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Abstract. The task of classification with imbalanced datasets have at-
tracted quite interest from researchers in the last years. The reason be-
hind this fact is that many applications and real problems present this
feature, causing standard learning algorithms not reaching the expected
performance. Accordingly, many approaches have been designed to ad-
dress this problem from different perspectives, i.e., data preprocessing,
algorithmic modification, and cost-sensitive learning.
The extension of the former techniques to ensembles of classifiers has
shown to be very effective in terms of quality of the output models.
However, the optimal value for the number of classifiers in the pool can-
not be known a priori, which can alter the behaviour of the system. For
this reason, ordering-based pruning techniques have been proposed to ad-
dress this issue in standard classifier learning problems. The hitch is that
those metrics are not designed specifically for imbalanced classification,
thus hindering the performance in this context.
In this work we propose two novel adaptations for ordering-based prun-
ing metrics in imbalanced classification, specifically the margin distance
minimization and the boosting-based approach. Throughout a complete
experimental study, our analysis shows the goodness of both schemes in
contrast with the unpruned ensembles and the standard pruning metrics
in Bagging-based ensembles.

Keywords: Imbalanced Datasets, Ensembles, Ordering-Based Pruning,
Bagging

1 Introduction

The unequal distribution among examples of different classes in classification
tasks is known as the problem of imbalanced datasets [9, 22]. The use of stan-
dard algorithms in this framework lead to undesirable solutions as the model
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is usually biased towards the most represented concepts of the problem [13].
Therefore, several approaches have been developed for addressing this issue,
which can be divided into three large groups including preprocessing for resam-
pling the training set [3], algorithmic adaptation of standard methods [2], and
cost-sensitive learning [25]. Additionally, all these schemes can be integrated into
an ensemble learning algorithm, increasing the capabilities and performance of
the baseline approach [8, 7, 13].

An ensembles is a set of classifiers where its components are supposed to
complement each other, so that the learning space is completely covered and the
generalization capability is enhanced with respect to the single baseline learning
classifier [18, 21]. When classifying a new instance, all individual members are
queried and their decision is obtained in agreement. The total number of classi-
fiers that compose an ensemble is not a synonym of its quality and performance
[27], since several issues that can degrade its behavior must be taken into ac-
count: (1) the time elapsed in the learning and prediction stages; (2) the memory
requirements; and (3) contradictions and/or redundance among components of
the ensemble.

In accordance with the above, several proposals have been developed to carry
out a pruning of classifiers within the ensemble [26]. Specifically, ordering-based
pruning is based on a greedy approach that adds classifiers iteratively to the
final set with respect to the maximization of a given heuristic metric, until a
preestablished number of classifiers are selected [10, 15].

In this contribution, we aim at developing an adaptation of two popular
metrics towards the scenario of classification with imbalanced datasets, i.e. Mar-
gin Distance Minimization (MDM) and Boosting-Based pruning (BB) [6, 16].
Specifically, we consider that the effect of each classifier in both classes must be
analyzed after the construction of the classifier and not only before (for example,
rebalancing the dataset).

The goodness of this novel proposal is analyzed by means of a thorough ex-
perimental study, including a number of 66 different imbalanced problems. We
have selected SMOTE-Bagging [23] and Under-Bagging [1] as ensemble learn-
ing schemes which, despite of being simple approaches, have shown to achieve a
higher performance than many other more complex algorithms [8]. As in other
related studies, we have selected the well-known C4.5 algorithm as baseline classi-
fier [20]. Finally, our results are supported by means of non-parametric statistical
tests [5].

In order to do so, this work is organized as follows. Section 2 briefly introduces
the problem of imbalanced datasets. Then, Section 3 presents ordering-based
pruning methodology, in which we describe standard metrics for performing
this process and our adaptations to imbalanced classification. Next, the details
about the experimental framework are provided in Section 4. The analysis and
discussion of the experimental results are carried out in Section 5. Finally, Section
6 summarizes and concludes the work.
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2 Basic Concepts on Classification with Imbalanced
Datasets

Classification with imbalanced datasets appears when the distribution of in-
stances between the classes of a given problem is quite different [13, 19]. There-
fore, this classification task needs a special treatment in order to carry out an
accurate discrimination between both concepts, independently of their represen-
tation.

The presence of classes with few data can generate sub-optimal classification
models, since there is a bias towards the majority class when the learning process
is guided by the standard accuracy metric. Furthermore, recent studies have
shown that other data intrinsic characteristics have a significant influence for
the correct identification of the minority class examples [13]. Some examples are
overlapping, small-disjuncts, noise, and dataset shift.

Solutions developed to address this problem can be categorized into three
large groups [13]: (1) data level solutions [3], (2) algorithmic level solutions [2],
and (3) cost-sensitive solutions [25]. Additionally, when the former approaches
are integrated within an ensemble of classifiers, their effectiveness is enhanced
[8, 13].

Finally, in order to evaluate the performance in such a particular classifi-
cation scenario, the metrics used must be designed to take into account the
class distribution. One commonly considered alternative is the Area Under the
ROC curve (AUC) [11]. In those cases where the used classifier outputs a single
solution, this measure can be simply computed by the following formula:

AUC =
1 + TPrate − FPrate

2
(1)

where TPrate = TP
TP+FN and FPrate = FP

TN+FP .

3 A Proposal for Ordering-Based Pruning Scheme for
Ensembles in Imbalanced Domains

Ensemble-based classifiers [18] are composed by a set of so-called weak learners,
i.e., low changes in data produce big changes in the induced models. Diversity
is quite significant in the performance of this type of approach, implying that
individual classifiers must be focused on different parts of the problem space [12].
There are mainly two types of ensemble techniques: Bagging [4] and Boosting
[6].

In this work, we will focus on the first scheme, due to the simplicity for
the integration of data preprocessing techniques [8]. In this methodology, an
ensemble of classifiers is trained with different sets of random instances from the
original training data. When classifying a new sample, all individual classifiers
are fired and a majority or weighted vote is used to infer the class.

The first parameter to take into account when building these types of models
is the number of classifiers considered in the ensemble. In this sense, pruning
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methods were designed to obtain the “optimal” number of classifiers by carrying
out a selection from a given pool of components of the ensemble. The hypothesis
is that accuracy generally increases monotonically as more elements are added
to the ensemble [10, 15, 16]. Most of pruning techniques make use of an heuristic
function to seek for the reduced set of classifiers. In the case of ordering-based
pruning, a metric that measures the goodness of adding each classifier to the
ensemble is defined and the classifier with the highest value is added to the final
sub-ensemble. The same process is performed until the size of the sub-ensemble
reaches the specified parameter value.

In this work, we study two popular pruning metrics MDM and BB [6, 16]. We
describe both schemes and our adaptation to imbalanced classification below:

– MDM is based on certain distances among the output vectors of the ensem-
bles. These output vectors have the length equal to the training set size, and
their value at the ith position is either 1 or -1 depending on whether the ith

example is classified or misclassified by the classifier. The signature vector of
a sub-ensemble is computed as the sum of the vectors of the selected classi-
fiers. To summarize, the aim is to add those classifiers with the objective of
obtaining a signature vector of the sub-ensemble where all the components
are positive, i.e., all examples are correctly predicted. For a wider description
please refer to [15].
This method selects the classifier to be added depending on the closest Eu-
clidean distance between an objective point (where every components are
positive) and the signature vector of the sub-ensemble after adding the cor-
responding classifier. As a consequence, every example has the same weight
in the computation of the distance, which can bias the selection to those
classifiers favoring the majority class. Therefore, we compute the distance
for the majority class examples and minority class examples independently.
Then, distances are normalized by the number of examples used to compute
them and added afterwards. That is, the same weight is given to both classes
in the distance. This new metric is noted as MDM-Imb.

– BB selects the classifier that minimizes the cost with respect to the boost-
ing scheme. This means that boosting algorithm is applied to compute the
weights (costs) for each example in each iteration, but instead of training
a classifier with these weights, the one that obtains the lowest cost from
those in the pool is added to the sub-ensemble and weights are updated
accordingly. Hence, it makes no difference whether classifiers were already
learned using a boosting scheme or not. Different from the original boosting
method, when no classifier has a weighted training error below 50%, weights
are reinitialized (equal weights for all the examples) and the method con-
tinues (whereas in boosting it is stopped). Once classifiers are selected the
scores assigned to each classifier by boosting are forgotten and not taken
into account in the aggregation phase.
It is well-known that boosting by itself is not capable of managing class im-
balance problem [8]. For this reason, we have also adapted this approach in
a similar manner as in the case of MDM. In boosting, every example has
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initially the same weight and these are updated according to whether they
are correctly classified or not. Even though minority class instances should
get larger weights if they are misclassified, these weights can be negligible
compared with those of the majority class examples. Hence, before finding
the classifier that minimizes the total cost, we normalize the weights of the
examples of each class by half of their sum, so that both classes has the
same importance when selecting the classifier (even though each example of
each class would have a different weight). This is only done before select-
ing the classifier, and then weights are updated according to the original
(non-normalized ones). This working procedure tries to be similar to that
successfully applied in several boosting models such as EUS-Boost [7]. This
second weighting approach is noted as BB-Imb.

4 Experimental Framework

Table 1 shows the benchmark problems selected for our study, in which the
name, number of examples, number of attributes, and IR (ratio between the
majority and minority class instances) are shown. Datasets are ordered with
respect to their degree of imbalance. Multi-class problems were modified to ob-
tain two-class imbalanced problems, defining the joint of one or more classes
as positive and the joint of one or more classes as negative, as defined in the
name of the dataset. A wider description for these problems can be found at
http://www.keel.es/datasets.php.

The estimates of AUC measure are obtained by means of a Distribution Op-
timally Balanced Stratified Cross-Validation (DOB-SCV) [17], as suggested in
the specialized literature for working in imbalanced classification [14]. Cross-
validation procedure is carried out using 5 folds, aiming to include enough posi-
tive class instances in the different folds. In accordance with the stochastic nature
of the learning methods, these 5 folds are generated with 5 different seeds, and
each one of the 5-fold cross-validation is run 5 times. Therefore, experimental
results are computed with the average of 125 runs.

As ensemble techniques, we will make use of SMOTE-Bagging [23] and Under-
Bagging [1]. In order to apply the pruning procedure, we will learn a number
of 100 classifiers for each ensemble, choosing a subset of only 21 classifiers as
suggested in the specialized literature [15]. The baseline ensemble models for
comparison will use 40 classifiers as recommended in [8]. For SMOTE-Bagging,
SMOTE configuration will be the standard with a 50% class distribution, 5
neighbors for generating the synthetic samples, and Heterogeneous Value Dif-
ference Metric for computing the distance among the examples. Finally, both
learning approaches include the C4.5 decision tree [20] as baseline classifier, us-
ing a confidence level at 0.25, with 2 as the minimum number of item-sets per
leaf, and the application of pruning will be used to obtain the final tree. Reader
may refer to [8] in order to get a thorough description of the former ensemble
methods.
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Table 1. Summary of imbalanced datasets used

Name #Ex. #Atts. IR Name #Ex. #Atts. IR

glass1 214 9 1.82 glass04vs5 92 9 9.22
ecoli0vs1 220 7 1.86 ecoli0346vs5 205 7 9.25
wisconsin 683 9 1.86 ecoli0347vs56 257 7 9.28
pima 768 8 1.87 yeast05679vs4 528 8 9.35
iris0 150 4 2.00 ecoli067vs5 220 6 10.00
glass0 214 9 2.06 vowel0 988 13 10.10
yeast1 1484 8 2.46 glass016vs2 192 9 10.29
vehicle2 846 18 2.52 glass2 214 9 10.39
vehicle1 846 18 2.52 ecoli0147vs2356 336 7 10.59
vehicle3 846 18 2.52 led7digit02456789vs1 443 7 10.97
haberman 306 3 2.78 ecoli01vs5 240 6 11.00
glass0123vs456 214 9 3.19 glass06vs5 108 9 11.00
vehicle0 846 18 3.25 glass0146vs2 205 9 11.06
ecoli1 336 7 3.36 ecoli0147vs56 332 6 12.28
newthyroid2 215 5 4.92 cleveland0vs4 1771 13 12.62
newthyroid1 215 5 5.14 ecoli0146vs5 280 6 13.00
ecoli2 336 7 5.46 ecoli4 336 7 13.84
segment0 2308 19 6.01 shuttle0vs4 1829 9 13.87
glass6 214 9 6.38 yeast1vs7 459 8 13.87
yeast3 1484 8 8.11 glass4 214 9 15.47
ecoli3 336 7 8.19 pageblocks13vs4 472 10 15.85
pageblocks0 5472 10 8.77 abalone918 731 8 16.68
ecoli034vs5 200 7 9.00 glass016vs5 184 9 19.44
yeast2vs4 514 8 9.08 shuttle2vs4 129 9 20.50
ecoli067vs35 222 7 9.09 yeast1458vs7 693 8 22.10
ecoli0234vs5 202 7 9.10 glass5 214 9 22.81
glass015vs2 506 8 9.12 yeast2vs8 482 8 23.10
yeast0359vs78 172 9 9.12 yeast4 1484 8 28.41
yeast0256vs3789 1004 8 9.14 yeast1289vs7 947 8 30.56
yeast02579vs368 1004 8 9.14 yeast5 1484 8 32.73
ecoli046vs5 203 6 9.15 yeast6 1484 8 41.40
ecoli01vs235 244 7 9.17 ecoli0137vs26 281 7 39.15
ecoli0267vs35 244 7 9.18 abalone19 4174 8 129.44

Finally, we will make use of Wilcoxon signed-rank test [24] to find out whether
significant differences exist between a pair of algorithms.

5 Experimental Study

Our analysis is focused on determining whether the new proposed metrics, specif-
ically designed for dealing with class imbalance, are well-suited for this problem
with respect to the original metrics, i.e., BB and MDM. Additionally, we will
analyze the improvement in the performance results with respect to the original
ensemble model. The average values for the experimental results are shown in
Table 2, whereas full results are shown in Table 3.

Table 2. Average test results for the standard ensemble approach (Base) and the
ordering-based pruning with the original (BB and MDM) and imbalanced pruning
metrics (BB-Imb and MDM-Imb).

Ensemble Base BB BB-Imb MDM MDM-Imb

SMOTE-Bagging .8645 ± .0587 .8602 ± .0632 .8635 ± .0610 .8596 ± .0629 .8625 ± .0622
Under-Bagging .8647 ± .0516 .8755 ± .0564 .8734 ± .0544 .8653 ± .0563 .8699 ± .0558

Regarding the comparison between the pruning schemes, in the case of BB
and BB-Imb we find that for SMOTE-Bagging the metric adapted for imbalanced
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Table 3. Test results for the standard ensemble (Base) and ordering-based pruning
schemes (BB, BB-Imb, MDM, and MDM-Imb) using AUC metric.

SMOTE-Bagging Under-Bagging
Dataset Base BB BB-Imb MDM MDM-Imb Std. BB BB-Imb MDM MDM-Imb

glass1 .7675 .8021 .7925 .7866 .7900 .7686 .7979 .7927 .7918 .7928
ecoli0vs1 .9812 .9750 .9763 .9802 .9788 .9805 .9806 .9764 .9826 .9809
wisconsin .9707 .9692 .9700 .9662 .9666 .9691 .9698 .9704 .9678 .9672
pima .7568 .7451 .7546 .7500 .7558 .7598 .7561 .7548 .7532 .7539
iris0 .9880 .9888 .9880 .9880 .9880 .9900 .9900 .9900 .9900 .9900
glass0 .8347 .8517 .8464 .8413 .8430 .8264 .8469 .8438 .8399 .8352
yeast1 .7312 .7192 .7321 .7301 .7315 .7304 .7333 .7310 .7331 .7307
vehicle2 .9723 .9752 .9734 .9686 .9691 .9704 .9750 .9744 .9680 .9686
vehicle1 .7848 .7691 .7918 .7898 .7934 .8016 .8020 .7983 .7959 .7985
vehicle3 .7784 .7593 .7827 .7795 .7808 .8060 .7979 .7976 .7966 .7974
haberman .6627 .6517 .6476 .6500 .6498 .6627 .6616 .6486 .6488 .6620
glass0123vs456 .9405 .9318 .9357 .9308 .9378 .9335 .9432 .9379 .9264 .9337
vehicle0 .9635 .9630 .9636 .9609 .9614 .9492 .9558 .9595 .9539 .9544
ecoli1 .9053 .8988 .9067 .9044 .9107 .8988 .8981 .9101 .9043 .9123
newthyroid2 .9642 .9540 .9586 .9567 .9577 .9605 .9572 .9696 .9614 .9692
newthyroid1 .9558 .9460 .9486 .9456 .9467 .9490 .9479 .9550 .9594 .9613
ecoli2 .9145 .9153 .9128 .9131 .9099 .9054 .9057 .8996 .9017 .8996
segment0 .9917 .9917 .9924 .9922 .9926 .9866 .9881 .9887 .9872 .9878
glass6 .9291 .9164 .9213 .9157 .9203 .9096 .9277 .9248 .9228 .9190
yeast3 .9330 .9308 .9325 .9315 .9329 .9311 .9326 .9305 .9311 .9295
ecoli3 .8462 .8508 .8560 .8506 .8514 .8830 .8702 .8670 .8793 .8707
pageblocks0 .9580 .9552 .9585 .9572 .9581 .9610 .9631 .9626 .9612 .9615
ecoli034vs5 .9129 .9032 .9018 .9029 .8948 .8922 .9148 .9203 .8701 .9037
yeast2vs4 .9277 .9192 .9155 .9123 .9223 .9445 .9408 .9482 .9383 .9536
ecoli067vs35 .8576 .8651 .8626 .8653 .8630 .8582 .8624 .8578 .8670 .8523
ecoli0234vs5 .9007 .9008 .9036 .8935 .8939 .8641 .9053 .9027 .8404 .8784
glass015vs2 .7041 .7004 .7015 .7052 .7025 .7412 .7117 .7604 .7553 .7628
yeast0359vs78 .7173 .7023 .7174 .7016 .7134 .7373 .7414 .7386 .7394 .7387
yeast02579vs368 .8028 .7982 .7995 .7927 .7993 .8159 .8090 .8068 .8136 .8075
yeast0256vs3789 .9183 .9173 .9176 .9150 .9185 .9149 .9136 .9099 .9140 .9098
ecoli046vs5 .9132 .9086 .9114 .9046 .9083 .8869 .9188 .9238 .8666 .9123
ecoli01vs235 .8988 .8665 .8815 .8789 .8883 .8815 .9031 .9047 .8893 .8942
ecoli0267vs35 .8617 .8544 .8611 .8664 .8642 .8573 .8623 .8556 .8662 .8483
glass04vs5 .9910 .9836 .9879 .9876 .9869 .9940 .9900 .9940 .9940 .9940
ecoli0346vs5 .8921 .8888 .8929 .8762 .8884 .8799 .8961 .9051 .8618 .8956
ecoli0347vs56 .8595 .8701 .8707 .8590 .8643 .8762 .8875 .8897 .9009 .8800
yeast05679vs4 .8177 .8152 .8133 .8088 .8124 .8209 .8287 .8189 .8018 .8182
ecoli067vs5 .8897 .8894 .8888 .8909 .8886 .8820 .8883 .8888 .9028 .8779
vowel0 .9878 .9874 .9880 .9838 .9853 .9588 .9671 .9684 .9689 .9685
glass016vs2 .7009 .7083 .7176 .7168 .7214 .7025 .7185 .7291 .7265 .7323
glass2 .7425 .7390 .7436 .7458 .7458 .7569 .7394 .7691 .7452 .7702
ecoli0147vs2356 .8685 .8637 .8719 .8673 .8793 .8328 .8625 .8536 .8665 .8468
led7digit02456789vs1 .8466 .8547 .8407 .8500 .8383 .8268 .8397 .8322 .8449 .8399
ecoli01vs5 .8881 .8786 .8782 .8688 .8755 .8726 .9142 .9174 .8795 .8937
glass06vs5 .9926 .9954 .9954 .9916 .9912 .9151 .9910 .9940 .9940 .9940
glass0146vs2 .6961 .7161 .7295 .7189 .7254 .7214 .7335 .7336 .7323 .7434
ecoli0147vs56 .8703 .8848 .8804 .8682 .8750 .8738 .9035 .8870 .8819 .8756
cleveland0vs4 .7894 .7933 .8004 .7815 .7835 .8492 .8714 .8305 .7917 .8069
ecoli0146vs5 .8875 .9037 .9022 .8828 .8994 .8933 .9197 .9273 .8639 .8988
ecoli4 .9245 .9220 .9247 .9094 .9135 .8952 .9357 .9349 .9017 .8969
shuttle0vs4 .9999 .9999 .9999 .9999 .9999 1.0000 1.0000 1.0000 1.0000 1.0000
yeast1vs7 .7458 .7354 .7349 .7368 .7303 .7661 .7869 .7852 .7463 .7824
glass4 .9069 .8795 .8788 .8716 .8675 .9065 .9182 .8903 .8943 .8882
pageblocks13vs4 .9952 .9932 .9964 .9963 .9963 .9804 .9937 .9946 .9928 .9928
abalone9vs18 .7120 .7140 .7076 .7090 .7085 .7560 .7490 .7388 .7222 .7354
glass016vs5 .9865 .9493 .9747 .9675 .9674 .9429 .9698 .9675 .9670 .9663
shuttle2vs4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
yeast1458vs7 .6330 .6175 .6144 .6059 .6153 .6374 .6530 .6263 .6009 .6315
glass5 .9769 .9533 .9619 .9586 .9626 .9488 .9596 .9639 .9631 .9621
yeast2vs8 .8064 .7916 .7946 .8014 .8068 .7526 .7846 .7608 .7579 .7629
yeast4 .8211 .8117 .8114 .8046 .8124 .8420 .8534 .8537 .8416 .8543
yeast1289vs7 .7046 .6818 .6905 .6831 .7004 .7370 .7194 .7392 .6918 .7433
yeast5 .9622 .9536 .9581 .9525 .9585 .9593 .9689 .9673 .9623 .9625
yeast6 .8375 .8354 .8446 .8369 .8431 .8673 .8736 .8570 .8706 .8514
ecoli0137vs26 .8347 .8273 .8336 .8363 .8400 .7807 .8774 .7874 .8060 .7789
abalone19 .5432 .5380 .5447 .5375 .5462 .7121 .7034 .7251 .7213 .7307

Average .8645 .8602 .8635 .8596 .8625 .8647 .8755 .8734 .8653 .8699
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classification achieves a higher average performance. Regarding Under-Bagging,
the relative differences are below 1% in favour of the standard approach. On the
other hand, the analysis for MDM and MDM-Imb metrics shows the need for
the imbalanced approach, as it stands out looking at the experimental results.
Finally, the robustness of the imbalanced metrics must be stressed in accordance
with the low standard deviation shown with respect to the standard case.

In order to determine statistically the best suited metric, we carry out a
Wilcoxon pairwise test in Table 4. We have included a symbol for stressing
whether significant differences are found at 95% confidence degree (*) or at 90%
(+). Results of these tests agree with our previous remarks. The differences in
the case of MDM are clear in favour of the imbalanced version. In the case of
BB the behaviour vary depending on the ensemble technique, where significant
differences are obtained for SMOTE-Bagging whereas none are found for Under-
Bagging.

Table 4. Wilcoxon test for pruning metrics: standard [R+] and imbalanced [R−].

Ensemble Comparison R+ R− p-value

SMOTE-Bagging
BB vs. BB-Imb 540.0 1671.0 0.00028*
MDM vs. MDMimb 436.0 1775.0 0.00002

Under-Bagging
BB vs. BB-Imb 1277.0 934.0 0.27939
MDM vs. MDMimb 831.5 1379.5 0.07246+

Finally, when we contrast these results versus the standard ensemble ap-
proach, we also observe a two-fold behaviour: in the case of SMOTE-Bagging
the pruning approach enables the definition of a simpler ensemble with a low
decrease of the performance, especially when the imbalanced metric is selected.
On the other hand, for Under-Bagging we observe a notorious improvement of
the results in all cases when the ordering-based pruning is applied, showing a
better behaviour for MDM-Imb and especially in BB-Imb (see Tables 2 and 3).
These findings are complemented by means of a Wilcoxon test (shown in Table
5), for which we observe significant differences in favour of the ordering-based
pruning for the Under-Bagging approach.

Table 5. Wilcoxon test to compare the standard ensemble approach (Std.) [R+] and
the one with imbalanced ordering-based pruning [R−].

Ensemble Comparison R+ R− p-value

SMOTE-Bagging
Std. vs. BB-Imb 1261.5 883.5 0.215579
Std. vs. MDMimb 1386.5 758.5 0.039856*

Under-Bagging
Std. vs. BB-Imb 502.0 1709.0 0.000114*
Std. vs. MDMimb 637.0 1574.0 0.002735*
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6 Concluding Remarks

Ordering-based pruning in ensembles of classifiers consists of carrying out a
selection of those elements of the ensemble set that are expected to work with
better synergy. The former process is guided by a given metric of performance
which is focused on different capabilities of the ensemble. However, they have
not been previously considered within been developed within the scenario of
imbalanced datasets.

In this work, we have proposed two adaptations of metrics for ordering-based
pruning in imbalanced classification, namely BB-Imb and MDM-Imb. The ex-
perimental analysis has shown the success of these novel metrics with respect to
their original definition, especially in the case of the SMOTE-Bagging approach.
Additionally, we have point out that a significant improvement in the behaviour
of the Under-Bagging ensemble is achieved by means of the application of the
ordering-based pruning, outperforming the results with respect to the original
model.

As future work, we plan to include a larger number of pruning metrics and en-
semble learning methodologies, aiming at giving additional support and strength
to the findings obtained in this contribution.
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