ∼
CNP1 465 0 + 465 0 + 465 0 +
MBA 465 0 + 465 0 + 435 0 +

Structured SBA 435 0 + 454.5 10.5 + 367 68 +
Graphs VNS 314.5 150.5 ∼ 308 127 + 183.5 251.5 ∼

SGA 455 10 + 463 2 + 465 0 +
SA 428 37 + 407 58 + 378 57 +

Table 8: Comparison of ABC and the other algorithms (Wilcoxons test with p-value =
0.05 and critical value = 137).

The Wilcoxon test reveals that: (1) ABC has the upper hand in the
statistical comparison over CNP1, SBA, MBA, and SGA for all k values, (2)
our algorithm statistically outperforms SA in the case of structured graphs
and there are not significant differences between them for random graphs,
(3) an opposite scenario seems to occur with regard to the comparison with
VNS; ABC is statistically superior to VNS on the random graphs and no

30



differences were found on the structured graphs for k = 0.1n and k = 0.5n
(our algorithm attains significantly better results, as well, for k = 0.3n).

To sum up, this study reveals that ABC arises as a very attractive alterna-
tive to other approaches that might be applicable to the Min-Max BC prob-
lem. However, we believe that there is still room for improvement. Specif-
ically, as future work, we will try to hybridize our ABC with SA, which
provided outstanding performance on less structured graphs. In fact, the
hybridization of metaheuristics is currently a prospective research area for
finding more effective search algorithms (Rodriguez et al., 2012). Our idea
is to suitably combine complementary algorithm concepts to provide hybrid
approaches with a better performance than that obtained by ABC and SA
separately.

5.3.6. Global Summary

In this section, we perform a global comparison of all the algorithms
presented in this work. In order to do this, we analyse, for each method, two
performance measures that were described in Section 5.2, the mean ranking
computed according to Friedman’s test (Friedman, 1940) and %Best. Table 9
displays the corresponding results on the random graphs and the structured
graphs considering all k values. The algorithms were ranked according to
their Av. rank. values.

Random Graphs Structured Graphs
Alg. Av. rank. %B Alg. Av. rank. %B

ABC 1.833 34.4 ABC 1.783 62.2
SA 2.206 54.4 VNS 2.244 61.1
VNS 3.156 14.4 SBA 3.361 23.3
SGA 4.044 1.1 SA 3.578 15.6
SBA 4.372 2.2 SGA 4.606 0
MBA 6.078 0 MBA 6.039 1.1
CNP1 6.311 0 CNP1 6.389 0

Table 9: Comparison among all the algorithms

Based on the performance values that are shown in Table 9, we can make
the following remarks: (1) ABC is the best ranked algorithm for the two
experimental scenarios, proving to be very robust; (2) SA reveals satisfactory
potential for the group of random graphs (it obtains the best%B performance
in this case); (3) the algorithms exploiting heuristic knowledge about the
problem (SBA, VNS, and ABC) get the best rankings for the structured
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graphs (SA falls behind them, obtaining a poor %B value); (4) the greedy
heuristic algorithms, SBA and MBA, are surpassed in both scenarios by
several metaheuristic approaches; and (5) just as we expected, CNP1 gets
the worst ranking values.

6. Conclusions

We have proposed an ABC algorithm to tackle an instance of CNP whose
objective concerns the minimization of the maximal BC value in the residual
graph. Our algorithm applies a destructive–constructive neighbourhood op-
erator for generating new candidate solutions when bees explore the vicinity
of food sources. One of its most essential characteristics involves the incorpo-
ration of a BC update algorithm that makes recomputing BC values efficient.
The designed ABC approach, tested on 60 graphs, has proven to be very com-
petitive with respect to a baseline attack algorithm, a state-of-the-art meta-
heuristic for the CNP-A, a recent attack method that embeds a community
detection algorithm, and three approaches designed to face the problem and
based on three well-known metaheuristics. Therefore, we may conclude that
this metaheuristic is a tool of choice for this problem.

We believe that the work presented in this paper is a significant con-
tribution because it represents the meeting point between three prospective
research lines: CNP (Pullan, 2015; Ventresca and Aleman, 2015a; Veremyev
et al., 2015), BC (Goel et al., 2015; Kourtellis et al., 2015; Lee et al., 2016;
Riondato and Kornaropoulos, 2015), and ABC (Bansal et al., 2013; Bolaji
et al., 2013; Karaboga et al., 2012a). Therefore, we will intend to explore
other interesting avenues of research, such as the adaptation of the proposed
approach for its application on large networks with many thousands of nodes.
In this case, we shall explore the incorporation, in our ABC framework, of
approximate algorithms that estimate inexact but accurate BC values and
reduce the computational effort further (Kourtellis et al., 2015; Riondato and
Kornaropoulos, 2015; Yoshida, 2014). Furthermore, we will try to improve
our ABC proposal exploring two different avenues: (1) the incorporation of
innovative ABC components appeared recently in the literature (Das et al.,
2013; Biswas et al., 2013) and (2) the implementation on parallel hardware,
following the indications given by Parpinelli et al. (2011). Finally, we will
study the application of the proposed algorithm as a tool to deal with ap-
pealing real-world applications such as to break up jihadist terrorist networks
and to enhance lifetime of wireless networks (Kundu et al., 2015).
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Garćıa-Mart́ınez, C., Rodŕıguez, F. J., Lozano, M., 2012. Arbitrary function
optimisation with metaheuristics. Soft Computing 16 (12), 2115–2133.

Goel, K., Singh, R. R., Iyengar, S., Gupta, S., 2015. A faster algorithm to
update betweenness centrality after node alteration. Internet Mathematics
11 (4-5), 403–420.

Gunasekara, R. C., Mehrotra, K., Mohan, C. K., 2015. Multi-objective op-
timization to identify key players in large social networks. Social Network
Analysis and Mining 5 (1), 1–20.

35



Hagberg, A. A., Schult, D. A., Swart, P. J., 2008. Exploring network struc-
ture, dynamics, and function using NetworkX. In: Proceedings of the 7th
Python in Science Conference (SciPy2008). Pasadena, CA USA, pp. 11–15.
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Appendix A. Detailed Results

Insts. n m SBA CNP1 MBA SGA SA VNS ABC

ER-0.05 100 220 627.5 536.6 749.2 417.6 419.2 559.5 397.5

ER-0.05 250 1497 800.1 1864.2 902.1 744.4 663.6 783.6 684.5
ER-0.05 500 6199 1046.1 1439.8 1282.1 1086.1 1023.5 1046.0 1013.0

ER-0.05 750 14182 1277.1 1679.0 1600.3 1361.8 1225.3 1277.1 1248.5
ER-0.05 1000 25134 1497.3 2219.1 1782.1 1610.7 1493.8 1489.2 1477.2

ER-0.2 100 976 130.8 139.5 139.8 114.2 112.5 130.8 114.0
ER-0.2 250 6291 248.5 332.4 299.9 254.0 242.7 248.5 247.3
ER-0.2 500 24966 486.2 649.4 575.3 493.5 478.1 482.0 471.9

ER-0.2 750 56064 685.1 879.8 806.6 733.7 704.4 678.7 683.0
ER-0.2 1000 100292 880.0 1127.3 1067.0 971.2 944.9 879.2 876.3

CR-0.2/0.05 100 250 510.3 566.4 637.7 379.0 391.6 510.3 379.4
CR-0.2/0.05 250 1605 725.9 1004.0 840.6 628.7 605.4 725.9 682.7
CR-0.2/0.05 500 6409 1060.8 1567.1 1178.4 1004.9 919.0 1032.2 937.4
CR-0.2/0.05 750 14116 1272.8 2216.8 1590.8 1354.6 1205.2 1267.7 1244.4
CR-0.2/0.05 1000 25485 1438.9 2035.2 1881.6 1607.2 1474.2 1434.0 1430.2

CR-0.3/0.1 100 547 231.7 244.3 231.7 176.8 172.9 231.7 177.3
CR-0.3/0.1 250 3214 410.4 559.2 446.4 367.3 363.5 410.4 351.0

CR-0.3/0.1 500 12439 634.0 1015.8 779.4 649.8 611.9 630.4 608.3

CR-0.3/0.1 750 28456 858.8 1197.9 1017.6 918.8 861.4 850.8 841.8

CR-0.3/0.1 1000 50593 1093.8 1475.3 1358.8 1231.4 1161.0 1090.5 1090.7
RG-0.15 100 361 391.2 769.4 1790.0 572.2 522.9 391.2 308.7

RG-0.15 250 1922 4549.7 5374.0 5634.6 2803.8 2958.6 1964.7 1287.8

RG-0.15 500 7583 8170.0 8894.7 7248.8 5110.6 4984.0 5922.4 5211.7
RG-0.15 750 16832 36845.6 10873.1 9439.0 7402.3 7260.3 6488.0 7433.9
RG-0.15 1000 30864 57206.5 13778.9 13468.7 9831.0 8940.2 25353.5 10017.1
RG-0.3 100 956 1147.2 604.8 1029.7 415.8 404.8 1054.0 397.7

RG-0.3 250 6989 1414.3 1141.9 1144.6 714.0 692.2 1240.5 716.2
RG-0.3 500 26714 4114.9 2376.2 2472.7 1662.5 1560.5 3138.3 1625.2
RG-0.3 750 60147 5280.8 3766.5 3380.8 2658.2 2351.5 4838.2 2506.5
RG-0.3 1000 108433 6892.4 3979.2 4414.2 3209.7 2874.6 6466.2 3087.4
FF-0.35/0.32 100 203 42.0 77.0 190.0 294.5 163.1 42.0 42.0

FF-0.35/0.32 250 642 164.1 685.1 1066.8 1037.2 169.4 147.0 134.6

FF-0.35/0.32 500 1618 1614.7 32609.9 36658.6 12524.2 5449.1 659.3 659.3

FF-0.35/0.32 750 2403 913.7 25985.4 41441.1 16038.2 6214.2 615.0 634.2
FF-0.35/0.32 1000 2758 552.0 151030.0 198661.0 57594.9 27380.4 421.2 390.1

FF-0.45/0.35 100 1630 777.8 659.8 831.9 316.4 312.3 764.1 335.4
FF-0.45/0.35 250 12875 1234.5 1196.8 1591.5 720.6 627.5 1234.5 663.8
FF-0.45/0.35 500 53618 4094.8 4127.2 4149.3 2562.1 1650.5 3528.5 2026.5
FF-0.45/0.35 750 119604 4580.1 7122.7 6195.9 3769.7 3078.2 4580.1 4532.4
FF-0.45/0.35 1000 195466 12357.0 12080.1 9831.5 8116.3 6194.2 10995.1 7288.9
BA-4 100 384 1429.1 1909.4 1675.9 895.9 912.1 1429.1 774.9

BA-4 250 984 2881.4 6737.9 4411.5 3642.8 3546.0 2881.4 2600.9

BA-4 500 1984 7930.4 35396.0 13259.0 18240.9 16863.4 7352.9 6549.2

BA-4 750 2984 11788.3 94856.7 35977.1 44696.3 38077.8 10969.8 10625.7

BA-4 1000 3984 18828.7 150876.0 45311.6 51782.4 73341.6 18828.7 18001.5

BA-5 100 475 840.0 1544.5 938.8 908.7 811.3 840.0 530.4

BA-5 250 1225 2481.9 9812.6 4797.4 3003.8 2782.4 2481.9 1993.5

BA-5 500 2475 6564.4 29556.6 14093.6 10643.7 11019.0 6564.4 6272.4

BA-5 750 3725 9702.1 82545.7 24198.1 27675.5 25140.6 9266.7 8153.4

BA-5 1000 4975 14319.8 96156.4 54986.7 52380.3 43490.8 14319.8 12795.9

WS-4 100 200 4214.0 2316.4 3212.7 1125.1 1141.8 404.5 375.4

WS-4 250 500 2147.6 6167.9 7045.1 3070.9 3538.8 1233.7 1415.5
WS-4 500 1000 17303.0 19545.8 14712.7 9525.1 10802.2 3327.6 3425.2
WS-4 750 1500 49712.0 31454.8 27842.5 18157.9 15603.0 3928.2 5893.1
WS-4 1000 2000 40663.6 47474.3 46022.5 28423.8 25733.1 10395.9 10541.8
WS-5 100 200 828.7 1625.2 2413.7 707.0 709.8 483.3 502.8
WS-5 250 500 6387.7 6621.1 6335.8 3201.2 3446.8 1276.2 1552.4
WS-5 500 1000 13475.4 24030.2 16693.0 10997.1 10443.5 3740.0 4673.3
WS-5 750 1500 21225.4 34222.4 31282.4 22044.2 20846.5 4971.9 5339.7
WS-5 1000 2000 18897.9 56587.7 45200.3 28758.3 27326.1 7128.0 10344.0

Table A.10: Results of the algorithms for k = 0.1n
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Insts. n m SBA CNP1 MBA SGA SA VNS ABC

ER-0.05 100 220 262.0 619.4 983.5 295.1 246.3 36.0 42.0
ER-0.05 250 1497 925.3 1395.8 876.8 558.6 435.6 752.6 491.9
ER-0.05 500 6199 947.1 1451.6 1215.3 876.1 687.2 930.7 797.0
ER-0.05 750 14182 1135.4 1697.5 1483.8 1145.4 890.4 1114.4 1061.2
ER-0.05 1000 25134 1286.0 2281.7 1681.1 1362.6 1107.2 1275.1 1215.1
ER-0.2 100 976 121.2 114.8 154.4 90.7 78.8 118.2 86.7
ER-0.2 250 6291 206.2 295.8 252.6 200.4 176.8 197.2 185.2
ER-0.2 500 24966 378.8 593.7 522.5 397.5 355.8 373.2 357.6
ER-0.2 750 56064 524.6 865.0 773.8 574.1 520.0 518.5 518.7
ER-0.2 1000 100292 685.8 1095.0 1007.5 756.9 704.3 683.7 679.9

CR-0.2/0.05 100 250 499.7 536.1 712.2 268.9 165.5 149.9 152.0
CR-0.2/0.05 250 1605 697.0 896.4 834.6 503.3 407.9 648.2 504.4
CR-0.2/0.05 500 6409 973.8 1387.1 1143.4 876.1 672.4 908.9 754.1
CR-0.2/0.05 750 14116 1096.0 2105.4 1460.0 1153.1 877.7 1073.6 1001.0
CR-0.2/0.05 1000 25485 1273.4 1983.4 1701.5 1374.2 1082.2 1256.4 1188.2
CR-0.3/0.1 100 547 311.5 210.3 315.6 144.4 122.7 234.1 165.4
CR-0.3/0.1 250 3214 357.6 466.3 448.6 285.0 256.3 346.4 271.4
CR-0.3/0.1 500 12439 512.2 1002.7 715.7 536.3 450.2 493.9 480.7
CR-0.3/0.1 750 28456 681.8 1207.1 993.1 733.5 652.5 667.8 664.4
CR-0.3/0.1 1000 50593 843.1 1505.5 1304.2 953.7 862.0 833.1 833.0

RG-0.15 100 361 10.2 435.5 87.7 19.9 19.1 7.0 6.0

RG-0.15 250 1922 85.0 4346.4 6731.9 1802.2 1612.8 61.4 65.4
RG-0.15 500 7583 783.1 9589.2 11885.8 3240.7 3451.7 245.5 201.1

RG-0.15 750 16832 4955.8 10597.6 11698.9 5100.7 4217.1 564.0 523.1

RG-0.15 1000 30864 26189.3 14003.6 15380.8 6636.3 6136.9 1243.1 1190.8

RG-0.3 100 956 35.5 631.6 101.4 235.0 238.4 34.3 27.9

RG-0.3 250 6989 1087.8 1040.7 1328.1 427.0 410.3 414.3 445.5
RG-0.3 500 26714 898.0 2245.1 3602.9 1041.4 987.8 449.8 532.6
RG-0.3 750 60147 1796.4 3756.6 3530.8 1737.8 1424.3 1591.7 1736.3
RG-0.3 1000 108433 1822.0 3937.3 5167.8 2301.4 1923.4 1822.0 1784.3

FF-0.35/0.32 100 203 2.0 6.0 4.0 6.0 4.0 2.0 2.0

FF-0.35/0.32 250 642 4.0 316.7 539.7 63.0 8.0 4.0 4.0

FF-0.35/0.32 500 1618 4.0 14205.8 25902.9 3305.9 16.0 2.0 2.0

FF-0.35/0.32 750 2403 2.0 22426.3 22353.9 5407.4 14.0 2.0 2.0

FF-0.35/0.32 1000 2758 4.0 110595.0 162119.0 15020.6 20.0 2.0 2.0

FF-0.45/0.35 100 1630 554.1 364.4 490.1 115.3 115.0 450.6 120.5
FF-0.45/0.35 250 12875 1618.1 1111.3 1823.9 362.2 208.1 1618.1 265.7
FF-0.45/0.35 500 53618 5191.2 4256.3 4062.4 1285.4 629.5 5191.2 1262.0
FF-0.45/0.35 750 119604 5423.8 7113.9 5931.6 2184.6 1522.2 5184.3 1868.9
FF-0.45/0.35 1000 195466 11413.8 12919.8 10374.1 4195.2 2720.8 11413.8 3812.0
BA-4 100 384 272.0 1244.5 1368.0 496.1 411.8 86.0 56.0

BA-4 250 984 406.3 6945.2 3207.2 1870.8 1402.2 324.7 308.0

BA-4 500 1984 576.0 33031.3 13829.8 7126.3 4404.3 218.0 378.0
BA-4 750 2984 473.0 93812.5 20827.5 15329.3 13151.3 218.0 214.0

BA-4 1000 3984 346.0 161175.0 33607.9 24100.5 27930.7 266.0 294.0
BA-5 100 475 413.8 960.8 697.2 324.8 332.9 305.1 259.8

BA-5 250 1225 6926.0 9519.8 2829.3 1812.5 1388.1 2019.9 1240.5

BA-5 500 2475 5515.3 27255.6 8634.5 6659.3 4436.2 3035.4 3772.9
BA-5 750 3725 14472.3 80680.4 17713.9 16419.6 9897.8 9445.6 6040.4

BA-5 1000 4975 18283.0 92681.6 32236.4 28279.7 19636.9 16752.6 7521.8

WS-4 100 200 5.3 30.7 70.0 12.0 12.0 5.3 5.3

WS-4 250 500 11.7 6233.5 10701.2 1941.9 1285.0 10.0 10.0

WS-4 500 1000 12.0 21067.5 23086.3 6699.8 736.7 10.0 12.0
WS-4 750 1500 12.0 35557.8 47199.6 12383.1 2028.8 9.0 8.0

WS-4 1000 2000 15.3 42949.3 71638.9 23811.0 3894.9 12.0 12.0

WS-5 100 200 16.2 228.2 770.0 126.7 42.0 8.0 11.0
WS-5 250 500 12.0 4940.2 17904.8 1622.5 455.5 9.3 8.0

WS-5 500 1000 11.7 23205.8 31455.9 5309.7 759.3 8.0 10.0
WS-5 750 1500 10.3 32910.8 51790.1 13023.6 1764.3 10.3 10.3

WS-5 1000 2000 12.0 61587.5 51855.5 23844.9 2107.5 10.3 11.7

Table A.11: Results of the algorithms for k = 0.3n
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Insts. n m SBA CNP1 MBA SGA SA VNS ABC

ER-0.05 100 220 0.0 10.0 4.0 30.0 12.0 0.0 0.0

ER-0.05 250 1497 1484.8 1307.9 960.8 417.4 310.7 744.0 444.3
ER-0.05 500 6199 978.1 1479.5 1182.0 768.4 478.9 901.4 608.0
ER-0.05 750 14182 1071.6 1659.1 1418.2 985.6 638.9 1042.7 833.6
ER-0.05 1000 25134 1175.9 2143.7 1711.9 1155.4 787.5 1169.7 991.8
ER-0.2 100 976 153.4 128.6 187.5 65.5 55.7 110.6 63.4
ER-0.2 250 6291 173.6 264.8 266.6 147.2 128.0 160.9 141.8
ER-0.2 500 24966 285.6 586.9 507.6 289.0 249.6 278.0 266.5
ER-0.2 750 56064 392.4 864.4 723.0 425.3 370.4 388.3 378.1
ER-0.2 1000 100292 508.6 1094.7 993.0 561.6 497.0 503.2 494.5

CR-0.2/0.05 100 250 2.0 16.0 46.0 156.0 20.0 0.0 0.0

CR-0.2/0.05 250 1605 783.8 783.4 1016.0 460.4 275.6 620.5 299.8
CR-0.2/0.05 500 6409 911.8 1449.9 1074.7 726.6 477.1 871.5 624.6
CR-0.2/0.05 750 14116 1080.2 2036.0 1449.8 960.3 626.9 1041.3 845.3
CR-0.2/0.05 1000 25485 1191.2 1991.3 1614.1 1098.4 783.7 1149.0 983.1
CR-0.3/0.1 100 547 342.7 217.9 450.1 117.5 83.8 180.9 90.3
CR-0.3/0.1 250 3214 401.7 460.1 451.1 239.3 177.3 339.9 195.4
CR-0.3/0.1 500 12439 471.6 992.2 690.0 429.6 318.1 448.2 355.7
CR-0.3/0.1 750 28456 538.8 1165.1 968.3 556.5 458.8 532.2 494.9
CR-0.3/0.1 1000 50593 658.6 1496.2 1236.8 733.5 597.0 644.6 619.2
RG-0.15 100 361 0.0 16.0 8.0 10.0 0.0 0.0 0.0

RG-0.15 250 1922 16.8 3798.9 7340.6 995.1 414.1 4.0 3.4

RG-0.15 500 7583 63.1 9670.6 14938.3 2332.1 2045.2 19.5 14.3

RG-0.15 750 16832 114.8 11250.0 14073.2 3697.7 2445.6 68.7 48.9

RG-0.15 1000 30864 162.1 14089.9 16213.5 4607.8 3552.2 98.5 106.1
RG-0.3 100 956 24.3 515.6 60.0 127.0 24.7 6.2 0.7

RG-0.3 250 6989 134.7 908.5 2004.2 301.5 210.3 38.7 15.8

RG-0.3 500 26714 154.4 2178.9 3388.3 684.6 491.0 36.7 26.1

RG-0.3 750 60147 398.1 3536.7 4223.7 1140.3 734.6 357.9 301.6

RG-0.3 1000 108433 544.5 3946.1 6513.6 1527.0 1089.7 482.6 501.5
FF-0.35/0.32 100 203 0.0 2.0 0.0 2.0 0.0 0.0 0.0

FF-0.35/0.32 250 642 0.0 77.3 73.0 31.4 2.0 0.0 0.0

FF-0.35/0.32 500 1618 0.0 6760.4 10743.3 947.5 4.0 0.0 0.0

FF-0.35/0.32 750 2403 0.0 14490.8 17685.0 1340.3 6.0 0.0 0.0

FF-0.35/0.32 1000 2758 0.0 128216.0 88842.7 626.7 10.0 0.0 0.0

FF-0.45/0.35 100 1630 4.0 285.2 12.0 71.0 10.9 4.0 4.0

FF-0.45/0.35 250 12875 649.9 1921.5 1393.2 198.5 3.6 168.8 178.0
FF-0.45/0.35 500 53618 1621.2 3600.2 3458.4 682.7 117.8 1563.7 422.5
FF-0.45/0.35 750 119604 5018.2 7391.6 5844.7 1249.0 288.7 2216.2 666.2
FF-0.45/0.35 1000 195466 238.0 12879.3 10279.0 2161.8 965.8 126.0 234.0
BA-4 100 384 0.0 10.0 2.0 244.8 151.8 0.0 0.0

BA-4 250 984 0.0 7085.8 2948.7 1178.8 623.8 0.0 0.0

BA-4 500 1984 0.0 31590.3 9124.5 3969.3 2265.2 0.0 0.0

BA-4 750 2984 0.0 96303.5 20020.9 8317.4 4308.6 0.0 0.0

BA-4 1000 3984 0.0 144535.0 32658.2 14639.1 5924.0 0.0 0.0

BA-5 100 475 8.0 715.4 40.0 217.0 154.3 2.0 4.0
BA-5 250 1225 4.0 7720.8 3187.2 1131.4 621.1 2.0 2.0

BA-5 500 2475 2.0 25267.3 9104.5 3717.5 1657.9 2.0 2.0

BA-5 750 3725 2.0 81924.6 12555.3 8520.6 3677.3 2.0 2.0

BA-5 1000 4975 2.0 90017.7 31140.6 15473.7 6984.7 2.0 2.0

WS-4 100 200 1.0 72.0 6.0 6.0 6.0 0.0 0.0

WS-4 250 500 1.0 3944.1 4752.8 16.0 4.0 0.0 0.0

WS-4 500 1000 2.0 19255.9 41862.3 50.0 12.0 0.0 0.0

WS-4 750 1500 1.0 30757.8 57718.7 56.0 12.0 0.0 0.0

WS-4 1000 2000 2.0 43955.1 53824.2 48.0 12.0 1.0 1.0

WS-5 100 200 2.0 8.0 8.0 8.0 1.0 0.0 0.0

WS-5 250 500 2.0 3517.8 566.4 30.0 4.0 0.0 0.0

WS-5 500 1000 1.0 20139.6 46769.3 64.0 8.0 0.0 1.0
WS-5 750 1500 1.0 37272.8 50403.6 70.0 12.0 1.0 1.0

WS-5 1000 2000 1.0 63466.4 84441.4 118.0 12.0 0.0 1.0

Table A.12: Results of the algorithms for k = 0.5n
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