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Abstract— Classification techniques in the big data scenario
are in high demand in a wide variety of applications. The
huge increment of available data may limit the applicability
of most of the standard techniques. This problem becomes
even more difficult when the class distribution is skewed, the
topic known as imbalanced big data classification. Evolutionary
undersampling techniques have shown to be a very promising
solution to deal with the class imbalance problem. However,
their practical application is limited to problems with no more
than tens of thousands of instances.

In this contribution we design a parallel model to enable
evolutionary undersampling methods to deal with large-scale
problems. To do this, we rely on a MapReduce scheme that
distributes the functioning of these kinds of algorithms in
a cluster of computing elements. Moreover, we develop a
windowing approach for class imbalance data in order to speed
up the undersampling process without losing accuracy. In our
experiments we test the capabilities of the proposed scheme with
several data sets with up to 4 million instances. The results show
promising scalability abilities for evolutionary undersampling
within the proposed framework.

I. INTRODUCTION

Big data is a hot topic in the data mining community
because of the inexorable demand of a broad number of fields
such as bioinformatics, marketing, medicine, etc. It could be
defined as the data whose volume, diversity and complexity
require new techniques, algorithms and analyses to extract
valuable hidden knowledge [1]. Standard data mining tools
may experience difficulties to appropriately analyze such
enormous amount of data in a reasonable time. Nevertheless,
new cloud platforms and parallelization technologies [2] offer
a perfect environment to address this issue.

Among the different alternatives, the MapReduce frame-
work [3] provides a simple and robust environment to tackle
large-scale data sets. Its usage is highly recommended for
data mining, due to its fault-tolerant mechanism (recom-
mendable for time-consuming tasks) and ease of use [4] as
opposed to other parallelization schemes such as Message
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Passing Interface [5]. Several data mining techniques have
been successfully implemented within this paradigm, such
as [6], [7].

Data skewness is an often encountered challenge in real-
world applications [8], where positive data samples, which
is usually the class of interest [9], are highly outnumbered
by the negative ones. Classification in the presence of class
imbalance [8], [10] has gained a considerable amount of
attention in the last years. One aims at improving the correct
identification of positive examples, without drastically deteri-
orating the performance on the negative class. A wide variety
of solutions has been proposed to address this problem. They
can largely be divided into two groups: data sampling [11] or
algorithmic modifications. Methods from the former category
modify the original training data to alleviate the imbalance
between classes. The latter techniques are based on existing
classifiers, which are modified to make them capable of
dealing with the class imbalance in the learning phase.
Combinations of both approaches via ensemble learning
algorithms have also been proposed [12].

Among data sampling strategies, evolutionary undersam-
pling (EUS, [13]) aims at selecting the best subset of
instances from the original training set to reduce the effect
of the class imbalance. EUS not only intends to balance
the training set, but also to increase the overall performance
over both classes of the problem. The balancing procedure is
therefore performed in a guided manner by using a genetic
algorithm to search for an optimal subset of instances. This
set can thereafter be used by any standard classification
algorithm to build a model that should be capable of equally
distinguishing both the positive and negative classes. These
techniques have been demonstrated to be very powerful, but,
despite their capabilities, the execution of these models in
large-scale problems becomes unfeasible due to the time
needed by the evolutionary search. The increasing number
of instances lead to obtain an excessive chromosome size
that can limit their practicality.

In this work, our aim is to take advantage of the EUS
model to address class imbalance in big data problems,
obtaining a final classifier able to discriminate both classes.
To do so, we consider the MapReduce algorithm, which
splits the data in different chunks that are processed in
different computing nodes (mappers), such that EUS can be
applied concurrently. Moreover, the time required by EUS is
further reduced by considering a windowing scheme inside
the algorithm [14], [15]. This is specifically designed for the
class imbalance problem. As a result, instead of obtaining
only one reduced set as in the classical approach, as many
sets as there are splits are obtained, namely one in each
mapper. A classifier is learned with each reduced set, such
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that their combination in the reduce phase of the MapReduce
algorithm forms an ensemble of classifiers, which is the final
model obtained. After that, a new MapReduce process will
split the test data set and classify it by using the previously
constructed models. In this work, we consider decision trees
as classifiers, and more specifically C4.5 [16], a popular
choice in imbalanced classification [8].

To test the performance of our proposal, we have con-
sidered different versions of the KddCup99 problem, where
varying ratios of imbalance can be studied. Classification
performance is measured by the appropriate metrics in this
scenario such as the Area Under the ROC Curve and the
geometric mean (g-mean). Moreover, both the building and
classification times are analyzed. The effect of both levels
of parallelization presented are studied considering a differ-
ent number of mappers for the MapReduce algorithm and
analyzing the usage of windowing compared to the original
model.

The paper is structured as follows. Section II provides
background information about imbalanced classification,
EUS and MapReduce. Section III describes the proposal.
Section IV analyzes the empirical results. Finally, Section
V summarizes the conclusions.

II. BACKGROUND

In this section we briefly describe the topics used in
this paper. Section II-A presents the current state-of-the-art
on imbalanced big data classification, whereas Section II-
B recalls the EUS algorithm. Section II-C introduces the
MapReduce paradigm.

A. Imbalanced classification in the Big Data context

As noted in the introduction, an imbalanced class distri-
bution in a two-class dataset involves a large presence of
negative instances compared to a small amount of positive
ones. An important consideration in this framework is the
measure used to evaluate the classification performance. In
traditional classification applications, the performance of a
classifier is commonly assessed by the classification accu-
racy (percentage of correctly classified examples). However,
when dealing with class imbalance, this measure can lead
to misleading conclusions, as the negative class gets a
greater weight due to its size, combined with the fact that
its examples are comparatively easier to classify. Popular
alternatives are the Area Under the ROC Curve (AUC) and
the g-mean. The first measure originates from the domain of
signal detection, where it corresponds to the probability of
correctly identifying which of two stimuli is noise (negative)
and which is signal plus noise (positive). The AUC is the
area under the ROC-curve [17], providing a single-number
summary of how well a classifier is able to trade off its true
positive (TPrate) and false positive rates (FPrate). A popular
approximation [8] of this measure is given by

AUC =
1 + TPrate−FPrate

2
. (1)

The g-mean is the geometric mean of the true positive and
true negative rates (TNrate) obtained by the classifier and is
given by

g-mean =
√

TPrate ·TNrate (2)

It assigns equal weights to the class-wise accuracies and
therefore does not allow the performance on the negative
class to be overshadowed by that on the positive class.
These measures have been used in experimental studies on
imbalanced classification in e.g. [8], [13].

The solutions to dealing with big data can themselves
be affected by the presence of class imbalance and should
therefore be further modified accordingly. Several of them,
like the MapReduce scheme described in Section II-C, divide
the data set into subsets to be processed separately. In such
a procedure, one needs to carefully consider the construction
of these subsets, as a smaller representation of the minority
class may be detrimental to the general performance.

In [18], the authors developed a set of algorithms for the
classification of imbalanced big data, evaluating how well
traditional solutions to the class imbalance problem transfer
to big data. They extended several existing data level algo-
rithms handling class imbalance to be used in this context.
In particular, they considered the random undersampling and
oversampling methods [19] and the SMOTE oversampling
technique [11]. These preprocessing methods were used in
conjunction with the Random Forest classifier [20]. Addi-
tionally, they also developed a cost-sensitive version of this
classifier able to handle imbalanced big data problems. Their
experiments showed that sequential versions of methods
dealing with class imbalance are indeed not equipped to be
used on big data. They could not identify a single approach to
be the overall best-performing one, but did observe that some
methods are more suited for the big data setting than others.
Alternatively, in [21], the authors develop a fuzzy rule based
classification system [22] using a cost-sensitive approach to
deal with class imbalance considering the MapReduce setup
to handle big data.

B. Evolutionary Undersampling

EUS [13] is a preprocessing algorithm aimed at balancing
the training set distribution, such that the models created
from the new training set are no longer affected by the
imbalanced distribution of the instances. It is an extension
of evolutionary prototype selection algorithms for use in
imbalanced data sets. In classical prototype selection meth-
ods [23], the objective is to reduce the training set in such
a way that the storage necessity and testing times of the
k-Nearest Neighbors (kNN) classifier are equally reduced,
without losing performance or by even increasing it. In the
class imbalance framework, the main goal of these algorithms
changes, focusing on the balancing of the training set and the
increasing of the performance on the minority class of the
posterior classifier. Therefore, EUS obtains a balanced subset
of the original data set, which is formed of those instances
that allow one to reach an accurate classification in both
classes of the problem. This set is evolved from randomly
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Fig. 1: The MapReduce framework

undersampled data sets until the best solution found cannot
be further improved (in terms of the fitness function).

In EUS, each possible solution is codified in a binary
chromosome, in which each bit represents the presence or
absence of an instance in the final training set. In order to
reduce the search space, only majority class instances can
be considered for removal, while those of the minority class
are automatically introduced in the final data set. Hence, a
chromosome in EUS has the following form:

V = (vx1
, vx2

, vx3
, vx4

, . . . , vxn− ), (3)

where vxi
∈ {0, 1}, indicating whether example xi is

included or not in the reduced data set and n− is the number
of negative class instances.

Chromosomes are ranked according to a fitness function
that considers the balancing of the instances of both classes
and the expected performance of the selected data subset at
the same time. The performance is estimated by the leave-
one-out technique using the 1NN classifier and is measured
by the g-mean defined in Eq. (2). The complete fitness
function of EUS is the following:

fitnessEUS =

{
g-mean−

∣∣∣1− n+

N− · P
∣∣∣ if N− > 0

g-mean−P if N− = 0,
(4)

where n+ is the number of positive instances, N− is the
number of selected negative instances and P is a penalization
factor that focuses on the balance between both classes. P is
set to 0.2 as recommended by the authors, since it provides
a good trade-off between both objectives.

As prototype selection method, the evolutionary algorithm
CHC [24] is chosen because of its good balance between
exploration and exploitation. CHC is an elitist genetic algo-
rithm that uses the heterogeneous uniform cross-over (HUX)
for the combination of two chromosomes, considers an incest
prevention mechanism and reinitializes the population when
the evolution does not progress instead of applying mutation.

C. MapReduce

MapReduce is a paradigm of parallel programming [3]
developed to tackle large amounts of data over a computer
cluster independently of the underlying hardware. It is mainly

characterized by its great transparency for programmers,
which allows one to parallelize applications in an easy and
comfortable way.

This algorithm is composed of two main phases: map and
reduce. Each step has key-value (< k, v >) pairs as input
and output. The map phase collects the information from
disk as a < k, v > pair and generates a set of intermediate
< k, v > pairs. Then, all the values associated with the
same intermediate key are merged as a list (shuffle step). The
reduce stage takes this resulting list as its input to perform
some operation and returns the final response of the system.
Figure 1 shows a flowchart of this framework.

Both map and reduce processes are run in parallel. Firstly,
all map functions are independently run. Meanwhile, reduce
operations wait until their respective maps have ended. Then,
they process different keys concurrently and independently.
Note that inputs and outputs of a MapReduce job are stored
in an associated distributed file system that is accessible from
any computer of the used cluster.

In this contribution we will focus on the Hadoop im-
plementation [25] of the MapReduce framework because
of its performance, open source nature and distributed file
system (Hadoop Distributed File System, HDFS). A Hadoop
cluster is formed by a master-slave architecture, where one
master node manages an arbitrary number of slave nodes.
The HDFS replicates file data in multiple storage nodes
that can concurrently access the data. In such a cluster, a
certain percentage of these slave nodes may be out of order
temporarily. For this reason, Hadoop provides a fault-tolerant
mechanism: when one node fails, it automatically restarts the
tasks that were running on that node on another one. Thus,
Hadoop offers an advantageous environment to successfully
speed up data mining techniques.

III. EVOLUTIONARY UNDERSAMPLING FOR IMBALANCED
BIG DATA

In this section we describe the proposed MapReduce and
windowing approach for EUS. We motivate our proposal in
Section III-A, while an in-depth explanation of the proposed
model is presented in Section III-B. Our aim is to build a
model for imbalanced big data problems by extending the
EUS algorithm to work within this scenario. Since we are

717



Training data

Splitting

Map 1

Map 2

Map M

Evolutionary 
undersampling
+ windowing

 Aggregation
Building 
a model

EUS
Step

RS
1

W
0

W
1

...

W
ns

EUS
Step

RS
2

W
0

W
1

...

W
ns

EUS
Step

RS
m

W
0

W
1

...

W
ns

Map Phase Reduce phase

Fig. 2: Flowchart of the learning phase of EUS-based decision tree classifier ensemble.

considering a MapReduce framework, we will run several
EUS processes over different chunks of the training set,
resulting in as many reduced sets as the number of mappers
considered. A model will be built with each one of these sets
(in this case, a decision tree), which will then be aggregated
in a classifier ensemble in the reduce phase. We obtain a
decision tree based ensemble for imbalanced big data classi-
fication using EUS based on MapReduce. Furthermore, we
will speed up each map phase by introducing a windowing
scheme into EUS as a second level of parallelization. A
flowchart presenting our proposal is shown in Fig. 2.

A. Motivation

The application of EUS in big data problems is interesting
because it does not generate more data, as opposed to
oversampling methods [18]. The latter can produce even
bigger problems than the initial ones. As a consequence of
the reduction process, the number of examples used to build
the classification models becomes lower, speeding-up this
process. Evidently, this fact is also achieved when random
undersampling is applied, but due to its random nature it
may discard important data of the majority class. In EUS on
the other hand, the undersampling process is guided not only
by the balancing, but also by the accuracy over both classes,
which makes it more accurate [13]. However, the application
of this model in big data problems is more complex and
needs greater attention than random approaches due to its
computational cost and memory consumption. This is why
we propose a two-level parallelization model that allow us
to run it over very large problems.

The computational cost of EUS is one of its drawbacks.
The required execution time increases not only with the
number of examples but also with the imbalance ratio (IR),

that is, the number of majority class instances divided by the
number of minority class ones. This is due to the fact that the
greater the IR is, the greater the possibilities to form subsets
of the majority class examples are (since the size depends
on the number of minority class examples).

With these issues in mind, we propose a two-level par-
allelization scheme. MapReduce will allow us to divide the
computational effort over different machines, running several
EUS processes over different chunks of data. Then, for each
data chunk, a windowing scheme will be applied to reduce
the computational time required by EUS. To do so, each
subset of the data will again be split in different strata that
will be used to evaluate the 1NN algorithm in the successive
iterations. Moreover, we will take the class imbalance prob-
lem into account in both phases of the method. In each map
a decision tree will be built, which will thereafter be merged
in a classifier ensemble in the reduce phase, obtaining the
final model.

B. A two-level parallelization model for EUS

In order to apply EUS in big data problems, we propose
the usage of two levels of parallelism. In this section, we
describe each level. Section III-B.1 introduces the distributed
partitioning process based on the MapReduce algorithm,
which uses the windowing scheme adapted to the imbalanced
framework in each partition, as explained in Section III-B.2.

1) Parallelizing with MapReduce: We rely on a MapRe-
duce process to split the training data into several subsets that
will be processed by different computing nodes, allowing us
to perform EUS in each subset, which would not be possible
when considering the whole data set. The benefits of using
a MapReduce technique to speed up data mining models
regarding other parallelization approaches are multiple, as
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discussed in [7]. First, each data subset is individually
tackled, avoiding an excessive data exchange between nodes
[26] to proceed. Second, the computational cost associated
to the EUS process in each chunk may be so high that the
fault-tolerant mechanism provided by MapReduce becomes
essential.

Require: Number of split j
1: Constitute TRj with the instances of split j.
2: RSj=EUS windowing(TRj )
3: Mj=BuildModel(RSj )
4: return Mj

Fig. 3: Map function.

Require: Mj , {Initially M = ∅}
1: M =M ∪ Mj

2: return M

Fig. 4: Reduce function.

In order to integrate EUS into the MapReduce model, the
two key operations should be developed: map and reduce,
which are designed as follows. The map operation is com-
posed of three different stages:

1) Splitting of the data: Let TR be the training set stored
in the HDFS as a single file. In Hadoop, this file
is formed by h HDFS blocks that can be accessed
from any computer. The map step firstly divides TR
into m disjoint subsets that correspond to the number
of map tasks specified by the user as a parameter.
Each map task (Map1,Map2, ...,Mapm) will create
an associated TRj , where 1 ≤ j ≤ m, with the
instances of each chunk in which the training set
file is divided. This partitioning process is performed
sequentially, so that Mapj corresponds to the jth data
chunk of h/m HDFS blocks. Therefore, each map
task will approximately process the same number of
instances.

2) EUS preprocessing: When a mapper has formed its
corresponding set TRj , the EUS method is performed
using TRj as input data. This method can be either ap-
plied with or without the windowing scheme (presented
in Subsection III-B.2) as a second level parallelization.
As a result of this stage, a reduced and balanced set
of instances (RSj) is obtained.

3) Building a model: Once each mapper obtains the
reduced set, the learning phase is carried out. It consists
of building a decision tree. More specifically, we con-
sider the well-known C4.5 algorithm [16] that learns a
model Mj from the preprocessed set RSj as its input
training set. In this way, we avoid storing the resulting
subsets to disk and applying a second MapReduce
process to build the final classification model.

As a result of the map phase, we obtain m decision trees.
Figure 3 summarizes the pseudo-code of the map function.

When each map finishes its processing, the results are
forwarded to a single reduce task. This task is devoted to

aggregate all the decision trees in a classifier ensemble.
Hence, a set of trees M = {M1,M2, ...,Mm} is obtained
as a result and stored as a binary file in the HDFS system so
that it can be then used to predict the class for new examples.
Figure 4 shows the pseudo-code of the reduce function.

Once the building phase is finished, the classification step
is started to estimate the class associated to each test exam-
ple. Given that in big data problems the test set can also be
very large, another MapReduce process solely applying the
map operation is designed. This process splits the available
test data into independent data blocks, whose predictions are
estimated by the majority vote of the m decision trees built
in the previous phase.

2) Parallelizing EUS with windowing: The MapReduce
algorithm itself allows the usage of EUS with big data
problems. However, the execution time required by EUS in
each mapper can still be long and highly depending on the
ratio of imbalance. For this reason, we design a second level
parallelization based on a windowing scheme.

The use of this scheme for evolutionary models was
proposed in [14] aimed at speeding up genetic-based ma-
chine learning algorithms [2]. In order to decrease the
required time for the computation of the fitness function,
the training set is divided into ns disjointed stratified strata
(W1,W2, . . . ,Wns), see Figure 2. In each iteration, only one
stratum is used to evaluate the population, which changes
in the subsequent iterations following a round-robin policy.
This approach is different from the partitioning of the data
considered in MapReduce because all the information of the
training set is available, but only a part of it is used in each
iteration. This technique has already been extended to other
evolutionary algorithms used in data mining tasks [15].

Recall that in the case of EUS, the evaluation of a
chromosome is carried out using leave-one-out validation
with 1NN considering the whole training set. Hence, the
computational complexity is directly influenced by the size
of this set. For this reason, by only considering a part of it
in each evaluation, the preprocessing time can be reduced.

However, the partitioning process must take into consider-
ation the class imbalance problem. Dividing the training set
into several disjoint windows with equal class distribution
may lead to an important loss of information of the positive
class. It would be even more accentuated with larger IRs. For
this reason, we propose to carry out the windowing scheme
introducing some variations. Minority class instances will be
always used to evaluate a chromosome. However, the set of
majority class instances is divided into several disjoint strata.
The size of each subset of majority examples will correspond
to the number of minority class instances. A similar idea was
proposed in [27]. Consequently, we will obtain as many strata
as the value of the IR, which also allows us to avoid setting
a fixed value for the number of strata. In each iteration, the
population is evaluated by one stratum from the majority
class and the whole set of minority class instances. Then,
the majority class stratum is changed following the round-
robin policy.
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Summing up, in the jth mapper TRj data set is received.
This set is divided into two sets: one with positive instances
TR+

j and the other with negative instances TR−
j . Then, TR−

j

is divided into ns = bIRc windows (W−
1 ,W−

2 , . . . ,W−
ns).

Finally, the instances of TR+
j are added to every window

obtaining the final set (W1,W2, . . . ,Wns), which are used
in the windowing scheme. As a consequence, these windows
are balanced and the chromosomes are evaluated with the
same number of positive and negative instances.

IV. EXPERIMENTAL STUDY

This section establishes the experimental setup (Section
IV-A) and discusses the obtained results (Section IV-B).

A. Experimental Framework

To assess the quality of the proposed method for imbal-
anced big data, we have focused on the KDD Cup 1999
data set, available in the UCI machine learning repository
[28], which consists of more than 4 million instances and
41 attributes. Since it contains multiple classes, we have
formed several case studies from them corresponding to
two-class imbalanced problems. In order to do so, we have
taken the majority class (i.e., DOS) in comparison with the
rest of the minority classes (i.e., PRB, R2L and U2R) in
order to investigate the influence of different IRs. The data
characteristics are summarized in Table I.

TABLE I: Data sets

Data set #negative #positive IR

kddcup DOS vs. normal 3883370 972781 3.99
kddcup DOS vs. PRB 3883370 41102 94.48
kddcup DOS vs. R2L 3883370 1126 3448.82
kddcup DOS vs. U2R 3883370 52 74680.25

It is important to note that the last two data sets of
this table have so few positive examples that they should
be appropriately treated. Splitting the positive instances in
different mappers would imply very few positive instances
to be present in each one. For this reason, in these cases
only the negative set of instances is split by the map phase,
whereas all positive instances are read by all mappers, and
are therefore present in every chunk (that is, every TRj for
j = 1, . . . ,m). In the other two cases, both positive and
negative instances are split in the different mappers.

In our experiments we consider a 5-fold stratified cross-
validation model, meaning that we construct 5 random par-
titions of each dataset maintaining the prior probabilities of
each class. Each fold, corresponding to 20% of the data is
used once as test set, evaluated on a model trained on the
combination of the 4 remaining folds. The reported results
are taken as averages of the five partitions. To evaluate our
model, we consider the AUC and g-mean measures recalled
in Section II-A. Moreover, we evaluate the time requirements
of the method in two ways:

• Building time: we will quantify the total time in seconds
spent by our method to generate the resulting learned
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Fig. 5: Plot of the required building time against the number
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Fig. 6: Plot of the required building time against the number
of mappers, using the windowing scheme.

model, including all the computations performed by the
MapReduce framework.

• Classification time: this refers to the time needed in
seconds to classify all the instances of the test set with
the given learned model. To do so, we use a fixed
number of 128 mappers used in the classification stage.

We will also investigate how these measures are affected
by modifying the number of mappers (128, 256 and 512) as
well as the use of the proposed windowing scheme.

The experiments have been carried out on twelve nodes
in a cluster: a master node and eleven compute nodes. Each
one of these compute nodes has 2 Intel Xeon CPU E5-2620
processors, 6 cores per processor (12 threads), 2.0 GHz and
64GB of RAM. The network is Gigabit ethernet (1Gbps).
In terms of software, we have used the Cloudera’s open-
source Apache Hadoop distribution (Hadoop 2.0.0-cdh4.4.0).
A maximum of 128 map tasks are available and one reducer.

B. Results and discussion

This section presents and analyzes the results obtained in
the experimental study.

Firstly, we only focus on the first level of parallelization,
studying the results of the proposed MapReduce approach
without using the windowing strategy. Table II shows the
results obtained in the four cases of study considered. The
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TABLE II: Results obtained without using the windowing mechanism

Data set #Mappers AUC g-mean Building Time Classification Time

kddcup DOS vs. normal 128 0.99962397 0.99962395 942.2014 35.8988
256 0.99924212 0.99924194 509.8122 38.4968
512 0.99904700 0.99904674 287.2052 52.7572

kddcup DOS vs. PRB 128 0.99942829 0.99942822 2525.5332 33.4956
256 0.99808006 0.99807901 2025.4140 41.9696
512 0.99595677 0.99595641 1258.4924 48.9682

kddcup DOS vs. R2L 128 0.99817501 0.99817073 13595.0602 32.0616
256 0.99817501 0.99817073 2720.0972 35.9038
512 0.99817501 0.99817073 1045.7074 46.0528

kddcup DOS vs. U2R 128 0.97429702 0.97393535 12414.7948 31.2804
256 0.98306267 0.98280252 5850.2702 35.2638
512 0.98365571 0.98339482 1978.1212 46.0796

TABLE III: Results obtained using the windowing mechanism

Data set Mappers AUC g-mean Building Time Classification Time

kddcup DOS vs. normal 128 0.99986345 0.99986345 845.5972 36.9734
256 0.99979807 0.99979806 419.9624 31.3188
512 0.99906136 0.99906110 228.9790 52.6386

kddcup DOS vs. PRB 128 0.99941760 0.99941754 422.4786 34.2640
256 0.99778456 0.99778390 240.4662 36.7934
512 0.99513122 0.99513099 156.4354 48.4240

kddcup DOS vs. R2L 128 0.99817501 0.99817073 444.7252 31.7255
256 0.99817501 0.99817073 266.2424 36.1147
512 0.99817501 0.99817073 178.8536 42.0057

kddcup DOS vs. U2R 128 0.98750466 0.98728379 459.6002 31.8436
256 0.97617662 0.97583158 248.1038 35.5862
512 0.97656950 0.97624880 152.3752 46.6194

averaged AUC, g-mean, building and test classification run-
times are presented, depending on the number of mappers
used (#Mappers). Figure 5 plots the building time required
according to the number of maps.

128 256 512 128 256 512

0.975

0.985

0.995

#Mappers

g-
m
ea
n

NW-normal NW-PRB NW-R2L NW-U2R

W-normal W-PRB W-R2L W-U2R

Fig. 7: The g-mean values for all datasets are plotted against
the number of mappers. On the left, the results without using
the windowing scheme (NW) are displayed. On the right, the
results of the windowing (W) are presented.

From this table and figure we can highlight several factors:

• Since within the MapReduce framework the EUS algo-
rithm does not have all the information of the problem
tackled, it is expected that the performance (AUC and g-
mean) will decrease as the number of available instances
is reduced (i.e., the number of mappers is incremented).
However, in this table, we can observe that this fact is
only fulfilled for the first two data sets. For DOS vs.
R2L and DOS vs. U2R we find a different behavior. For
these two problems, we included all positive instances
in every chunk, and hence more mappers could result
in an improved performance because more models are
used to classify new examples.

• Analyzing the building time, a great reduction is shown
when the number of mappers is increased in all the
problems. The time spent by the EUS algorithm is
influenced by the IR because it reduces the negative
class instances until its size is equal to the positive
one. For that reason, in Fig. 5 we can observe that the
building time on data sets with higher imbalance ratio
is slower (DOS vs. R2L and DOS vs. U2R), although
the others (DOS vs. normal and DOS vs. PRB) have a
greater number of instances.

• The classification time tends to be a bit higher as the
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number of mappers is incremented, which is due to the
fact that more partial models are being aggregated.

Table III and Fig. 6 present the results obtained taking into
account the proposed windowing model. Fig. 7 compares the
g-mean results using either the windowing model or without
using it. According to these results, the following points can
be stressed:

• Looking at Fig. 7, we can observe that the use of the
designed windowing scheme has resulted in a compa-
rable performance, with respect to not using it, in most
of the problems. As in the previous case, the increment
in the number of mappers also implies a small drop of
performance, since less instances are considered in each
mapper.

• In terms of runtime, the windowing scheme has ad-
dressed the negative influence of the IR over the EUS
model. Since the number of windows depends on the IR,
the greater the IR is, the more effective the windowing
scheme becomes in reducing the running time. As a
consequence, the building times of the difference prob-
lems are more similar than without using the windowing
scheme.

• Both the performance obtained and the running time re-
duction show the good synergy between the MapReduce
and windowing approaches, which allow one to apply
EUS model in big data problems with promising results.

V. CONCLUDING REMARKS

In this contribution a parallelization scheme for EUS
models is proposed. It is based on a two-stage MapReduce
approach that first learns a decision tree in each map after
performing EUS preprocessing and then classifies the test set.
The EUS step is further accelerated by adding a windowing
scheme adapted to the imbalanced scenario. The application
of this parallelization strategy enables EUS to be applied on
data sets of almost arbitrary size. Our experimental study
has shown the benefits of applying the windowing scheme
in combination with the MapReduce process, resulting in a
very big reduction of the building time while maintaining
a comparable performance. As future work, we plan more
extensive experiments on alternative imbalanced big data
sets. Additionally, it will be interesting to replace the EUS
step by other preprocessing mechanisms such as hybrid
oversampling/undersampling approaches.
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