
Advanced Review

Data discretization: taxonomy
and big data challenge
Sergio Ramírez-Gallego,1 Salvador García,1* Héctor Mouriño-Talín,2

David Martínez-Rego,2,3 Verónica Bolón-Canedo,2 Amparo Alonso-Betanzos,2

José Manuel Benítez1 and Francisco Herrera1

Discretization of numerical data is one of the most influential data preprocessing
tasks in knowledge discovery and data mining. The purpose of attribute discreti-
zation is to find concise data representations as categories which are adequate
for the learning task retaining as much information in the original continuous
attribute as possible. In this article, we present an updated overview of discreti-
zation techniques in conjunction with a complete taxonomy of the leading discre-
tizers. Despite the great impact of discretization as data preprocessing technique,
few elementary approaches have been developed in the literature for Big Data.
The purpose of this article is twofold: a comprehensive taxonomy of discretiza-
tion techniques to help the practitioners in the use of the algorithms is presented;
the article aims is to demonstrate that standard discretization methods can be
parallelized in Big Data platforms such as Apache Spark, boosting both perfor-
mance and accuracy. We thus propose a distributed implementation of one of
the most well-known discretizers based on Information Theory, obtaining better
results than the one produced by: the entropy minimization discretizer proposed
by Fayyad and Irani. Our scheme goes beyond a simple parallelization and it is
intended to be the first to face the Big Data challenge. © 2015 John Wiley & Sons, Ltd

How to cite this article:
WIREs Data Mining Knowl Discov 2015. doi: 10.1002/widm.1173

INTRODUCTION

Data are present in diverse formats, for example
in categorical, numerical, or continuous values.

Categorical or nominal values are unsorted, whereas
numerical or continuous values are assumed to be
sorted or represent ordinal data. It is well-known
that data mining (DM) algorithms depend very much
on the domain and type of data. In this way, the
techniques belonging to the field of statistical learn-
ing work with numerical data (i.e., support vector

machines and instance-based learning) whereas sym-
bolic learning methods require inherent finite values
and also prefer to perform a branch of values that
are not ordered (such as in the case of decision trees
or rule induction learning). These techniques are
either expected to work on discretized data or to be
integrated with internal mechanisms to perform
discretization.

The process of discretization has aroused gen-
eral interest in recent years1,2 and has become one of
the most effective data preprocessing techniques in
DM.3 Roughly speaking, discretization translates
quantitative data into qualitative data, procuring a
nonoverlapping division of a continuous domain. It
also ensures an association between each numerical
value and a certain interval. Actually, discretization
is considered a data reduction mechanism because it
diminishes data from a large domain of numeric
values to a subset of categorical values.

There is a necessity to use discretized data by
many DM algorithms which can only deal with

*Correspondence to: salvagl@decsai.ugr.es
1Department of Computer Science and Artificial Intelligence, Uni-
versity of Granada, Granada, Spain
2Department of Computer Science, University of A Coruña,
A Coruña, Spain
3Department of Computer Science, University College London,
London, UK

Conflict of interest: The authors have declared no conflicts of inter-
est for this article.

© 2015 John Wiley & Sons, Ltd

discrete attributes. For example, three of the ten
methods pointed out as the top ten in DM4 demand
a data discretization in one form or another: C4.5,5

Apriori,6 and Naïve Bayes.7 Among its main benefits,
discretization causes that the learning methods
show remarkable improvements in learning speed
and accuracy. Besides, some decision tree-based algo-
rithms produce shorter, more compact, and accurate
results when using discrete values.1,8

The specialized literature reports on a huge
number of proposals for discretization. In fact, some
surveys have been developed attempting to organize
the available pool of techniques.1,2,9 It is crucial to
determine, when dealing with a new real problem
or dataset, the best choice in the selection of a discre-
tizer. This will imply the success and the suitability of
the subsequent learning phase in terms of accuracy
and simplicity of the solution obtained. In spite of
the effort made in Ref 2 to categorize the whole fam-
ily of discretizers, probably the most well-known and
surely most effective are included in a new taxonomy
presented in this article, which has now been updated
at the time of writing.

Classical data reduction methods are not
expected to scale well when managing huge data—
both in number of features and instances—so that its
application can be undermined or even become
impracticable.10 Scalable distributed techniques and
frameworks have appeared along with the problem
of Big Data. MapReduce11 and its open-source ver-
sion Apache Hadoop12,13 were the first distributed
programming techniques to face this problem.
Apache Spark14,15 is one of these new frameworks,
designed as a fast and general engine for large-scale
data processing based on in-memory computation.
Through this Spark’s ability, it is possible to speed
up iterative processes present in many DM problems.
Similarly, several DM libraries for Big Data have
appeared as support for this task. The first one was
Mahout16 (as part of Hadoop), subsequently fol-
lowed by MLlib17 which is part of the Spark proj-
ect.14 Although many state-of-the-art DM algorithms
have been implemented in MLlib, it is not the case
for discretization algorithms yet.

In order to fill this gap, we face the Big Data
challenge by presenting a distributed version of the
entropy minimization discretizer proposed by Fayyad
and Irani in Ref 18, using Apache Spark, which is
based on Minimum Description Length Principle.
Our main objective is to prove that well-known dis-
cretization algorithms as MDL-based discretizer
(henceforth called MDLP) can be parallelized in these
frameworks, providing good discretization solutions
for Big Data analytics. Furthermore, we have

transformed the iterativity yielded by the original
proposal in a single-step computation. This new ver-
sion for distributed environments has supposed a
deep restructuring of the original proposal and a
challenge for the authors. Finally, to demonstrate the
effectiveness of our framework, we perform an
experimental evaluation using two large datasets,
namely, ECBDL14 and epsilon.

In order to achieve the goals mentioned above,
this article is structured as follows. First, we provide
in the next Section (Background and Properties) an
explanation of discretization, its properties and the
description of the standard MDLP technique. The
next Section (Taxonomy) presents the updated tax-
onomy of the most relevant discretization methods.
Afterwards, in the Section Big Data Background, we
focus on the background of the Big Data challenge
including the MapReduce programming framework
as the most prominent solution for Big Data. The fol-
lowing section (Distributed MDLP Discretization)
describes the distributed algorithm based on entropy
minimization proposed for Big Data. The experimen-
tal framework, results, and analysis are given in last
but one section (Experimental Framework and Anal-
ysis). Finally, the main concluding remarks are
summarized.

BACKGROUND AND PROPERTIES

Discretization is a wide field and there have been
many advances and ideas over the years. This
section is devoted to providing a proper background
on the topic, including an explanation of the basic
discretization process and enumerating the main
properties that allow us to categorize them and to
build a useful taxonomy.

Discretization Process
In supervised learning, and specifically in classifica-
tion, the problem of discretization can be defined
as follows. Assuming a dataset S consisting
of N examples, M attributes, and c class labels,
a discretization scheme DA would exist on the con-
tinuous attribute A 2 M, which partitions this attrib-
ute into k discrete and disjoint intervals:
f d0,d1½ �,ðd1,d2�,…,ðdkA −1,dkA �g, where d0 and dkA
are, respectively, the minimum and maximal value,
and PA = d1,d2,…,dkA −1

� �
represents the set of cut

points of A in ascending order.
We can associate a typical discretization as a

univariate discretization. Although this property will
be reviewed in the next section, it is necessary to
introduce it here for the basic understanding of the

Advanced Review wires.wiley.com/widm

© 2015 John Wiley & Sons, Ltd

basic discretization process. Univariate discretization
operates with one continuous feature at a time while
multivariate discretization considers multiple features
simultaneously.

A typical discretization process generally con-
sists of four steps (seen in Figure 1): (1) sorting the
continuous values of the feature to be discretized,
either (2) evaluating a cut point for splitting or adja-
cent intervals for merging, (3) splitting or merging
intervals of continuous values according to some
defined criterion, and (4) stopping at some point.
Next, we explain these four steps in detail.

• Sorting: The continuous values for a feature are
sorted in either descending or ascending order.
It is crucial to use an efficient sorting algorithm
with a time complexity of O(NlogN). Sorting
must be done only once and for the entire initial
process of discretization. It is a mandatory
treatment and can be applied when the com-
plete instance space is used for discretization.

• Selection of a Cut Point: After sorting, the best
cut point or the best pair of adjacent intervals
should be found in the attribute range in order
to split or merge in a following required step.
An evaluation measure or function is used to
determine the correlation, gain, improvement in
performance, or any other benefit according to
the class label.

• Splitting/Merging: Depending on the operation
method of the discretizers, intervals either can
be split or merged. For splitting, the possible
cut points are the different real values present in
an attribute. For merging, the discretizer aims
to find the best adjacent intervals to merge in
each iteration.

• Stopping Criteria: It specifies when to stop the
discretization process. It should assume a trade-
off between a final lower number of intervals,
good comprehension, and consistency.

Discretization Properties
In Ref 1,2,9 various pivots have been used in order
to make a classification of discretization techniques.
This section reviews and describes them, underlining
the major aspects and alliances found among them.
The taxonomy presented afterwards will be founded
on these characteristics (acronyms of the methods
correspond with those presented in Table 1):

• Static versus Dynamic: This property refers to
the level of independence between the discreti-
zer and the learning method. A static discretizer
is run prior to the learning task and is autono-
mous from the learning algorithm,1 as a data
preprocessing algorithm.3 Almost all isolated
known discretizers are static. By contrast, a

Continuous
attribute

Sort attribute

Discretized
attribute

Obtain cut point
or adjacent interval

Perform evaluation

No

No

YesYes

Measure
check

Stopping

Sorting Evaluation

Stopping
criterion

Splitting / merging

Split / merge attribute

FIGURE 1 | Discretization process.

WIREs Data Mining and Knowledge Discovery Data discretization

© 2015 John Wiley & Sons, Ltd

dynamic discretizer responds when the learner
requires so, during the building of the model.
Hence, they must belong to the local discreti-
zer’s family (see later) embedded in the learner
itself, producing an accurate and compact out-
come together with the associated learning algo-
rithm. Good examples of classical dynamic
techniques are ID3 discretizer5 and ITFP.43

• Univariate versus Multivariate: Univariate dis-
cretizers only operate with a single attribute
simultaneously. This means that they sort the
attributes independently, and then, the derived
discretization disposal for each attribute
remains unchanged in the following phases.
Conversely, multivariate techniques, concur-
rently consider all or various attributes to deter-
mine the initial set of cut points or to make a
decision about the best cut point chosen as a
whole. They may accomplish discretization
handling the complex interactions among sev-
eral attributes to decide also the attribute in
which the next cut point will be split or merged.
Currently, interest has recently appeared in
developing multivariate discretizers because
they are decisive in complex predictive pro-
blems where univariate operations may ignore
important interactions between attributes60,61

and in deductive learning.58

• Supervised versus Unsupervised: Supervised dis-
cretizers consider the class label whereas unsu-
pervised ones do not. The interaction between
the input attributes and the class output and the
measures used to make decisions on the best cut
points (entropy, correlations, etc.) will define
the supervised manner to discretize. Although
most of the discretizers proposed are supervised,
there is a growing interest in unsupervised dis-
cretization for descriptive tasks.53,58 Unsuper-
vised discretization can be applied to both
supervised and unsupervised learning, because its
operation does not require the specification of
an output attribute. Nevertheless, this does not
occur in supervised discretizers, which can only
be applied over supervised learning. Unsuper-
vised learning also opens the door to transferring
the learning between tasks because the discretiza-
tion is not tailored to a specific problem.

• Splitting versus Merging: These two options
refer to the approach used to define or generate
new intervals. The former methods search for a
cut point to divide the domain into two inter-
vals among all the possible boundary points.
On the contrary, merging techniques begin with
a predefined partition and search for a candi-
date cut point to mix both adjacent intervals
after removing it. In the literature, the terms

TABLE 1 | Most Important Discretizers

Acronym Ref. Acronym Ref. Acronym Ref.

EqualWidth 19 EqualFrequency 19 Chou91 20

D2 21 ChiMerge 22 1R 23

ID3 5 MDLP 18 CADD 24

MDL-Disc 25 Bayesian 26 Friedman96 27

ClusterAnalysis 28 Zeta 29 Distance 30

Chi2 31 CM-NFD 32 FUSINTER 33

MVD 34 Modified Chi2 35 USD 36

Khiops 37 CAIM 38 Extended Chi2 39

Heter-Disc 40 UCPD 41 MODL 42

ITPF 43 HellingerBD 44 DIBD 45

IDD 46 CACC 47 Ameva 48

Unification 49 PKID 7 FFD 7

CACM 50 DRDS 51 EDISC 52

U-LBG 53 MAD 54 IDF 55

IDW 55 NCAIC 56 Sang14 57

IPD 58 SMDNS 59 TD4C 60

EMD 61

MDLP, Minimum Description Length Principle.

Advanced Review wires.wiley.com/widm

© 2015 John Wiley & Sons, Ltd

top-down and bottom-up are highly related to
these two operations, respectively. In fact, top-
down and bottom-up discretizers are thought
for hierarchical discretization developments, so
they consider that the process is incremental,
property which will be described later. Splitting/
merging is more general than top-down/bot-
tom-up because it is possible to have discretizers
whose procedure manages more than one inter-
val at a time.44,46 Furthermore, we consider the
hybrid category as the way of alternating splits
with merges during running time.24,61

• Global versus Local: In the time a discretizer
must select a candidate cut point to be either
split or merged, it could consider either all
available information in the attribute or only
partial information. A local discretizer makes
the partition decision based only on partial
information. MDLP18 and ID35 are classical
examples of local methods. By definition, all the
dynamic discretizers and some top-down-based
methods are local, which explains the fact that
few discretizers apply this form. The dynamic
discretizers search for the best cut point during
internal operations of a certain DM algorithm,
thus it is impossible to examine the complete
dataset. Besides, top-down procedures are asso-
ciated with the divide-and-conquer scheme, in
such manner that when a split is considered, the
data is recursively divided, restricting access to
partial data.

• Direct versus Incremental: For direct discreti-
zers, the range associated with an interval must
be divided into k intervals simultaneously,
requiring an additional criterion to determine the
value of k. One-step discretization methods and
discretizers which select more than a single cut
point at every step are included in this category.
However, incremental methods begin with a sim-
ple discretization and pass through an improve-
ment process, requiring an additional criterion to
determine when it is the best moment to stop. At
each step, they find the best candidate boundary
to be used as a cut point and, afterwards, the
rest of the decisions are made accordingly.

• Evaluation Measure: This is the metric used by
the discretizer to compare two candidate dis-
cretization schemes and decide which is more
suitable to be used. We consider five main
families of evaluation measures:

– Information: This family includes entropy as
the most used evaluation measure in

discretization (MDLP,18 ID3,5 FUSINTER33)
and others derived from information theory
(Gini index, Mutual information).49

– Statistical: Statistical evaluation involves the
measurement of dependency/correlation
among attributes (Zeta,29 ChiMerge,22

Chi231), interdependency,38 probability and
Bayesian properties26 (MODL42), contin-
gency coefficient,47 etc.

– Rough Sets: This class is composed of meth-
ods that evaluate the discretization schemes
by using rough set properties and
measures,59 such as class separability, lower
and upper approximations, etc.

– Wrapper: This collection comprises methods
that rely on the error provided by a classifier
or a set of classifiers that are used in each
evaluation. Representative examples are
MAD,54 IDW,55 and EMD.61

Binning: In this category of techniques, there is
no evaluation measure. This refers to discretiz-
ing an attribute with a predefined number of
bins in a simple way. A bin assigns a certain
number of values per attribute by using a non-
sophisticated procedure. EqualWidth and
EqualFrequency discretizers are the most well-
known unsupervised binning methods.

Minimum Description Length-Based
Discretizer
Minimum Description Length-based discretizer,18

proposed by Fayyad and Irani in 1993, is one of the
most important splitting methods in discretization.
This univariate discretizer uses the MDLP to control
the partitioning process. This also introduces an opti-
mization based on a reduction of whole set of candi-
date points, only formed by the boundary points in
this set.

Let A(e) denote the value for attribute A in the
example e. A boundary point b 2 Dom(A) can be
defined as the midpoint value between A(u) and A(v),
assuming that in the sorted collection of points in A,
two examples exist u, v 2 S with different class
labels, such that A(u) < b < A(v); and the other
example w 2 S does not exist, such that A(u) < A
(w) < A(v). The set of boundary points for attribute
A is defined as BA.

This method also introduces other important
improvements. One of them is related to the number
of cut points to derive in each iteration. In contrast
to discretizers such as ID3,5 the authors proposed a

WIREs Data Mining and Knowledge Discovery Data discretization

© 2015 John Wiley & Sons, Ltd

multi-interval extraction of points demonstrating that
better classification models—both in error rate and
simplicity—are yielded by using these schemes.

It recursively evaluates all boundary points,
computing the class entropy of the partitions derived
as quality measure. The objective is to minimize this
measure to obtain the best cut decision. Let bα be a
boundary point to evaluate, S1 � S be a subset where
8 a0 2 S1, A(a0) ≤ bα, and S2 be equal to S − S1. The
class information entropy yielded by a given binary
partitioning can be expressed as:

EP A,bα,Sð Þ = S1j j
Sj j E S1ð Þ+ S2j j

Sj j E S2ð Þ; ð1Þ

where E represents the class entropya of a given sub-
set following Shannon’s definitions.62

Finally, a decision criterion is defined in order
to control when to stop the partitioning process. The
use of MDLP as a decision criterion allows us to
decide whether or not to partition. Thus a cut point
bα will be applied iff:

G A,bα,Sð Þ> log2 N−1ð Þ
N

+
Δ A,bα,Sð Þ

N
; ð2Þ

where Δ(A, bα, S) = log2(3
c) − [cE(S) − c1E(S1) − c2E

(S2)], c1 and c2 the number of class labels in S1
and S2, respectively; and G(A, bα, S) = E(S) −
EP(A, bα, S).

TAXONOMY

Currently, more than 100 discretization methods
have been presented in the specialized literature. In
this section, we consider a subgroup of methods
which can be considered the most important from
the whole set of discretizers. The criteria adopted to
characterize this subgroup are based on the repercus-
sion, availability, and novelty they have. Thus, the
precursory discretizers which have served as inspira-
tion to others, those which have been integrated in
software suites and the most recent ones are included
in this taxonomy.

Table 1 enumerates the discretizers considered
in this article, providing the name abbreviation and
reference for each one. We do not include the
descriptions of these discretizers in this article. Their
definitions are contained in the original references,
thus we recommend consulting them in order to
understand how the discretizers of interest work. In
Table 1, 30 discretizers included in KEEL software

are considered. Additionally, implementations of
these algorithms in Java can be found.63

In the previous section, we studied the proper-
ties which could be used to classify the discretizers
proposed in the literature. Given a predefined order
among the seven characteristics studied before, we
can build taxonomy of discretization methods. All
techniques enumerated in Table 1 are collected in the
taxonomy depicted in Figure 2. It represents a hierar-
chical categorization following the next arrangement
of properties: static/dynamic, univariate/multivariate,
supervised/unsupervised, splitting/merging/hybrid,
global/local, direct/incremental, and evaluation
measure.

The purpose of this taxonomy is twofold. First,
it identifies a subset of most representative state-of-
the-art discretizers for both researchers and practi-
tioners who want to compare them with novel
techniques or require discretization in their applica-
tions. Second, it characterizes the relationships
among techniques, the extension of the families and
possible gaps to be filled in future developments.

When managing huge data, most of them
become impracticable in real-world settings, due to
the complexity they cause (for example, in the case
of MDLP, among others). The adaptation of these
classical methods implies a thorough redesign that
becomes mandatory if we want to exploit the advan-
tages derived from the use of discrete data on large
datasets.64,65 As reflected in our taxonomy, no rele-
vant methods in the field of Big Data have been pro-
posed to solve this problem. Some works have tried
to deal with large-scale discretization. For example,
in Ref 66, the authors proposed a scalable implemen-
tation of Class-Attribute Interdependence Maximiza-
tion algorithm by using GPU technology. In Ref 67,
a discretizer based on windowing and hierarchical
clustering is proposed to improve the performance of
classical tree-based classifiers. However, none of
these methods have been proved to cope with the
data magnitude presented here.

BIG DATA BACKGROUND

The ever-growing generation of data on the Internet
is leading us to managing huge collections using data
analytics solutions. Exceptional paradigms and algo-
rithms are thus needed to efficiently process these
datasets so as to obtain valuable information, mak-
ing this problem one of the most challenging tasks in
Big Data analytics.

Gartner68 introduced the concept of Big Data
and the 3V terms that define it as high volume,

Advanced Review wires.wiley.com/widm

© 2015 John Wiley & Sons, Ltd

velocity, and variety of information that require a
new large-scale processing. This list was then
extended with two additional terms. All of them are
described in the following: Volume, the massive
amount of data that is produced every day is still
exponentially growing (from terabytes to exabytes);
Velocity, data need to be loaded, analyzed, and
stored as quickly as possible; Variety, data come in
many formats and representations; Veracity, the
quality of data to process is also an important factor.
The Internet is full of missing, incomplete, ambigu-
ous, and sparse data; Value, extracting value from
data is also established as a relevant objective in big
analytics.

The unsuitability of many knowledge extrac-
tion algorithms in the Big Data field has meant that
new methods have been developed to manage such
amounts of data effectively and at a pace that allows
value to be extracted from them.

MapReduce Model and Other Distributed
Frameworks
The MapReduce framework,11 designed by Google
in 2003, is currently one of the most relevant tools
in Big Data analytics. It was aimed at processing
and generating large-scale datasets, automatically

processed in an extremely distributed fashion
through several machines.b The MapReduce model
defines two primitives to work with distributed data:
Map and Reduce. These two primitives imply two
stages in the distributed process, which we describe
below. In the first step, the master node breaks up
the dataset into several splits, distributing them
across the cluster for parallel processing. Each node
then hosts several Map threads that transform the
generated key-value pairs into a set of intermediate
pairs. After all Map tasks have finished, the master
node distributes the matching pairs across the nodes
according to a key-based partitioning scheme. Then
the Reduce phase starts, combining those coincident
pairs so as to form the final output.

Apache Hadoop12,13 is presented as the most
popular open-source implementation of MapReduce
for large-scale processing. Despite its popularity,
Hadoop presents some important weaknesses, such
as poor performance on iterative and online comput-
ing, and a poor intercommunication capability or
inadequacy for in-memory computation, among
others.70 Recently, Apache Spark14,15 has appeared
and integrated with the Hadoop ecosystem. This
novel framework is presented as a revolutionary tool
capable of performing even faster large-scale proces-
sing than Hadoop through in-memory primitives,

Static

Statistical

Statistical

Statistical Rough sets

Rough sets

Merging
global

incremental

Wrapper

Hybrid
global
direct

Splitting
global

incremental
information

Wrapper

Unsupervised

Unsupervised

Supervised

MultivariateUnivariate

Supervised

Splitting

Global

Direct

Statistical Information

Information

Direct
information

Local
incremental
information

Univariate
supervised

splitting
local

incremental
information

Multivariate
supervised

splitting
local

incremental
information

Hybrid
global

incremental
statistical

Incremental

Merging
global

Splitting
global
direct

Splitting
global
direct

statistical

Hybrid
global

incremental
information

Merging
global
direct

information

Dynamic

Binning

Binning

Equal width
equal frequency

PKID
FFD

Cluster analysis

Binning

Fusinter

Incremental

Information

Wrapper

MDL–disc

MDLP
distance

D2
DIBD

unification

Heter–disc

Statistical

FIGURE 2 | Discretization taxonomy.

WIREs Data Mining and Knowledge Discovery Data discretization

© 2015 John Wiley & Sons, Ltd

making this framework a leading tool for iterative
and online processing and, thus, suitable for DM
algorithms. Spark is built on distributed data struc-
tures called resilient distributed datasets (RDDs),
which were designed as a fault-tolerant collection of
elements that can be operated in parallel by means of
data partitioning.

DISTRIBUTED MDLP
DISCRETIZATION

In the Background section, a discretization algorithm
based on an information entropy minimization heu-
ristic was presented.18 In this work, the authors
proved that multi-interval extraction of points and
the use of boundary points can improve the discreti-
zation process, both in efficiency and error rate.
Here, we adapt this well-known algorithm for dis-
tributed environments, proving its discretization
capability against real-world large problems.

One important point in this adaption is how to
distribute the complexity of this algorithm across the
cluster. This is mainly determined by the two time-
consuming operations: on one hand, the sorting of
candidate points, and, on the other hand, the evalua-
tion of these points. The sorting operation exhibits
a O(|A|log(|A|)) complexity (assuming that all points
in A are distinct), whereas the evaluation conveys
a O(|BA|

2) complexity. In the worst case, it implies a
complete evaluation of entropy for all points.

Note that the previous complexity is bounded
to a single attribute. To avoid repeating the previous
process on all attributes, we have designed our algo-
rithm to sort and evaluate all points in a single step.
Only when the number of boundary points in an
attribute is higher than the maximum per partition,
computation by feature is necessary (which is
extremely rare according to our experiments).

Spark primitives extend the idea of MapReduce
to implement more complex operations on distribu-
ted data. In order to implement our method, we have
used some extra primitives from Spark’s API, such
as: mapPartitions, sortByKey, flatMap, and reduce-
ByKey.c

Main Discretization Procedure
Algorithm 1 explains the main procedures in our dis-
cretization algorithm. The algorithm calculates the
minimum-entropy cut points by feature according to
the MDLP criterion. It uses a parameter to limit the
maximum number of points to yield.

The first step creates combinations from
instances through a Map function in order to sepa-
rate values by feature. It generates tuples with the
value and the index for each feature as key and a
class counter as value (< (A, A(s)), v >). Afterwards,
the tuples are reduced using a function that aggre-
gates all subsequent vectors with the same key,
obtaining the class frequency for each distinct value
in the dataset. The resulting tuples are sorted by key

Advanced Review wires.wiley.com/widm

© 2015 John Wiley & Sons, Ltd

so that we obtain the complete list of distinct values
ordered by feature index and feature value. This
structure will be used later to evaluate all these points
in a single step. The first point by partition is also
calculated (line 11) for this process. Once such infor-
mation is saved, the process of evaluating the bound-
ary points can be started.

Boundary Points Selection
Algorithm 2 (get_boundary) describes the function in
charge of selecting those points falling in the class
borders. It executes an independent function on each
partition in order to parallelize the selection process
as much as possible so that a subset of tuples is
fetched in each thread. The evaluation process is
described as follows: for each instance, it evaluates
whether the feature index is distinct from the index
of the previous point; if it is so, this emits a tuple
with the last point as key and the accumulated class
counter as value. This means that a new feature has
appeared, saving the last point from the current fea-
ture as its last threshold. If the previous condition is
not satisfied, the algorithm checks whether the cur-
rent point is a boundary with respect to the previous
point or not. If it is so, this emits a tuple with the
midpoint between these points as key and the accu-
mulated counter as value.

Finally, some evaluations are performed over
the last point in the partition. This point is compared

with the first point in the next partition to check
whether there is a change in the feature index—
emitting a tuple with the last point saved, or not
emitting a tuple with the midpoint (as described
above). All tuples generated by the partition are then
joined into a new mixed RDD of boundary points,
which is returned to the main algorithm as bds.

In Algorithm 1 (line 14), the bds variable is
transformed by using a Map function, changing the
previous key to a new key with a single value: the
feature index (< (att, (point, q)) >). This is done to
group the tuples by feature so that we can divide
them into two groups according to the total number
of candidate points by feature. The divide_atts func-
tion is then aimed to divide the tuples in two groups
(big and small) depending on the number of candi-
date points by feature (count operation). Features in
each group will be filtered and treated differently
according to whether the total number of points for
a given feature exceeds the threshold mc or not.
Small features will be grouped by key so that these
can be processed in a parallel way. The subsequent
tuples are now reformatted as follows: (< point, q >).

MDLP Evaluation
Features in each group are evaluated differently from
that mentioned before. Small features are evaluated
in a single step where each feature corresponds with
a single partition, whereas big features are evaluated

WIREs Data Mining and Knowledge Discovery Data discretization

© 2015 John Wiley & Sons, Ltd

iteratively because each feature corresponds with a
complete RDD with several partitions. The first
option is obviously more efficient, however, the sec-
ond case is less frequent due to the fact the number
of candidate points for a single feature fits perfectly
in one partition. In both cases, the select_ths function
is applied to evaluate and select the most relevant cut
points by feature. For small features, a Map function
is applied independently to each partition (each one
represents a feature) (arr_select_ths). In case of big
features, the process is more complex and each fea-
ture needs a complete iteration over a distributed set
of points (rdd_select_ths).

Algorithm 3 (select_ths) evaluates and selects
the most promising cut points grouped by feature
according to the MDLP criterion (single-step ver-
sion). This algorithm starts by selecting the best cut
point in the whole set. If the criterion accepts this
selection, the point is added to the result list and the
current subset is divided into two new partitions
using this cut point. Both partitions are then evalu-
ated, repeating the previous process. This process
finishes when there is no partition to evaluate or the
number of selected points is fulfilled.

Algorithm 4 (arr_select_ths) explains the proc-
ess that accumulates frequencies and then selects the
minimum-entropy candidate. This version is more
straightforward than the RDD version as it only
needs to accumulate frequencies sequentially. First, it
obtains the total class counter vector by aggregating
all candidate vectors. Afterwards, a new iteration is
necessary to obtain the accumulated counters for the
two partitions generated by each point. This is done

by aggregating the vectors from the most-left point
to the current one, and from the current point to the
right-most point. Once the accumulated counters for
each candidate point are calculated (in form of
< point, q, lq, rq >), the algorithm evaluates the can-
didates using the select_best function.

Algorithm 5 (rdd_select_ths) explains the selec-
tion process; in this case for ‘big’ features (more than
one partition). This process needs to be performed in
a distributed manner because the number of candi-
date points exceeds the maximum size defined. For
each feature, the subset of points is hence redistribu-
ted in a better partition scheme to homogenize the
quantity of points by partition and node (coalesce
function, line 12). After that, a new parallel function
is started to compute the accumulated counter by
partition. The results (by partition) are then aggre-
gated to obtain the total accumulated frequency for
the whole subset. In line 9, a new distributed process
is started with the aim of computing the accumulated
frequencies at points on both sides (as explained in
Algorithm 4). In this procedure, the process accumu-
lates the counter from all previous partitions to the
current one to obtain the first accumulated value (the
left one). Then, the function computes the accumu-
lated values for each inner point using the counter
for points in the current partition, the left value, and
the total values (line 7). Once these values are calcu-
lated (< point, q, lq, rq >), the algorithm evaluates
all candidate points and their associated accumula-
tors using the select_best function (as above).

Algorithm 6 evaluates the discretization
schemes yielded by each point by computing the

Advanced Review wires.wiley.com/widm

© 2015 John Wiley & Sons, Ltd

entropy for each partition generated, also taking into
account the MDLP criterion. Thus, for each point,d

the entropy is calculated for the two generated parti-
tions (line 8) as well as the total entropy for the
whole set (lines 12). Using these values, the entropy
gain and the MDLP condition are computed for each
point, according to Eq. (2). If the point is accepted
by MDLP, the algorithm emits a tuple with the
weighted entropy average of partition and the point
itself. From the set of accepted points, the algorithm
selects the one with the minimum class information
entropy.

The results produced by both groups (small and
big) are joined into the final point set of cut points.

Analysis of efficiency
In this section, we analyze the performance of the
main operations that determined the overall perfor-
mance of our proposal. Note that the first two opera-
tions are quite costly from the point of view of
network usage, because they imply shuffling data
across the cluster (wide dependencies). Nevertheless,
once data are partitioned and saved, these remain
unchanged. This is exploited by the subsequent steps,
which take advantage of the data locality property.
Having data partitioned also benefits operations such
as groupByKey, where the grouping is performed
locally. The list of such operations (showed in Algo-
rithm 1) is presented below:

WIREs Data Mining and Knowledge Discovery Data discretization

© 2015 John Wiley & Sons, Ltd

1. Distinct points (lines 1–10): this is a standard
MapReduce operation that fetches all the
points in the dataset. The map phase generates
and distributes tuples using a hash partitioning
scheme (linear distributed complexity). The
reduce phase fetches the set of coincident
points and sums up the class vectors (linear dis-
tributed complexity).

2. Sorting operation (line 11): this operation uses
a more complex primitive of Spark: sortByKey.
This samples the set and produces a set of
bounds to partition this set. Then, a shuffling
operation is started to redistribute the points
according to the previous bounds. Once data
are redistributed, a local sorting operation is
launched in each partition (loglinear distributed
order).

3. Boundary points (lines 12–13): this operation
is in charge of computing the subset candidate
of points to be evaluated. Thanks to the data
partitioning scheme generated in the previous
phases, the algorithm can yield the boundary
points for all attributes in a distributed manner
using a linear map operation.

4. Division of attributes (lines 14–19): once the
reduced set of boundary points is generated, it
is necessary to separate the attributes into two
sets. To do that, several operations are started
to complete this part. All these suboperations
are performed linearly using distributed
operations.

5. Evaluation of small attributes (lines 20–24):
this is mainly formed by two suboperations:
one for grouping the tuples by key (done
locally thanks to the data locality), and one
map operation to evaluate the candidate points.
In the map operation, each feature starts an
independent process that, like the sequential
version, is quadratic. The main advantage here
is the parallelization of these processes.

6. Evaluation of big features (lines 26–28): The
complexity order for each feature is the same
as in the previous case. However, in this case,
the evaluation of features is done iteratively.

EXPERIMENTAL FRAMEWORK AND
ANALYSIS

This section describes the experiments carried out to
demonstrate the usefulness and performance of our
discretization solution over two Big Data problems.

Experimental Framework
Two huge classification datasets are employed as
benchmarks in our experiments. The first one (here-
inafter called ECBDL14) was used as a reference at
the ML competition of the Evolutionary Computa-
tion for Big Data and Big Learning held on July
14, 2014, under the international conference
GECCO-2014. This consists of 631 characteristics
(including both numerical and categorical attributes)

Advanced Review wires.wiley.com/widm

© 2015 John Wiley & Sons, Ltd

and 32 million instances. It is a binary classification
problem where the class distribution is highly imbal-
anced involving 2% of positive instances. For this
problem, the MapReduce version of the Random
Over Sampling (ROS) algorithm presented in Ref 71
was applied in order to replicate the minority class
instances from the original dataset until the number
of instances for both classes was equalized. As a sec-
ond dataset, we have used epsilon, which consists of
500,000 instances with 2000 numerical features. This
dataset was artificially created for the Pascal Large
Scale Learning Challenge in 2008. It was further pre-
processed and included in the LibSVM dataset
repository.72

Table 2 gives a brief description of these data-
sets. For each one, the number of examples for train-
ing and test (#Train Ex., #Test Ex.), the total number
of attributes (#Atts.), and the number of classes (#Cl)
are shown. For evaluation purposes, Naïve Bayes73

and two variants of Decision Tree74—with different
impurity measures—have been chosen as reference in
classification, using the distributed implementations
included in MLlib library.17 The recommended para-
meters of the classifiers, according to their authors’
specification,e are shown in Table 3.

As evaluation criteria, we use two well-known
evaluation metrics to assess the quality of the under-
lying discretization schemes. On one hand, Classifica-
tion accuracy is used to evaluate the accuracy yielded
by the classifiers—number of examples correctly
labeled divided by the total number of examples. On
the other hand, in order to prove the time benefits of
using discretization, we have employed the overall
classification runtime (in seconds) in training as well

as the overall time in discretization as additional
measures.

For all experiments, we have used a cluster
composed of 20 computing nodes and 1 master node.
The computing nodes hold the following characteris-
tics: 2 processors × Intel Xeon CPU E5-2620, 6 cores
per processor, 2.00 GHz, 15 MB cache, QDR Infini-
Band Network (40 Gbps), 2 TB HDD, 64 GB RAM.
Regarding software, we have used the following con-
figuration: Hadoop 2.5.0-cdh5.3.1 from Cloudera’s
open-source Apache Hadoop distribution,f Apache
Spark and MLlib 1.2.0, 480 cores (24 cores/node),
1040 RAM GB (52 GB/node). Spark implementation
of the algorithm can be downloaded from the first
author’ GitHub repository.g The design of the algo-
rithm has been adapted to be integrated in MLlib
Library.

Experimental Results and Analysis
Table 4 shows the classification accuracy results for
both datasets.h According to these results, we can
assert that using our discretization algorithm as a
preprocessing step leads to an improvement in classi-
fication accuracy with Naïve Bayes, for the two data-
sets tested. It is especially relevant in ECBDL14
where there is an improvement of 5%. This shows
the importance of discretization in the application of
some classifiers such as Naïve Bayes. For the other
classifiers, our algorithm is capable of producing the
same competitive results as those performed implic-
itly by the decision trees.

Table 5 shows classification runtime values for
both datasets distinguishing whether discretization is
applied or not. As we can see, there is a slight
improvement in both cases on using MDLP, but not
enough significant. According to the previous results,
we can state that the application of MDLP is relevant
at least for epsilon, where the best accuracy result
has been achieved by using Naïve Bayes and our dis-
cretizer. For ECBDL14, it is better to use the implicit
discretization performed by the decision trees,
because our algorithm is more time-consuming and
obtains similar results.

Table 6 shows discretization time values for the
two versions of MDLP, namely, sequential and dis-
tributed. For the sequential version on ECBDL14,
the time value was estimated from small samples of
this dataset, because its direct application is unfeasi-
ble. A graphical comparison of these two versions is
shown in Figure 3. Comparing both implementa-
tions, we can notice the great advantage of using
the distributed version against the sequential one.
For ECBDL14, our version obtains a speedup

TABLE 2 | Summary Description for Classification Datasets

Dataset #Train Ex. #Test Ex. #Atts. #Cl.

Epsilon 400,000 100,000 2000 2

ECBDL14 (ROS) 65,003,913 2,897,917 631 2

TABLE 3 | Parameters of the Algorithms Used

Method Parameters

Naive Bayes Lambda = 1.0

Decision Tree—gini
(DTg)

Impurity = gini, max depth = 5, max
bins = 32

Decision Tree—
entropy (DTe)

Impurity = entropy, max depth = 5,
max bins = 32

Distributed MDLP Max intervals = 50, max by
partition = 100,000

MDLP, Minimum Description Length Principle.

WIREs Data Mining and Knowledge Discovery Data discretization

© 2015 John Wiley & Sons, Ltd

ratio (speedup = sequential/distributed) of 271.86,
whereas for epsilon, the ratio is equal to 12.11. This
shows that the bigger the dataset, the higher the effi-
ciency improvement; and, when the data size is large
enough, the cluster can distribute fairly the computa-
tional burden across its machines. This is notably the
case study of ECBDL14, where the resolution of this
problem was found to be impractical using the origi-
nal approach.

Discretization, as an important part in DM pre-
processing, has raised general interest in recent years.
In this work, we have presented an updated taxon-
omy and description of the most relevant algorithms
in this field. The aim of this taxonomy is to help the
researchers to better classify the algorithms that they
use, on one hand, while also helping to identify pos-
sible new future research lines. At this respect, and
although Big Data is currently a trending topic in sci-
ence and business, no distributed approach has been
developed in the literature, as we have shown in our
taxonomy.

Here, we propose a completely distributed ver-
sion of the MDLP discretizer with the aim of demon-
strating that standard discretization methods can be
parallelized in Big Data platforms, boosting both per-
formance and accuracy. This version is capable of
transforming the iterativity yielded by the original
proposal in a single-step computation through a
complete redesign of the original version. According
to our experiments, our algorithm is capable of

performing 270 times faster than the sequential ver-
sion, improving the accuracy results in all used data-
sets. For future works, we plan to tackle the problem
of discretization in large-scale online problems.

NOTES
a Logarithm in base 2 is used in this function.
b For a complete description of this model and other dis-
tributed models, please review Ref 69.
c For a complete description of Spark’s operations, please
refer to Spark’s API: https://spark.apache.org/docs/latest/
api/scala/index.html.
d If the set is an array, it is used as a loop structure, else it
is used as a distributed map function.
e https://spark.apache.org/docs/latest/api/scala/index.html.
f http://www.cloudera.com/content/cloudera/en/documenta-
tion/cdh5/v5-0-0/CDH5-homepage.html.
g https://github.com/sramirez/SparkFeatureSelection.
h In all tables, the best result by column (best by method) is
highlighted in bold.

TABLE 4 | Classification Accuracy Values

Dataset NB NB-disc DTg DTg-disc DTe DTe-disc

ECBDL14 0.6276 0.7260 0.7347 0.7339 0.7459 0.7508

Epsilon 0.6550 0.7065 0.6616 0.6623 0.6611 0.6624

TABLE 5 | Classification Time Values: with Versus w/o Discretization (In Seconds)

Dataset NB NB-Disc DTg DTg-Disc DTe DTe-Disc

ECBDL14 31.06 26.39 347.76 262.09 281.05 264.25

Epsilon 5.72 4.99 68.83 63.23 74.44 39.28

TABLE 6 | Sequential Versus Distributed Discretization Time Values
(In Seconds)

Dataset Sequential Distributed Speedup Rate

ECBDL14 295,508 1087 271.86

Epsilon 5764 476 12.11

Epsilon

ECBDL14

1 100

Discretization time (Seconds)

Sequential
Distributed

10,000 1,000,000

FIGURE 3 | Discretization time: sequential versus distributed
(logaritmic scale).

Advanced Review wires.wiley.com/widm

© 2015 John Wiley & Sons, Ltd

https://spark.apache.org/docs/latest/api/scala/index.html
https://spark.apache.org/docs/latest/api/scala/index.html
https://spark.apache.org/docs/latest/api/scala/index.html
http://www.cloudera.com/content/cloudera/en/documentation/cdh5/v5-0-0/CDH5-homepage.html
http://www.cloudera.com/content/cloudera/en/documentation/cdh5/v5-0-0/CDH5-homepage.html
https://github.com/sramirez/SparkFeatureSelection

ACKNOWLEDGMENTS

This work is supported by the National Research Project TIN2014-57251-P, TIN2012-37954, and TIN2013-
47210-P, and the Andalusian Research Plan P10-TIC-6858, P11-TIC-7765, and P12-TIC-2958, and by the
Xunta de Galicia through the research project GRC 2014/035 (all projects partially funded by FEDER funds of
the European Union). S. Ramírez-Gallego holds a FPU scholarship from the Spanish Ministry of Education and
Science (FPU13/00047). D. Martínez-Rego and V. Bolón-Canedo acknowledge support of the Xunta de Galicia
under postdoctoral Grant codes POS-A/2013/196 and ED481B 2014/164-0.

REFERENCES
1. Liu H, Hussain F, Lim Tan C, Dash M. Discretization:

an enabling technique. Data Min Knowl Discov 2002,
6:393–423.

2. García S, Luengo J, Antonio Sáez J, López V, Herrera
F. A survey of discretization techniques: taxonomy and
empirical analysis in supervised learning. IEEE Trans
Knowl Data Eng 2013, 25:734–750.

3. García S, Luengo J, Herrera F. Data Preprocessing in
Data Mining. Germany: Springer; 2015.

4. Wu X, Kumar V, eds. The Top Ten Algorithms in
Data Mining. USA: Chapman & Hall/CRC Data Min-
ing and Knowledge Discovery; 2009.

5. Ross Quinlan J. C4.5: Programs for Machine Learn-
ing. USA: Morgan Kaufmann Publishers Inc.; 1993.

6. Agrawal R, Srikant R. Fast algorithms for mining asso-
ciation rules. In: Proceedings of the 20th Very Large
Data Bases conference (VLDB), Santiago de Chile,
Chile, 1994, pages 487–499.

7. Yang Y, Webb GI. Discretization for Naïve-Bayes
learning: managing discretization bias and variance.
Mach Learn 2009, 74:39–74.

8. Hu H-W, Chen Y-L, Tang K. A dynamic discretization
approach for constructing decision trees with a contin-
uous label. IEEE Trans Knowl Data Eng 2009,
21:1505–1514.

9. Yang Y, Webb GI, Wu X. Discretization methods. In:
Data Mining and Knowledge Discovery Handbook.
Germany: Springer; 2010, 101–116.

10. Wu X, Zhu X, Wu G-Q, Ding W. Data mining with
big data. IEEE Trans Knowl Data Eng 2014,
26:97–107.

11. Dean J, Ghemawat S. Mapreduce: simplified data pro-
cessing on large clusters. In: San Francisco, CA, OSDI,
2004, pages 137–150.

12. Apache Hadoop Project. Apache Hadoop, 2015.
[Online https://hadoop.apache.org/; Accessed March,
2015].

13. White T. Hadoop, The Definitive Guide. USA:
O’Reilly Media, Inc.; 2012.

14. Apache Spark: lightning-fast cluster computing.
Apache spark, 2015. [Online http://spark.apache.org/;
Accessed March, 2015].

15. Hamstra M, Karau H, Zaharia M, Konwinski A, Wen-
dell P. Learning Spark: Lightning-Fast Big Data Ana-
lytics. USA: O’Reilly Media, Incorporated; 2015.

16. Apache Mahout Project. Apache Mahout, 2015.
[Online http://mahout.apache.org/; Accessed March,
2015].

17. Machine Learning Library (MLlib) for Spark. Mllib,
2015. [Online https://spark.apache.org/docs/1.2.0/
mllib-guide.html; Accessed March, 2015].

18. Fayyad UM, Irani KB. Multi-interval discretization of
continuous-valued attributes for classification learning.
In: Proceedings of the 13th International Joint Confer-
ence on Artificial Intelligence (IJCAI), San Francisco,
CA, 1993, pages 1022–1029.

19. Wong AKC, Chiu DKY. Synthesizing statistical knowl-
edge from incomplete mixed-mode data. IEEE Trans
Pattern Anal Mach Intell 1987, 9:796–805.

20. Chou PA. Optimal partitioning for classification and
regression trees. IEEE Trans Pattern Anal Mach Intell
1991, 13:340–354.

21. Catlett J. On changing continuous attributes into
ordered discrete attributes. In: European Working Ses-
sion on Learning (EWSL). Lecture Notes on Computer
Science, vol. 482. Germany: Springer-Verlag; 1991,
164–178.

22. Kerber R. Chimerge: discretization of numeric attri-
butes. In: National Conference on Artifical Intelligence
American Association for Artificial Intelligence
(AAAI), San Jose, California, 1992, pages 123–128.

23. Holte RC. Very simple classification rules perform well
on most commonly used datasets. Mach Learn 1993,
11:63–90.

24. Ching JY, Wong AKC, Chan KCC. Class-dependent
discretization for inductive learning from continuous
and mixed-mode data. IEEE Trans Pattern Anal Mach
Intell 1995, 17:641–651.

WIREs Data Mining and Knowledge Discovery Data discretization

© 2015 John Wiley & Sons, Ltd

https://hadoop.apache.org/
http://spark.apache.org/
http://mahout.apache.org/
https://spark.apache.org/docs/1.2.0/mllib-guide.html
https://spark.apache.org/docs/1.2.0/mllib-guide.html

25. Pfahringer B. Compression-based discretization of con-
tinuous attributes. In: Proceedings of the 12th Interna-
tional Conference on Machine Learning (ICML),
Tahoe City, California, 1995, pages 456–463.

26. Xindong W. A Bayesian discretizer for real-valued
attributes. Comput J 1996, 39:688–691.

27. Friedman N, Goldszmidt M. Discretizing continuous
attributes while learning Bayesian networks. In: Pro-
ceedings of the 13th International Conference on
Machine Learning (ICML), Bari, Italy, 1996, pages
157–165.

28. Chmielewski MR, Grzymala-Busse JW. Global discret-
ization of continuous attributes as preprocessing for
machine learning. Int J Approx Reason 1996,
15:319–331.

29. Ho KM, Scott PD. Zeta: a global method for discreti-
zation of continuous variables. In: Proceedings of
the Third International Conference on Knowledge
Discovery and Data Mining (KDD), Newport Beach,
California, 1997, pages 191–194.

30. Cerquides J, De Mantaras RL. Proposal and empirical
comparison of a parallelizable distance-based discreti-
zation method. In: Proceedings of the Third Interna-
tional Conference on Knowledge Discovery and Data
Mining (KDD), Newport Beach, California, 1997,
pages 139–142.

31. Liu H, Setiono R. Feature selection via discretization.
IEEE Trans Knowl Data Eng 1997, 9:642–645.

32. Hong SJ. Use of contextual information for feature
ranking and discretization. IEEE Trans Knowl Data
Eng 1997, 9:718–730.

33. Zighed DA, Rabaséda S, Rakotomalala R. FUSINTER:
a method for discretization of continuous attributes.
Int J Unc Fuzz Knowl Based Syst 1998, 6:307–326.

34. Bay SD. Multivariate discretization for set mining.
Knowl Inform Syst 2001, 3:491–512.

35. Tay FEH, Shen L. A modified chi2 algorithm for dis-
cretization. IEEE Trans Knowl Data Eng 2002,
14:666–670.

36. Giráldez R, Aguilar-Ruiz JS, Riquelme JC, Ferrer-
Troyano FJ, Rodríguez-Baena DS. Discretization
oriented to decision rules generation. In: Frontiers
in Artificial Intelligence and Applications, vol. 82.
Netherlands: IOS press; 2002, 275–279.

37. Boulle M. Khiops: a statistical discretization method of
continuous attributes. Mach Learn 2004, 55:53–69.

38. Kurgan LA, Cios KJ. CAIM discretization algorithm.
IEEE Trans Knowl Data Eng 2004, 16:145–153.

39. Chao-Ton S, Hsu J-H. An extended chi2 algorithm for
discretization of real value attributes. IEEE Trans
Knowl Data Eng 2005, 17:437–441.

40. Liu X, Wang H. A discretization algorithm based on a
heterogeneity criterion. IEEE Trans Knowl Data Eng
2005, 17:1166–1173.

41. Mehta S, Parthasarathy S, Yang H. Toward unsuper-
vised correlation preserving discretization. IEEE Trans
Knowl Data Eng 2005, 17:1174–1185.

42. Boullé M. MODL: a Bayes optimal discretization
method for continuous attributes. Mach Learn 2006,
65:131–165.

43. Au W-H, Chan KCC, Wong AKC. A fuzzy approach
to partitioning continuous attributes for classification.
IEEE Trans Knowl Data Eng 2006, 18:715–719.

44. Lee C-H. A Hellinger-based discretization method for
numeric attributes in classification learning. Knowl
Based Syst 2007, 20:419–425.

45. Wu QX, Bell DA, Prasad G, McGinnity TM. A
distribution-index-based discretizer for decision-
making with symbolic AI approaches. IEEE Trans
Knowl Data Eng 2007, 19:17–28.

46. Ruiz FJ, Angulo C, Agell N. IDD: a supervised interval
Distance-Based method for discretization. IEEE Trans
Knowl Data Eng 2008, 20:1230–1238.

47. Tsai C-J, Lee C-I, Yang W-P. A discretization algo-
rithm based on class-attribute contingency coefficient.
Inform Sci 2008, 178:714–731.

48. González-Abril L, Cuberos FJ, Velasco F, Ortega JA.
Ameva: an autonomous discretization algorithm.
Expert Syst Appl 2009, 36:5327–5332.

49. Jin R, Breitbart Y, Muoh C. Data discretization unifi-
cation. Knowl Inform Syst 2009, 19:1–29.

50. Li M, Deng S, Feng S, Fan J. An effective discretization
based on class-attribute coherence maximization. Pat-
tern Recognit Lett 2011, 32:1962–1973.

51. Gethsiyal Augasta M, Kathirvalavakumar T. A new
discretization algorithm based on range coefficient of
dispersion and skewness for neural networks classifier.
Appl Soft Comput 2012, 12:619–625.

52. Shehzad K. EDISC: a class-tailored discretization tech-
nique for rule-based classification. IEEE Trans Knowl
Data Eng 2012, 24:1435–1447.

53. Ferreira AJ, Figueiredo MAT. An unsupervised
approach to feature discretization and selection. Pat-
tern Recognit 2012, 45:3048–3060.

54. Kurtcephe M, Altay Güvenir H. A discretization
method based on maximizing the area under
receiver operating characteristic curve. Intern J Pattern
Recognit Artif Intell 2013, 27.

55. Ferreira AJ, Figueiredo MAT. Incremental filter and
wrapper approaches for feature discretization. Neuro-
computing 2014, 123:60–74.

56. Yan D, Liu D, Sang Y. A new approach for discretiz-
ing continuous attributes in learning systems. Neuro-
computing 2014, 133:507–511.

57. Sang Y, Qi H, Li K, Jin Y, Yan D, Gao S. An effective
discretization method for disposing high-dimensional
data. Inform Sci 2014, 270:73–91.

Advanced Review wires.wiley.com/widm

© 2015 John Wiley & Sons, Ltd

58. Nguyen H-V, Müller E, Vreeken J, Böhm K. Unsuper-
vised interaction-preserving discretization of multivariate
data. Data Min Knowl Discov 2014, 28:1366–1397.

59. Jiang F, Sui Y. A novel approach for discretization of
continuous attributes in rough set theory. Knowl
Based Syst 2015, 73:324–334.

60. Moskovitch R, Shahar Y. Classification-driven tempo-
ral discretization of multivariate time series. Data Min
Knowl Discov 2015, 29:871–913.

61. Ramírez-Gallego S, García S, Benítez JM, Herrera F.
Multivariate discretization based on evolutionary cut
points selection for classification. IEEE Trans Cybern.
In press. doi:10.1109/TCYB.2015.2410143.

62. Shannon CE. A mathematical theory of communica-
tion. ACM SIGMOBILE Mob Comput Commun Rev
2001, 5:3–55.

63. Alcalá-Fdez J, Sánchez L, García S, del Jesus MJ, Ven-
tura S, Garrell JM, Otero J, Romero C, Bacardit J,
Rivas VM, et al. KEEL: a software tool to assess evolu-
tionary algorithms for data mining problems. Soft
Comput 2009, 13:307–318.

64. Verónica Bolón-Canedo, Noelia Sánchez-Maroño, and
Amparo Alonso-Betanzos. On the effectiveness of dis-
cretization on gene selection of microarray data. In:
International Joint Conference on Neural Networks,
IJCNN 2010, Barcelona, Spain, 18–23 July, 2010,
pages 1–8.

65. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betan-
zos A. Feature selection and classification in multiple
class datasets: an application to KDD Cup 99 dataset.
Expert Syst Appl May 2011, 38:5947–5957.

66. Cano A, Ventura S, Cios KJ. Scalable CAIM discretiza-
tion on multiple GPUs using concurrent kernels.
J Supercomput 2014, 69:273–292.

67. Zhang Y, Cheung Y-M. Discretizing numerical attri-
butes in decision tree for big data analysis. In: ICDM
Workshops, Shenzhen, China, 2014, pages 1150–1157.

68. Beyer M.A., Laney D. 3D data management:
controlling data volume, velocity and variety, 2001.
[Online http://blogs.gartner.com/doug-laney/files/2012/
01/ad949-3D-Data-Management-Controlling-Data-
Volume-Velocity-and-Variety.pdf; Accessed March,
2015].

69. Fernández A, del Río S, López V, Bawakid A, del Jesús
MJ, Benítez JM, Herrera F. Big data with cloud com-
puting: an insight on the computing environment,
mapreduce, and programming frameworks. WIREs
Data Min Knowl Discov 2014, 4:380–409.

70. Lin J. Mapreduce is good enough? If all you have is a
hammer, throw away everything that’s not a nail!. Clin
Orthop Relat Res 2012, abs/1209.2191.

71. Rio S, Lopez V, Benitez JM, Herrera F. On the use of
mapreduce for imbalanced big data using random for-
est. Inform Sci 2014, 285:112–137.

72. Chang C-C, Lin C-J. LIBSVM: a library for support
vector machines. ACM Trans Intell Syst Technol 2011,
2:1–27. Datasets available at http://www.csie.ntu.edu.
tw/ cjlin/libsvmtools/datasets/.

73. Duda RO, Hart PE. Pattern Classification and
Scene Analysis, vol. 3. New York: John Wiley &
Sons; 1973.

74. Quinlan JR. Induction of decision trees. In: Shavlik
JW, Dietterich TG, eds. Readings in Machine Learn-
ing. Burlington, MA: Morgan Kaufmann Publishers;
1990. Originally published in Machine Learning
1:81–106, 1986.

WIREs Data Mining and Knowledge Discovery Data discretization

© 2015 John Wiley & Sons, Ltd

http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

	 Data discretization: taxonomy and big data challenge
	INTRODUCTION
	BACKGROUND AND PROPERTIES
	Discretization Process
	Discretization Properties
	Minimum Description Length-Based Discretizer

	TAXONOMY
	BIG DATA BACKGROUND
	MapReduce Model and Other Distributed Frameworks

	DISTRIBUTED MDLP DISCRETIZATION
	Main Discretization Procedure
	Boundary Points Selection
	MDLP Evaluation
	Analysis of efficiency

	EXPERIMENTAL FRAMEWORK AND ANALYSIS
	Experimental Framework
	Experimental Results and Analysis

	notes
	ACKNOWLEDGMENTS
	REFERENCES

