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Abstract. In classification tasks with imbalanced datasets the distri-
bution of examples between the classes is uneven. However, it is not
the imbalance itself which hinders the performance, but there are other
related intrinsic data characteristics which have a significance in the final
accuracy. Among all, the overlapping between the classes is possibly the
most significant one for a correct discrimination between the classes.

In this contribution we develop a novel proposal to deal with the for-
mer problem developing a multi-objective evolutionary algorithm that
optimizes both the number of variables and instances of the problem.
Feature selection will allow to simplify the overlapping areas easing the
generation of rules to distinguish between the classes, whereas instance
selection of samples from both classes will address the imbalance itself
by finding the most appropriate class distribution for the learning task,
as well as removing noise and difficult borderline examples.

Our experimental results, carried out using C4.5 decision tree as base-
line classifier, show that this approach is very promising. Our proposal
outperforms, with statistical differences, the results obtained with the
SMOTE+ ENN oversampling technique, which was shown to be a base-
line methodology for classification with imbalanced datasets.

Keywords: Imbalanced classification ·Overlapping · Feature selection ·
Instance selection · Multiobjective evolutionary algorithms

1 Introduction

The imbalanced class problem is one of the new challenges that arose when
Machine Learning reached its maturity [6], being widely present in the fields of
businesses, industry and scientific research. This issue grew up in importance at
the same time that researchers realize that the datasets they analyzed hold more
instances or examples from one class than that of the remaining ones, and they
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standard classification algorithms achieved a model below a desired accuracy
threshold for the underrepresented class.

One of the main drawbacks for the correct identification of the minority or
positive class of the problem, is related to overlapping between classes [8]. Rules
with a low confidence and/or coverage, because they are associated with an
overlapped boundary area, will be discarded.

The former fact is related with the attributes that represent the problem. It
is well known that a large number of features can degrade the discovery of the
borderline areas of the problem, either because some of these variables might be
redundant or because they do not show a good synergy among them. Therefore,
the use of feature selection can ease to diminish the effect of overlapping [4].

However, the imbalance class problem cannot be addressed by itself just by
carrying out a feature selection. For this reason, it is also mandatory to perform a
preprocessing of instances by resampling the training data distribution, avoiding
a bias of the learning algorithm does towards the majority class.

In accordance with the above, in this work contribution we aim at improving
current classification models in the framework of imbalanced datasets by devel-
oping both a feature and instance selection. This process will be carried out
means of a multi-objective evolutionary algorithm (MOEA) optimization proce-
dure. The multi-objective methodology will allow us to perform an exhaustive
search by means of the optimization of several measures which, on a whole, are
expected to be capable of giving a quality answer to the learnt system. In this
sense, this wrapper approach will be designed to take advantage of the explo-
ration of the full search space, as well as providing a set of different solutions for
selecting the best suited for the final user/task.

Specifically, we will make use of the well known NSGA2 approach [3] as the
optimization procedure, and the C4.5 decision tree [10] as baseline classifier.
We must stress that, although the C4.5 algorithm carries out itself an inner
feature selection process, our aim is to ‘ease‘ the classifier by carrying out a
pre-selection of the variables with respect to the intrinsic characteristics of the
problem, mainly referring the overlapping between the classes.

This contribution is arranged as follows. Section 2 introduces the problem
of classification with imbalanced datasets and overlapping. Section 3 describes
our MOEA approach for addressing this problem. Next, Sect. 4 contains the
experimental results and the analysis. Finally, Sect. 5 will conclude the paper.

2 Imbalanced Datasets in Classification

In this section, we will first introduce the problem of imbalanced datasets. Then,
we will focus on the presence of overlapping between the classes.

2.1 Basic Concepts

Most of the standard learning algorithms consider a balanced training set for
the learning stage. Therefore, addressing problems with imbalanced data may
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cause obtaining of suboptimal classification models, i.e. a good coverage of the
majority examples whereas the minority ones are misclassified frequently [8].
There are several reasons behind this behaviour which are enumerated below:

– The use of global performance measures for guiding the search process, such
as standard accuracy rate, may benefit the covering of the majority examples.

– Classification rules that predict the positive class are often highly specialized,
and they are discarded in favour of more general rules.

– Very small clusters of minority class examples can be identified as noise, and
therefore they could be wrongly discarded by the classifier.

In order to overcome the class imbalance problem, we may find a large number
of proposed approaches, which can be categorized in three groups [8]:

1. Data level solutions: the objective consists of rebalancing the class distribu-
tion via preprocessing of instances [2].

2. Algorithmic level solutions: these solutions try to adapt several classification
algorithms to reinforce the learning towards the positive class [1].

3. Cost-sensitive solutions: they consider higher costs for the misclassification of
examples of the positive class with respect to the negative class [5].

2.2 Overlapping or Class Separability

The problem of overlapping between classes appears when a region of the data
space contains a similar quantity of training data from each class, imposing a
hard restriction to finding discrimination functions.

In previous studies on the topic [9], authors depicted the performance of
the different datasets ordered according to different data complexity measures
(including IR) in order to search for some regions of interesting good or bad
behaviour. They could not characterize any interesting behaviour according IR,
but they do for example according the so called metric F1 or maximum Fisher’s
discriminant ratio [7], which measures the overlap of individual feature values.

This metric for one feature dimension is defined as: f = (μ1−μ2)
2

σ2
1+σ2

2
where μ1,

μ2, σ2
1 , σ2

2 are the means and variances of the two classes respectively, in that
feature dimension. We compute f for each feature and take the maximum as
measure F1. For a multidimensional problem, not all features have to contribute
to class discrimination. Therefore, we can just take the maximum f over all
feature dimensions when discussing class separability. Datasets with a small
value for the F1 metric will have a high degree of overlapping.

Finally, a closely related issue is the impact of noisy and borderline examples
on the classifier performance in imbalanced classification [11]. Regarding this
fact, a preprocessing cleaning procedure can help the learning algorithm to better
discriminate the classes, especially in the overlapped areas.
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3 Addressing Overlapping in Imbalanced Domains
by a Multi-objective Feature and Instance Selection

In this work, our contribution is to introduce a new methodology that makes
use of a MOEA to determine the best subset of attributes and instances in
imbalanced classification. Instance selection aims at both balancing the data
distribution between the positive and negative classes, and removing noisy and
borderline examples that hinder the classification ability of the learning algo-
rithm. Feature selection will simplify the boundaries of the problem by limiting
the influence of those features create difficulties for the discrimination process.

However, the estimation of the best suited subset of instances and features
is not trivial. In accordance with the former, an optimization search procedure
must be carried out in order to determine the former values. Among the different
techniques that can be used for this task, genetic algorithms excel due to their
ability to perform a good exploration and exploitation of the solution space.
Our ultimate goal is to build the simplest classifier with the highest accuracy in
the context of imbalanced classification. Regarding this issue, the first objective
can be overcome by maximizing the reduction of instances, whereas the second
one is achieved by maximizing the recognition of both the positive and negative
classes. In accordance with the former, we propose the use of the “Area Under
the ROC Curve” (AUC), as it provides a good trade-off between the individual
performance for each individual class (Eq. 1).

AUC =
1 + TPrate − FPrate

2
(1)

Taking into account the objectives previously outlined, we propose the design
of a work methodology using as basis a MOEA. This way, we can take advan-
tage of both the exploration capabilities of this type of technique, as well as
allowing the selection among a set of different solutions, depending on the user’s
requirements. We will name this approach as IS+FS-MOEA.

Specifically, we will make use of the NSGA-II algorithm [3] for implementing
our model, as it is widely known for being a high-performance MOEA. Its two
main features are first the fitness evaluation of each solution based on both the
Pareto ranking and a crowding measure, and the other is an elitist generation
update procedure.

In order to codify the solutions, we will make use of a chromosome with
two well differentiate parts: one (FS) for the feature selection and another one
(IS) for the instance selection. Both parts will have a binary codification, in
such a way that a 0 means that the variable (or instance) will not take part for
generating the classification model, whereas a 1 value stands for the opposite
case. Chromosomes will be evaluated jointly with aims at obtaining the best
synergy between both characteristics, instead of optimizing them separately.
This issue is based on the fact that it is not clearly defined which the best order
for carrying our both processes is. An initial chromosome will be built with all
genes equal to ‘1’ in order to implement the standard case study, i.e. the full
training set, whereas the remaining individuals will be generated at random.
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As baseline classifier, we will make use of the C4.5 decision tree [10] for
several reasons. The first one is its wide use in classification with imbalanced
data, so that we may carry out a fair comparative versus the state-of-the-art.
The second one is its efficiency; since we need to perform a large number of
evaluations throughout the search process, it is important the base model to be
particularly quick for not biasing the global complexity of the methodology.

We must stress that, the C4.5 algorithm carries out itself an inner feature
selection process. However, our aim to “ease” the classifier by carrying out a
pre-selection of the variables with respect to the intrinsic characteristics of the
problem, mainly referring the overlapping between the classes, so that we can
improve the classification of both classes together.

For the evaluation of the chromosomes, we carry out the preprocessing of the
training set codified in the phenotype, and then the C4.5 classifier is executed
with the modified dataset. Then, the objective functions to be maximized are
computed as stated in Eq. 2, being N the number of initial training instances,
and ISi the value of the chromosome for the instance selection part.

OBJ1 : AUC

OBJ2 : RED = N − ∑N−1
i=0 ISi;

(2)

4 Experimental Study

This section includes the experimental analysis of the proposed approach. With
this aim, we first present the experimental framework including the datasets
selected for the study, as well as the parameters of the algorithms, and the use
of statistical test. Then, we show the complete results and the comparison with
the state-of-the-art to determine the goodness of our proposal.

4.1 Experimental Framework

Table 1 shows the benchmark problems selected for our study, in which the name,
number of examples, number of attributes, and IR (ratio between the major-
ity and minority class instances) are shown. Datasets are ordered with respect
to their degree of overlapping. A wider description for these problems can be
found at http://www.keel.es/datasets.php. The estimates of AUC measure are
obtained by means of a 5 fold Cross-Validation, aiming to include enough posi-
tive class instances in the different folds.

The parameters of the NSGA-II MOEA have been set up as follows: 60 indi-
viduals as population size, with 100 generations. The crossover and the mutation
(per gen) probabilities are 0.8 and 0.025 respectively. For the C4.5 decision tree
we use a confidence level at 0.25, with 2 as the minimum number of item-sets
per leaf, and the application of pruning will be used to obtain the final tree. As
state-of-the-art approach for the sake of a fair comparison we have selected the
SMOTE + ENN preprocessing technique [2], which has shown a good synergy
with the C4.5 algorithm [8]. This approach creates synthetic examples of the

http://www.keel.es/datasets.php
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Table 1. Summary of imbalanced datasets used

Name #Ex. #Atts. IR F1 Name #Ex. #Atts. IR F1

glass4 214 9 15.47 1.4690 pimaImb 768 8 1.90 0.5760

ecoli01vs5 240 6 11.00 1.3900 abalone19 4174 8 128.87 0.5295

cleveland0vs4 177 113 12.62 1.3500 ecoli0147vs2356 336 7 10.59 0.5275

ecoli0146vs5 280 6 13.00 1.3400 pageblocks0 5472 10 8.77 0.5087

yeast2vs8 482 8 23.10 1.1420 glass2 214 9 10.39 0.3952

ecoli0347vs56 257 7 9.28 1.1300 vehicle2 846 18 2.52 0.3805

vehicle0 846 18 3.23 1.1240 yeast1289vs7 947 8 30.56 0.3660

ecoli01vs235 244 7 9.17 1.1030 yeast1vs7 459 8 13.87 0.3534

yeast05679vs4 528 8 9.35 1.0510 glass0146vs2 205 9 11.06 0.3487

glass06vs5 108 9 11.00 1.0490 yeast0359vs78 506 8 9.12 0.3113

glass5 214 9 22.81 1.0190 glass016vs2 192 9 10.29 0.2692

ecoli067vs35 222 7 9.09 0.9205 yeast1 1484 8 2.46 0.2422

ecoli0267vs35 244 7 9.18 0.9129 glass1 214 9 1.82 0.1897

ecoli0147vs56 332 6 12.28 0.9124 vehicle3 846 18 2.52 0.1855

yeast4 1484 8 28.41 0.7412 habermanImb 306 3 2.68 0.1850

yeast0256vs3789 1004 8 9.14 0.6939 yeast1458vs7 693 8 22.10 0.1757

glass0 214 9 2.06 0.6492 vehicle1 846 18 2.52 0.1691

abalone918 731 8 16.68 0.6320 glass015vs2 172 9 9.12 0.1375

minority class by means of interpolation to balance the data distribution, and
then it removes noise by means of the ENN cleaning procedure. Its configuration
will be the standard with a 50% class distribution, 5 neighbors for generating
the synthetic samples and 3 for the ENN cleaning procedure, and Euclidean
Metric for computing the distance among the examples.

Finally, we will make use of Wilcoxon signed-rank test [12] to find out whether
significant differences exist between a pair of algorithms, thus providing statis-
tical support for the analysis of the results.

4.2 Analysis of the Results

In this case study, the final aim is to obtain the highest precision for both classes
of the problem in the test set. In this way, we will always select the one solution
of the Pareto with the best performance with respect to the AUC metric. In
this case, a comparison with the optimal Pareto front is not possible since for
classification functions this is often unavailable.

Average values for the experimental results are shown in Table 2, where
datasets are ordered from low to high overlapping. From these results we may
highlight the goodness of our approach, as it achieves the highest average value
among all problems. Additionally, we must stress that in the case study of
the higher overlapped problems, i.e. from “ecoli0147vs2356”, that our proposed
approach outperforms the baseline SMOTE + ENN technique in 12 out of 16
datasets. Finally, it is worth to point out that our IS + FS-MOEA does not show
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Table 2. Experimental results for C4.5 with SMOTE + ENN (C4.5+ S ENN) and our
C4.5 with IS+ FS-MOEA approach (C4.5 + MOEA) in training and test with AUC
metric.

Dataset IR F1 C4.5+S ENN C4.5+MOEA Dataset IR F1 C4.5+S ENN C4.5+MOEA

glass4 15.47 1.4690 .9813 .8292 .9838 .8225 pima 1.90 0.5760 .7976 .7311 .8293 .7084
ecoli01vs5 11.00 1.3900 .9676 .8477 .9795 .8455 abalone19 128.87 0.5295 .9009 .5185 .5000 .5000
cleveland0vs4 12.62 1.3500 .9922 .7179 .9828 .8582 ecoli0147vs2356 10.59 0.5275 .9561 .8529 .9571 .8755
ecoli0146vs5 13.00 1.3400 .9861 .8923 .9856 .8981 page-blocks0 8.77 0.5087 .9792 .9437 .9798 .9442
yeast2vs8 23.10 1.1420 .9115 .8012 .8359 .7664 glass2 10.39 0.3952 .9402 .6819 .9364 .7797
ecoli0347vs56 9.28 1.1300 .9540 .8502 .9718 .8541 vehicle2 2.52 0.3805 .9846 .9396 .9842 .9512
vehicle0 3.23 1.1240 .9716 .9160 .9761 .9448 yeast1289vs7 30.56 0.3660 .9359 .6397 .7931 .6733
ecoli01vs235 9.17 1.1030 .9720 .8218 .9527 .8873 yeast1vs7 13.87 0.3534 .9107 .6968 .8890 .7759
yeast05679vs4 9.35 1.0510 .9276 .7725 .9207 .7674 glass0146vs2 11.06 0.3487 .9157 .7344 .9553 .7274
glass06vs5 11.00 1.0490 .9912 .9647 .9975 .9350 yeast0359vs78 9.12 0.3113 .9214 .7078 .8628 .6978
glass5 22.81 1.0190 .9480 .8232 .9988 .9951 glass016vs2 10.29 0.2692 .9237 .6667 .9947 .9572
ecoli067vs35 9.09 0.9205 .9700 .7875 .9632 .8450 yeast1 2.46 0.2422 .7781 .6957 .7857 .6677
ecoli0267vs35 9.18 0.9129 .9851 .7854 .9642 .7827 glass1 1.82 0.1897 .8601 .6668 .8912 .7420
ecoli0147vs56 12.28 0.9124 .9598 .8457 .9738 .8538 vehicle3 2.52 0.1855 .8892 .7675 .8894 .7206
yeast4 28.41 0.7412 .9113 .7157 .8648 .7089 haberman 2.68 0.1850 .7428 .6076 .7326 .6178
yeast0256vs3789 9.14 0.6939 .9121 .7649 .8140 .7581 yeast1458vs7 22.10 0.1757 .8719 .5192 .7996 .5745
glass0 2.06 0.6492 .8862 .7748 .8917 .8103 vehicle1 2.52 0.1691 .8881 .7170 .8960 .7340
abalone9-18 16.68 0.6320 .9302 .7332 .8425 .7122 glass015vs2 9.12 0.1375 .9342 .7226 .9429 .7433

C4.5-SMOTE+ENN C4.5-MOEA

Average .9247 .7626 Average .9033 .7899

Table 3. Wilcoxon test for the comparison between C4.5 + MOEA [R+] and
C4.5 + S ENN [R−].

Comparison R+ R− p-value W/T/L

C4.5+ MOEA vs C4.5+ S ENN 460.0 206.0 0.044745 21/0/15

the curse of over-fitting, as the training performance is even lower than that of
the standard preprocessing approach.

In order to determine statistically the best suited metric, we carry out a
Wilcoxon pairwise test in Table 3. Results of this test agree with our previous
remarks, since significant differences are found in favour of our IS + FS-MOEA
approach with a confidence degree above the 95 %.

Finally, we must remark that the IS-FS-MOEA approach has a greater com-
putational cost in terms of both memory and CPU time than the C4.5 + S ENN
algorithm, as it carries out an evolutionary process. However, its advantage over
the former is twofold: (1) it has been shown to clearly outperform the former in
terms of precision; and (2) it allows the final user to apply several solutions in
order to select the one that better suites to the problem that is being addressed.

5 Concluding Remarks

In this work we have proposed a novel MOEA in the framework of classifica-
tion with imbalanced datasets. This approach has been designed under a double
perspective: (1) to carry out an instance selection for compensating the exam-
ple distribution between the classes, as well as removing those examples which
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include noise, or which difficult the discrimination of the classes; and (2) to per-
form a feature selection to remove those attributes that may imply a high degree
of overlapping in the borderline areas.

The goodness in the use of the MOEA is related to its high exploration abil-
ities, the capability of using several metrics to guide the search, and the avail-
ability of several solutions so that they any of them can be selected depending
on the problem requirements.

Our experimental results have shown the robustness of our novel proposal in
contrast with the state-of-the-art, and confirms the significance of this topic for
future research. Among others, we plan to study the use of different objectives to
guide the search, the use of the solutions of the MOEA as an ensemble approach,
or even to develop a heuristic rule to select the best suited solution overall.
Finally, we will test the behaviour of our model with problems with a higher
complexity, including both a wider number of instances and/or features.
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