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Abstract. Class noise refers to the incorrect labeling of examples in
classification, and is known to negatively affect the performance of clas-
sifiers. In this contribution, we propose a boosting-based hybrid algo-
rithm that combines data removal and data reparation to deal with noisy
instances. A experimental procedure to compare its performance against
no-preprocessing is developed and analyzed, laying the foundations for
future works.
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1 Introduction

The main goal of Data Mining (DM) consists of extracting useful and valuable
knowledge out of large amounts of raw data [6,15]. Evidently, the relevance and
interest of this knowledge is strongly influenced by the quality of the used data,
and this turns preprocessing into one of the most crucial and time-consuming
steps in the DM process [14,22]. In this stage, a very common problem is the
presence of noise in the dataset, i.e. corrupted data items not following the
general distribution of the dataset, which can lead to excessively complex models
with deteriorated performance [31]. We focus our interest on classification task,
where two types of noise are distinguished: class noise, when it affects to the class
label of the instances, and attribute noise, when it affects to the rest of attributes.
The former is known to be the most disruptive one [24,30]. Consequently, many
recent works, including this contribution, are devoted to overcome it or at least
to minimize its effects (see [10] for a comprehensive and updated survey).

Among the approaches followed to address this problem, data reparation
is one of most delicate, since incorrect relabeling may dramatically harm the
borders between classes, leading to deteriorated accuracy for later classifiers
[8,20]. This supposes a significant lack of literature and methods on the subject,
which usually prevents researchers and practitioners from taking advantage of
reparation benefits.

In this contribution, we propose using the well-known boosting mechanism
[11,12] to introduce a hybrid algorithm that combines data removal and data
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reparation. The reason for the choice of boosting is twofold: its sensitivity to noise
allows for detecting noisy instances through the values of their weights, and the
reliability of the ensemble of classifiers built along the different iterations allows
for evaluating the most likely class for the noisy instances and somehow quantify
its confidence.

We will develop a experimental study to compare our proposal against “no
preprocessing”, considering 13 datasets and noise levels from 0 % to 35 % by
increments of 5 %. To leave out exernal effects on the noise treatment, we will
avoid using robust classifiers in the evaluation, taking 1-NN instead. Finally,
we will include a Wilcoxon signed-rank test to assess the statistical evidence of
enhancement.

The layout of the contribution is as follows: in Sect. 2 we set the context
for our proposal, including previous related works (Sect. 2.1), and some relevant
notes on boosting (Sect. 2.2). In Sect. 3, our novel hybrid algorithm is detailed
and analyzed. Section 4 addresses the empirical evaluation, setting the experi-
mental framework in Sect. 4.1 and explaining the results in Sect. 4.2. Some con-
clusions, comments, and future directions are included in Sect. 5.

2 Background and Related Work

In this section we set the context for our proposal. Specifically, Sect. 2.1 briefly
reviews the main techniques for class noise preprocessing, focusing on reparation.
Section 2.2 includes some appropriate comments on the use of boosting.

2.1 Tackling Class Noise Preprocessing

In the literature, there are two main ways to deal with class noise [30]: algorithm
level approaches [7,23], which attempt to create robust classification algorithms
that are little influenced by the presence of noise, and data level approaches
[5,13], which try to develop strategies to cleanse the dataset as a previous step
to the fit of the classifier. We will follow the second approach, since it allows to
carry out the preprocessing just once and apply any classifier therafter, whereas
the first treatment is specific for each classification algorithm.

In the chosen approach, the most classical procedure consists of detecting
polluted instances and removing them from the dataset. Such algorithms are
commonly called filters, and the detection step can be accomplished by means
of different paradigms, such as ensemble-based techniques (e.g. Ensemble Filter
(EF), see [5]), iterative procedures (e.g. Iterative Partitioning Filter (IPF), see
[17]), or metric-based mechanisms (e.g. Saturation Filter (SF), see [13]).

However, there exist also other interesting ideas, like additionally allowing for
data reparation (or relabeling) rather than only removal [3,18,21,25,33]. In fact,
data is usually difficult to obtain, and getting rid of instances inexorably leads to
loss of information, so it could be avoided when the real class can be guessed with



A First Study on the Use of Boosting for Class Noise Reparation 551

a considerable level of confidence. This damage for the learning process is even
worse in specific frameworks such as imbalanced classification [28].

The discussion between data filtering, data reparation, and their possible
synergy is a dynamic and challenging research area: several studies warn about
the dangers of incorrectly relabeling instances [8,20], whereas many others claim
the problems derived from removing too many instances from the dataset [18,27].
Hence, most proposals in the subject try to develop an appropriate trade-off to
address the problem.

Among these algorithms that integrate data reparation, we can find different
approaches: techniques based on votes from an ensemble of classifiers [3], meth-
ods based on noise measurements and thresholds [25], nearest neighbors-related
techniques [2,18], approaches based on neighborhood graphs [19,21], and other
particular mechanisms like in [32,33], where neural networks and decision trees
are used respectively under a similar idea. As we will comment in Sect. 3, our
algorithm somehow combines the two first approaches by means of boosting.

2.2 Elements of Boosting

Boosting [12] is a well-known ensemble mechanism to enhance the performance of
a single classifier (called the weak classifier, although it is not necessarily a simple
one) along several iterations. Briefly, it trains that same classifier in different
rounds, focusing each time in those instances misclassified in the previous step.
Once the ensemble is completed, it combines the predictions of all those weak
classifiers, weighted by their training accuracy, to classify previously unobserved
instances.

One of the greatest exponent of this technique is AdaBoost (Adaptive
Boosting) algorithm [11], which distinguishes between binary classification task
(AdaBoost.M1 algorithm) and general classification (AdaBoost.M2 algorithm,
which includes the notion of “pseudo-loss”). Since the former is the most popular
and easy-to-handle version, in this first study we will focus on binary classifi-
cation, postponing the general framework with AdaBoost.M2 for future studies
(see Sect. 5).

The described procedure of boosting makes it prone to overfit noisy instances
[9], with weak classifiers persistently misclassifying them and thus getting high
values for their weights. Interestingly, this can be used as an indicator to detect
corrupted items. For instance, in [16] the authors present a classifier called
ORBoost (Outlier Removal Boosting), a noise-robust adaptation of AdaBoost
which removes in each iteration those instances whose weight exceeds an appro-
priate threshold. Likewise, in [29] the values of certain evaluation metrics asso-
ciated to the boosting process, called edge and margin, are used to detect noisy
instances.

Our proposal elaborates over these ideas, and integrates the possibility of
reparation based on the predictions from the underlying ensemble of classifiers.
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3 Noise Reparation Using AdaBoost

Before going into specific details, let us summarize the key ideas which define
our cleansing algorithm:

1. We apply the scheme of AdaBoost.M1, with its particular weights update
[11,12]. Recall we are dealing with binary classification in this first approach.

2. In each iteration, we detect as “potentially noisy” those instances whose
weight is over a certain threshold.

3. Those instances are either removed, relabeled or kept unchanged depending
on the predictions from the underlying ensemble of weak classifiers built until
that round.

Notice that points 3 and 2 above correspond to the two first approaches explained
in last paragraph of Sect. 2.1 as typical ways to address the problem of noise data
reparation: on the one hand, techniques based on ensembles, and on the other
hand those relying on noise measurements and thresholds.

Now, let us enumerate the specific parameters and elements that allow
for tuning our proposal. Their default values for the experimentation will be
provided in Sect. 4.1:

– T: number of iterations for the AdaBoost mechanism.
– weakCL: the weak classifier used in each round.
– NoiseTH: threshold for considering an instance as potentially noisy (recall

point 2 above).
– RepTH, KeepTH: respectively, thresholds for repairing or keeping those poten-

tially noisy items (recall point 3 above).

The process is sketched in Algorithm 1. It starts with an uniform distribu-
tion of weights, i.e. ω1(i) = 1/m for all i = 1, . . . , m, where m denotes the initial
number of instances in the dataset. For each iteration t = 1, . . . , T , the well-
known process of AdaBoost.M1 is applied, obtaining a weak classifier ht with
an associated confidence βt ∈ (0,+∞), and updating the weights to {ωt+1(i)}i
(the range of i will progressively decrease as removal occurs). Then, we select
those instances i1, . . . , ik whose weight exceeds the threshold noiseTH. In order
to analyze them, we consider the corresponding predictions of the weak clas-
sifiers h1, . . . , ht built until that iteration, weighted by their confidence values
β1, . . . , βt. Normalizing, we have k pairs of values (c11, c12), . . . , (ck1, ck2) in the
interval [0, 1], describing the confidence of each “suspicious” instance belonging
to each one of the two classes. Now, for each j = 1, . . . , k, we take the class c
with highest confidence between cj1 and cj2:

– If c is the actual class of the instance in that step, it is kept unchanged if the
confidence is greater than KeepTH, and removed otherwise.

– If c is not the actual class of the instance in that step, it is relabeled if the
confidence is greater than RepTH, and removed otherwise.
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Before going into next iteration, the weights of relabeled instances are ini-
tialized to 1/mt, with mt the number of instances in the dataset after iteration
t, the weights of those analyzed but kept instances are given back its previous
value (before exceeding the threshold), and the rest of weights are not modified.
After proper normalization, the process gets into next round.

Algorithm 1. AdaBoost-based approach for filtering and repairing.
Input: Dataset D with m initial instances, and tuning parameters T, weakCL,
NoiseTH, RepTH, KeepTH.
Initialize: Weights ω1(i) = 1/m for all i = 1, . . . , m.
for t = 1, . . . , T do

Apply AdaBoost.M1 to obtain weak classifier ht with confidence βt.
Update weights to ωt+1 following AdaBoost.M1 scheme.
Select “potentially noisy instances”: i1, . . . , ik such that ωt+1(ij) >NoiseTH.
for j = 1, . . . , k do

Compute cj1 and cj2 confidences for ij belonging to class 1 and 2 respectively,
based on predictions from h1, . . . , ht weighted by β1, . . . , βt.
Put c = max(cj1, cj2) and γ ∈ {1, 2} the correspondent class.
if class(ij)= γ then

if c >KeepTH then
Keep instance ij in D unchanged.

else
Remove instance ij from D.

end if
end if
if class(ij)�= γ then

if c >RepTH then
Relabel instance ij in D with class γ.

else
Remove instance ij from D.

end if
end if

end for
Weights for relabeled items are initialized to 1/mt, with mt current size of D.
Weights for analyzed but kept items are set back to ωt.
Weights are re-normalized.

end for
return D

4 Experiments

In this section we develop a experimental study to compare our preprocessing
proposal against no preprocessing. Specific framework and parameters are fixed
in Sect. 4.1, whereas results are shown and analyzed in Sect. 4.2.
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4.1 Experimental Framework

In order to assess the performance of our proposal, we consider 13 datasets for
binary classification from KEEL dataset repository1 [1]. Table 1 summarizes the
main features of these datasets.

Table 1. Datasets used in the experimental study. #EX denotes the number of exam-
ples or instances, and #AT the number of attributes (apart from the class).

Dataset banana german heart ionosphere magic monk phoneme

#EX 5300 1000 270 351 19020 432 5404

#AT 2 20 13 33 10 6 5

Dataset pima ring sonar spambase twonorm wdbc

#EX 768 7400 208 4597 7400 569

#AT 8 20 60 57 20 30

A stratified 5-folds cross validation scheme is used to test the accuracy
of 1-NN classifier without preprocessing and after applying our preprocessing
algorithm. Noise levels from 0 % to 35 %, by increments of 5 %, are introduced in
the training sets following a uniform class noise scheme [26]: the corresponding
percentage of examples are corrupted randomly replacing their class labels by
other ones from the set of classes. Thus, using this scheme, both classes may be
affected by the noise.

In total, two runs of the same scheme (for preprocessing and no preprocess-
ing), with eight noise levels, five train-test pairs, and thirteen datasets, adds
up to 2 × 8 × 5 × 13 = 1040 experiments.

Finally, before going into the results, let us specify the default values for our
algorithm’s tuning parameters:

1. T = 50 iterations.
2. CART decision tree [4] is taken as weak classifier, which is a classical choice

for boosting.
3. The noise threshold NoiseTH is set to depend on the size of the dataset,

concretely NoiseTH = 10/m, where m is the initial number of instances.
4. Both RepTH and KeepTH are chosen so that “repairing” or “keeping” holds

when the highest confidence is double the next one. In two-class classification,
this implies RepTH = KeepTH = 2/3.

4.2 Analysis of Results

Complete results of the experiments are shown in Table 2. Since there are five
train-test pairs for each dataset and noise level, the precision displayed is the
mean value of test accuracy.
1 http://keel.es/datasets.php.

http://keel.es/datasets.php
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Table 2. Classification accuracy for 1-NN with no preprocessing (NP) and with pre-
processing (P). Results are given for each dataset and noise level considered, high-
lighting in each case in bold the best option between NP and P (in case of ties, both
options are bolded). Since we are just displaying three decimal places, there are pairs of
precision values which seem to be equal but actually differ (see for instance the dataset
“sonar” at 20 % noise level).

0 % 5 % 10 % 15 %

NP P NP P NP P NP P

banana 0.872 0.900 0.855 0.894 0.833 0.869 0.817 0.817

german 0.683 0.735 0.668 0.715 0.659 0.690 0.654 0.679

heart 0.744 0.807 0.730 0.804 0.722 0.796 0.711 0.770

ionosphere 0.855 0.858 0.843 0.840 0.803 0.846 0.786 0.832

magic 0.816 0.842 0.800 0.803 0.784 0.785 0.767 0.767

monk 0.734 0.752 0.724 0.738 0.724 0.761 0.704 0.771

phoneme 0.899 0.863 0.880 0.886 0.863 0.867 0.842 0.842

pima 0.692 0.763 0.671 0.745 0.672 0.751 0.656 0.691

ring 0.748 0.760 0.733 0.748 0.729 0.749 0.710 0.752

sonar 0.846 0.836 0.832 0.856 0.827 0.841 0.822 0.827

spambase 0.909 0.906 0.889 0.908 0.871 0.908 0.849 0.904

twonorm 0.949 0.966 0.928 0.965 0.909 0.967 0.879 0.965

wdbc 0.946 0.949 0.919 0.951 0.896 0.956 0.888 0.958

20 % 25 % 30 % 35 %

NP P NP P NP P NP P

banana 0.798 0.798 0.765 0.765 0.763 0.763 0.743 0.743

german 0.657 0.670 0.626 0.634 0.616 0.618 0.630 0.638

heart 0.641 0.722 0.674 0.733 0.681 0.726 0.689 0.719

ionosphere 0.775 0.838 0.761 0.852 0.761 0.843 0.758 0.852

magic 0.751 0.751 0.741 0.741 0.721 0.721 0.704 0.704

monk 0.699 0.769 0.697 0.722 0.657 0.674 0.641 0.669

phoneme 0.817 0.817 0.804 0.804 0.773 0.773 0.761 0.761

pima 0.643 0.664 0.664 0.681 0.650 0.663 0.609 0.606

ring 0.698 0.733 0.687 0.687 0.672 0.672 0.670 0.670

sonar 0.769 0.769 0.779 0.803 0.692 0.712 0.803 0.812

spambase 0.831 0.833 0.811 0.811 0.788 0.788 0.782 0.782

twonorm 0.859 0.965 0.831 0.835 0.817 0.817 0.787 0.787

wdbc 0.828 0.953 0.822 0.946 0.840 0.944 0.812 0.954
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Table 3. Explicit comparison between preprocessing and no preprocessing for classifi-
cation accuracy with 1-NN. A symbol ‘+’ denotes the proposed algorithm outperforms
the no preprocessing. Symbols ‘=’ and ‘−’ indicate equality or deterioration respec-
tively.

0 5 10 15 20 25 30 35

banana + + + = = = = =

german + + + + + + + +

heart + + + + + + + +

ionosphere + − + + + + + +

magic + + + = = = = =

monk + + + + + + + +

phoneme − + + = = = = =

pima + + + + + + + −
ring + + + + + + = =

sonar − + + + + + + +

spambase − + + + + = = =

twonorm + + + + + + + =

wdbc + + + + + + + +

+ 10 12 13 10 10 9 8 6

= + 10 12 13 13 13 13 13 12

Table 3 summarizes the direct comparison between preprocessing and no-
preprocessing in a more illustrative and clear fashion. Briefly, we can conclude
that our method allows for accurate preprocessing while noise does not remove
too much information and patterns from the dataset, when it passes to exhibit
an appropriately conservative behavior. Indeed, penultimate row reveals that
our algorithm (strictly) improves accuracy at low noise levels (even at 0 % level,
when no artificial noise is introduced), and that this enhancement progressively
decreases as noise grows. Moreover, last row shows that our algorithm avoids
incorrect reparation or unsure filtering for those higher noise levels, where pre-
cision does not deteriorate with respect to no-preprocessing.

In fact, this behavior is a natural consequence of the internal mechanism of
our algorithm: as noise level grows, the precision of the weak classifier used in
the boosting scheme decreases, leading to high error rates εt at each iteration.
When these values get close to random guessing (i.e. εt ≈ 0.5), the AdaBoost
weights updating scheme becomes trivial, leading to a very similar weight distri-
bution for next round. Hence, the boosting process gets stalled, and the proposed
preprocessing has no effect. This will be further discussed in Sect. 5.

To check the statistical evidence of enhancement, Table 4 shows the results of
a Wilcoxon signed-rank test for each noise level, with the alternative hypothesis
that our method improves the precision accuracy. Low p-values let us refuse
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Table 4. Results from Wilcoxon signed-rank test applied to compare our preprocessing
proposal with no preprocessing, obtained for each noise level. R+ and R− denote,
respectively, the sum of ranks for preprocessing and no preprocessing.

0 % 5 % 10 % 15 % 20 % 25 % 30 % 35 %

R+ 75 90 91 55 55 45 36 27

R− 16 1 0 0 0 0 0 1

p-value 0.0199 0.0002 0.0001 0.003 0.003 0.0046 0.0071 0.0173

the null hypothesis at all noise levels, even at very low significance levels for
moderate amounts of noise.

5 Conclusions and Future Work

In this first study on the use of boosting for class noise reparation, we motivate
and suggest a novel cleansing algorithm, which is then shown to outperform no
preprocessing in a experimental study. Results displayed in Tables 2, 3 and 4
are promising and lay the foundations for deeper works. These extensions may
address several interesting aspects:

– General classification problem, with more than two classes. In principle, the
same algorithm based on AdaBoost.M1 can be applied with minor modifica-
tions in the tuning parameters. However, AdaBoost.M2 is a specific adaptation
developed by the same authors for general classification [11,12], and could lead
to better performance of the preprocessing mechanism too.

– Dealing with high noise levels. We explained in last Sect. 4.2 how our algorithm
gets stalled in presence of considerable noise levels, producing no effect. This
can be regarded as a safe mechanism to avoid filtering or repairing when there
is not much certainty about it. However, a bit more flexible behaviors could
be explored so that, at these noise levels, preprocessing also improves, at least
slightly, the lack of it.

– Experimental studies can be extended at least in two directions: a wider range
of classifiers (including robust ones) could be used to assess the performance
of our preprocessing approach, and direct comparison against most popular
cleansing algorithms might be tackled.

All these extensions can motivate, or even require, a deep and challenging com-
parison between the two approaches we are dealing with: data filtering and data
reparation.
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