This article was downloaded by: [New York University]

On: 22 May 2015, At: 05:20

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Computational Intelligence
Systems

Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tcis20

A Walk into Metaheuristics for Engineering
Journal of Optimization: Principles, Methods and Recent Trends

Computadioeal

intelligence Ning Xiong®, Daniel Molina®, Miguel Leon Ortiz® & Francisco Herrera®

Sfﬁlﬂ ms & School of Innovation, Design and Engineering, Malardalen University Vasterés,
SE-72123, Sweden E-mail: ;

b Department of Computer Science and Engineering, University of Cadiz Cadiz, 11001,
Spain E-mail:

@ CrossMark Department of Computer Science and Artificial Intelligence, University of Granada,

[

Granada, 18071, Spain E-mail:

3 Published online: 01 May 2015.
Click for updates

To cite this article: Ning Xiong, Daniel Molina, Miguel Leon Ortiz & Francisco Herrera (2015) A Walk into Metaheuristics
for Engineering Optimization: Principles, Methods and Recent Trends, International Journal of Computational Intelligence
Systems, 8:4, 606-636, DOI: 10.1080/18756891.2015.1046324

To link to this article: http://dx.doi.org/10.1080/18756891.2015.1046324

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of
the Content. Any opinions and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied
upon and should be independently verified with primary sources of information. Taylor and Francis shall

not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other
liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any

form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://crossmark.crossref.org/dialog/?doi=10.1080/18756891.2015.1046324&domain=pdf&date_stamp=2015-05-01
http://www.tandfonline.com/loi/tcis20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/18756891.2015.1046324
http://dx.doi.org/10.1080/18756891.2015.1046324
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Downloaded by [New Y ork University] at 05:20 22 May 2015

International Journal of Computational Intelligence Systems, Vol. 8, No. 4 (2015) 606-636

REVIEW ARTICLE

A Walk into Metaheuristics for Engineering Optimization:
Principles, Methods and Recent Trends

Ning Xiong
School of Innovation, Design and Engineering, Mdlardalen University
Viisteras, SE-72123, Sweden
E-mail: ning.xiong@mdh.se

Daniel Molina
Department of Computer Science and Engineering, University of Cadiz
Cadiz, 11001, Spain
E-mail: daniel. molina@uca.es

Miguel Leon Ortiz
School of Innovation, Design and Engineering, Mdlardalen University
Viisteras, SE-72123, Sweden
E-mail: miguel.leonortiz@mdh.se

Francisco Herrera
Department of Computer Science and Artificial Intelligence, University of Granada,
Granada, 18071, Spain
School of Innovation, Design and Engineering, Mdlardalen University
Visteras, SE -72123

E-mail: herrera@decsai.ugr.es

Received 5 October 2014

Accepted 15 December 2014

Abstract

Metaheuristics has attained increasing interest for solving complex real-world problems. This paper studies the
principles and the state-of-the-art of metaheuristic methods for engineering optimization. Both the classic and
emerging approaches to optimization using metaheuristics are reviewed and analyzed. All the methods are discussed
in three basic types: trajectory-based, in which in each step a new solution is created from the previous one; multi-
trajectory-based, in which a multi-start mechanism is used; and population-based, where multiple new solutions are
created considering a population of approximate solutions. We further discuss algorithms and strategies to handle
multi-modal and multi-objective optimization tasks as well as methods for parallel implementation of metaheuristic
algorithms. Then, different software frameworks for metaheuristics are introduced. Finally, several interesting
directions are pointed out as future research trends.

Keywords: metaheuristics, optimization methods, trajectory-based optimization, population-based optimization,
multimodal optimization, multi-objective optimization, parallel metaheuristics

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
606

Downloaded by [New Y ork University] at 05:20 22 May 2015

N. Xiong, D. Molina, M.L. Ortiz, F. Herrera

1. Introduction

Nowadays, optimization has become an important issue
in industrial systems design and product development
[1]. Tt is necessary to enhance system performance
whereas reduce product cost to meet challenges in the
competitive market. From engineering perspective,
optimization is concerned with adjusting or fine tuning
system designs in terms of one or more performance
factors. This is not a trivial task particularly when the
problem space is complex and with high-dimensionality.

Generally, optimization techniques can be divided into
two categories: linear programming [2] and non-linear
programming [3], [4]. The former is applied to
optimization problems that have linear objective and
constraint functions. The method for linear programming
was first invented in 1947 with the use of simplex to
solve linear programs. Further important progresses in
this area include the polynomial-time ellipsoid algorithm
[5] and the interior point algorithm [6], both were
proposed to reduce time complexity and to allow for
extremely efficient problem handling in the optimization
procedure. At present, linear programming has been
advanced to a soundly founded discipline and widely
used technology for linear optimization problems. The
second category of optimization is called nonlinear
programming, which refers to the consortium of
methods and approaches that are designed to deal with
problems with nonlinear objective or constraint
functions [7]. Nonlinearity is a very common property
for many engineering optimization problems, and
solving such problems often presents a challenge due to
high complexity, high dimensionality and multi-modality
of the problem space.

Metaheuristics [8] has been developed to tackle
nonlinear, complex optimization problems for which
exact optimization techniques fail to offer satisfactory
results. It is implemented through an iterative generation
process that guides subordinate heuristics in exploration
and exploitation of the search space to efficiently find
near-optimal solutions [9]. Metaheuristic algorithms are
not problem and domain specific, and they are capable
of locating good quality solutions in a relatively shorter
time, compared to traditional optimization techniques .

This paper focuses on the ideas and principles of
metaheuristic approaches to tackling hard (nonlinear)
optimization problems. @ We classify existing
metaheuristic optimization techniques into three types:

trajectory-based approaches, multi-trajectory based
approaches and population-based approaches.
Significant methods of these types are reviewed and
analyzed respectively. We further discuss strategies and
algorithms for multi-modal and multi-objective tasks as
well as methods for parallel implementation of
metaheuristic algorithms, which represent important
issues for application of metaheuristics in solving many
engineering problems. Some interesting directions of
further study are also highlighted as future research
trends. Additionally, several relevant issues of interest in
the literature are discussed due to their interest, such us,
the balance between exploration and exploitation, the
influence of the non-free lunch problem, ...

Our paper is different to other general reviews in the
literature as [10] because it has a different perspective: it
not only introduces metaheuristics in a more concise
way making references to different specific reviews
when they are available, but it also has specific
sections about the research areas and relevant topics that
are considered specially interesting (at present and in a
near future).

The organization of this paper is as follows. Section 2
highlights the basic idea and principle for solving
optimization problems. The reviews of three types of
metaheuristic methods: trajectory-based optimization,
multi-trajectory based optimization, and population-
based optimization are given in Sections 3, 4 and 5
respectively. Section 6 is devoted to discussing three
current issues (multi-modal and multi-objective
optimization, parallel metaheuristics) which are
important for applying metaheuristics in engineering
practices. Section 7 makes an overview of some
metaheuristic optimization frameworks as software
tools. Some future trends of research are highlighted in
Section 8. Section 9 introduces several relevant
discussion topics in the literature. Finally, conclusion is
given in Section 10.

2. General Principle of Optimization

Generally an engineering optimization problem can be
formulated as

Minimize f(Xl,XQ,---,X

n

Subjectto (X1sXgs -2 X,|€Q

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

607

Downloaded by [New Y ork University] at 05:20 22 May 2015

where (x1, x2, ..., X,) is the vector of design variables, 2
denotes the region of feasible solutions in the decision
(search) space, and f(X) is an objective function
providing numerical assessment for vectors of variables
representing alternative solutions. The design variables
x; can take continuous or discrete values or a mixture of
both depending on problems of interest.

Mathematically it is well known that an optimum of a
(nonlinear) objective function f{x,,x,,...,x,) must be some
point at which the partial derivatives of the function with
respect to all variables are equal to zero, i.e.,

g—izo, i=1,2,--+,n (1)
A solution satisfying all the equations in (1) is called a
stationary point of function /. Further the stationary point
is a minimum solution if the Hessian matrix of the
second-order derivatives, as defined in Eq. (2), is
positive definite.

of o&f . _&f
ox: 0x0x 0x,0x,
H=)
of of . @f
0x 0x, 0x 0Xx, 0x

The above principle suggests a simple procedure to
obtain exact solutions of an optimization problem. It is
done by finding all stationary points of the objective
function and then examining the property of the Hessian
matrices of these points. The global optimum solution is
selected from those stationary points for which the
Hessian matrices are positive definite.

Unfortunately, the approach to exact solutions of
optimization is rarely applicable in engineering practice.
The main reason lies in the difficulty of acquiring the
derivative information analytically. In many
applications, only concrete objective values of individual
designs are calculable through specific calculations such
as simulation. But the explicit expression of the
objective function is not available, not to mention the

A Walk into Metaheuristics

analytic formulation of the partial derivative functions. It
follows that we are unable to construct the equations as
formulated in Eq. (1) for determining the stationary
points of the objective function.

Metaheuristic methods present a pragmatic alternative to
solve engineering optimization problems. The main idea
is to create arbitrary initial approximate(s) to the
problem and then improve them progressively. The
whole procedure consists of a number of iteration steps.
In each step of the iteration, new approximate(s) are
created from the old one(s) as more promising
solution(s). Depending on how the approximates are
generated at a single step, three types of metaheuristic
methods (trajectory-based, multi-trajectory based and
population-based) can be defined and explained as
follows.

With trajectory-based approaches, one point as new
approximate is generated and maintained in each
iteration. The new point is made as transition from an
old one with expected better performance. The general
form of such transition can be expressed as

X, =X, +h;S, (3)

where X;;; and X; denote the new and old approximates
respectively, 4; decides the length of transition, and S; is
a vector determining the direction of the move from X
There are many different methods to adapt 4; and to
determine the direction vector S; in the literature. Some
uses merely values of the objective function while others
require partial derivative information in addition to the
objective values.

Because in trajectory-based approaches, a new solution
is always obtained from the previous one, the selection
of the initial point (usually randomly generated) has a
strong influence over the search. In case of an improper
initial point, the algorithm could get stuck in a local
optimum, not finding the global optimum. Multi-
trajectory based algorithms try to reduce that strong
dependency by the incorporation of a multi-start
mechanism that repeats the search again from a different
initial point when the search is stuck in a local optimum.

Population-based approaches start from an initial
population of feasible solutions. Then it undergoes an
iterative procedure in which the population evolves to
reach progressively refined approximates to the

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

608

Downloaded by [New Y ork University] at 05:20 22 May 2015

N. Xiong, D. Molina, M.L. Ortiz, F. Herrera

optimum. This evolution is carried out by the creation of
new solutions that are introduced into the population
replacing previous solutions, or by the adaptation of
existing solutions. As many points in the space are
explored simultaneously, population-based approaches
are superior to trajectory-based approaches in the global
search ability; hence it has less likelihood of ending with
a local optimum. Many nature inspired optimization
techniques rely on transitions of populations, such as
genetic algorithms, genetic programming, evolutionary
strategy, evolutionary programming, estimation of
distribution algorithms, particle swarm optimization,
differential evolution, artificial bee colony algorithms,
memetic algorithms, ant colony optimization, as well as
scatter search, which will be reviewed in Section 5.

3. Trajectory-Based Optimization

The approaches of this type explore the problem space
via transition from one feasible solution to another
(although in constraints optimization sometimes non-
feasible solutions are used during the search). The
transition procedure is controlled following some rules.
The majority of these techniques starts by creating an
arbitrary solution (approximate) to the problem and it
then create a new solution. If the next generated solution
has a better objective value than the current solution, the
current one is replaced by that solution and the search
moves on to the next iteration. These techniques are
particularly recommended when there is limited time for
search, for example for real-time systems.

Six well-known approaches in this class will be
surveyed here.

3.1. Hill-Climbing

Hill-climbing [11] is the simplest metaheuristic approach
for optimization. In each step there are generated and
evaluated the neighbors of the current solution. The best
neighbor replaces the current solution if the neighbor has
a better objective value, and the search continues. Hill-
climbing is a local search and it is mainly applied in
discrete spaces as it implicitly assumes a finite number
of feasible neighbors at every point. For continuous
optimization, only a small number of neighbors can be
generated, thus this technique could not found a local
optimum.

The advantages of hill-climbing lie in its simplicity and
high efficiency. It has been widely used to solve many

machine learning and technical optimization problems
(e.g. [12], [13]).

3.2. Simulated Annealing

Simulated annealing [14] [15] is a stochastic and
metaheuristic algorithm for solving optimization
problems, especially focused on avoid get stuck in local
optimization. It is inspired by the physical principle of
annealing used in material engineering. In an annealing
process the solid is first heated to a high temperature,
causing atoms to move away from their initial positions.
When the material cools down slowly, the atoms adjust
themselves into a new thermal equilibrium that
corresponds to a minimum energy state.

The algorithm is iterative and the main idea is to
randomly select a new solution in the neighborhood of
the current solution at every step. The difference of
objective values, AE, between the new and current
solutions is calculated as analogy to the change of
energy. If the new solution is better than the current one
(AE<O0), the current solution is replaced by the new one.
In case when the new solution is worse (AE>0), there is
still a chance to move to it. The probability of this move
is given by the Boltzmann probability function:

P(AE)=exp —ATE 4)

The parameter T in Eq. (4) is the temperature used
during the search. In the early iterations, the temperature
is high, which results in high probability of moving into
inferior points and thereby avoiding local minima.
Contrarily, during late stages, the temperature is reduced
to such a level that gives little chance for accepting
worse solutions and consequently the search will finally
converge to a solution that is optimal, at least locally.

The merit with Simulated Annealing is that it does not
require the objective function to be continuous and
differentiable, and it can handle both continuous and
discrete optimization problems. However, setting
adequate parameter values with this method can be
difficult.

3.3. Tabu Search

Tabu search [16] [17] is a metaheuristic local search
algorithm to solve optimization problems, mainly for

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

609

Downloaded by [New Y ork University] at 05:20 22 May 2015

discrete optimization but it has been also used for
continuous optimization [18]. It can be considered as
extension of the hill-climbing search in two aspects as
follows. First there is added driving force to enforce the
local minimization procedure out of a local minimum.
Secondly various memory structures are used to store
historical information which is then utilized to guide the
further exploration of new solutions. For instance, the
tabu list is introduced as short term memory to save
recently transformation over the current solution to
prevent cyclic behaviors during the search. Intermediate
and long term memory is used to intensify and diversify
the search to ensure adequate exploration of the problem
space.

The search starts from an arbitrary point as the current
solution. All the solutions in its neighborhood that are
not in the tabu list or satisfy the aspiration level are
successor solutions and their objective values are
calculated. Then we take the move to the best successor
according to the objective values, and the tabu list is
updated accordingly. Both uphill and downhill moves
are allowed here to give chance to escape from a local
minimum. This process is repeated in a number of
iterations until the termination condition is satisfied.

It is useful to apply tabu search in many practical
scenarios [19] [20], mainly in combinatorial problems. A
main limitation with this technique is that it requires
domain specific knowledge to design suitable aspiration
criteria.

3.4. Gradient Descent

Gradient descent [21] aims to solve continuous
optimization problems. In this technique, in each step
only one solution is generated, and the gradient
information is used to identify the direction of move to
reduce quickly the value of the objective function. The
length of move can be determined by solving a one-
dimensional optimization problem. The golden section
method is often used in gradient descent to find the
optimal size of transition at each step.

Gradient descent is simple and very useful in solving
many optimization problems when partial derivatives of
the object function are available. However, as local
search scheme, this method cannot guarantee the global
optimality of the solutions returned. It should preferably
be combined with a multi-start strategy to increase the
chance of finding the global minimum. The other

A Walk into Metaheuristics

weakness with gradient descent is that, when the current
solution gets close to a minimum solution, the search
will become quite inefficient due to the decreasing
lengths of the moves.

3.5. Newton's Method

Newton’s method [22] attempts to improve the speed of
convergence of gradient descent in the vicinity of a
minimum solution. According to Taylor’s expansion, the
objective function near a minimum X" can be expressed
by an approximate form as:

=X g X HIAX

where H is the Hessian matrix of the second-order
partial derivatives of function f. Eq. (5) also reveals that
the objective function is approximately quadratic in the
vicinity of X'. It follows that we can obtain the
minimum solution X* from a nearby point X in terms of
the following transition rule:

X'=X-H'g (6)

where g is the vector of partial derivatives evaluated at
the current point, and H is the Hessian matrix which is
constant for a quadratic function.

This transition rule indicates that a single move suffices
to reach the minimum X~ when the current solution is
nearby. This shows a substantial improvement of the
convergence speed compared with that of gradient
descent.

Nevertheless it bears noting that globally the objective
function is not quadratic. Hence we need an iterative
procedure to generate a sequence of moves for
progressive refinement. At iteration i, we first calculate
g and H at the current point X; and then we use the
Newton’s method to create the next refined solution as

X' =X-H'g (7)

Generally, the Newton’s method stated above is still a
local approach and it has two drawbacks. First it requires
heavy computation with the Hessian matrix of second-
order derivatives and its inverse. Secondly the method is
only efficient in the neighborhood of an optimum, but

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

610

Downloaded by [New Y ork University] at 05:20 22 May 2015

N. Xiong, D. Molina, M.L. Ortiz, F. Herrera

away from the optimum it may progress very slowly and
even diverge. So our suggestion is not employing the
Newton’s method alone, but in combination with some
other optimization technique and using it at the final
stage.

Quasi-Newton method [23] functions as a variant
approach that avoids direct calculation of the second
order derivatives of the objective function. Instead it
builds the Hessian matrix and its inverse successively by
analyzing solutions and gradient vectors in the
consecutive time steps. The merit of doing this is
partially alleviating the heavy computation burden with
the Newton’s approach. However, Quasi-Newton
method has one disadvantage with its behavior in high-
dimensional problems. Not only larger data matrices
have to be stored and manipulated, but also the error in
the estimation increases with the dimensionality.

3.6 Simplex Descent

A simplex is a geometric object consisting of n+1 points
(vertices) in the n-dimensional spaces. Every vertex of
the simplex corresponds to a feasible solution to the
problem. The initial simplex can be generated randomly.
The main idea is to move the simplex iteratively and
every time replacing the worst vertex of it with a new
better point.

According to the simplex method by Nelder and Mead
[24], the new better points for replacement are generated
through the operations such as reflection, expansion, and
contraction. The worst vertex is first reflected through
the centroid of the remaining points of the simplex. If
the reflection produces a better point, expansion is done
to see whether the objective function can be reduced
further via moving in the same direction. Otherwise, if
the reflected point is not satisfactory, we do contraction
by generating a point between the worst vertex and the
centroid for possible replacement.

The main advantage of the simplex method is that it is a
optimization technique that does not require any
derivative information of the objective function. The
method is robust and efficient with a small number of
design variables but it does not scale well up to
problems with greater dimensionality. As noted in [7],
the efficiency of simplex diminishes when the design
variables are more than five.

4. Multi-Trajectory Based Optimization

All the previous metaheuristics start by creating an
arbitrary initial solution. In function of that initial
solution, the algorithm could be stuck into one local
optimum or another (although simulated annealing
sometimes can avoid local optima). Thus, the selection
of that initial solution has a great influence over the
results obtained. The other possibility is to follow the
multi-start strategy [25] when doing optimization with
trajectory-based approaches. This means that we run the
optimization algorithm multiple times and every time
using a different starting point. The best solution found
in all the runs is treated as the global optimum.

Four well-known approaches in this class will be sur-
veyed here.

4.1. Iterative Local Search

Multi-trajectory optimization has been handled to find
different promising solutions as starting points for local
search. Iterated local search (ILS) [26] aims to perform a
sequence of local searches using different starting points.
It generally works in two successive steps: 1) perturbing
the current local optimum and 2) applying local search
to the modified solution from step 1.

The magnitude of perturbation applied to a current local
optimum, perturbation strength, is crucial for the success
of ILS. On one hand, the perturbation has to be strong
enough to enable the next round of local search to start
from a new attraction basin yielding a new local optimal
solution. On the other hand, too strong perturbation
could imply totally random restart of searches.

4.2. Variable Neighborhood Search

Variable neighborhood search (VNS) [27] is similar to
ILS in the general structure, yet it allows for systematic
change of neighborhood combined with local search
applications. Not only the size of neighborhood but also
its structure can be adjusted when new solutions are
created with respect to a current local optimum in the
next iterations.

VNS provides a useful framework to solve both
combinatorial and real-coded optimization problems. It
has received much research attention and applied in
many fields since its inception. Readers are referred to
the paper [28] for a thorough review of the basic VNS

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

611

Downloaded by [New Y ork University] at 05:20 22 May 2015

algorithm and its extensions as well as the recent
applications.

4.3. Greedy Randomized Adaptive Search
Procedure (GRASP)

Greedy randomized adaptive search procedure (GRASP)
[29], [30] is a multi-start and iterative process for
solving combinatorial problems. Each iteration in
GRASP consists of two successive phases: construction
and local search. The first phase aims to build a feasible
solution to the problem via an adaptive randomized
greedy function. In the second phase, exploration is
performed in the neighborhood of the solution
constructed in the first phase in order to find a possible
improvement. The best solution acquired over all
GRASP iterations is kept as the final result.

Solution construction is performed incrementally by
incorporating one element to the partial solution at a
time. The new element to be added to the partial solution
is selected at random from the Restricted Candidate List
(RCL), which contains a set of best candidates from the
list of all feasible elements. The cardinality of RCL is
determined by a parameter which represents a trade-off
between greediness and randomness in selecting
elements to build a feasible solution. Self-tuning of this
parameter was implemented in the Reactive GRASP
algorithm [31] for creating opportunity to find better
solutions than the basic GRASP method.

4.4. Iterative Greedy

Iterated Greedy (IG) [32], [33] is a metaheuristic that
generates a sequence of solutions by iterating over a
greedy heuristic using two phases: destruction and
construction. The destruction phase removes some
solution component from a previous complete solution.
The construction phase creates a new solution by
applying a greedy constructive heuristic to the result of
previous phase. One a candidate solution is generated,
an acceptance criterion is applied to decide if the new
solution should replace the previous solution.

IG is very closely related to ILS, but there is an
important difference: ILS applies LS to perturb the
current point to escape from local optima whereas in IG
the perturbation is stronger because it is done by a
destruction and reconstruction of the solution.

A Walk into Metaheuristics

IG has been successfully a many combinatorial
problems, like TSP [25], maximum diversity problem
[35], and scheduling, including multiobjective
scheduling [36] and large-scale scheduling [37].

5. Population-Based Optimization

The approaches of this type explore the problem space
via the evolution or replacement of one population of
solutions. They are nature inspired techniques and
probabilistic rules are used to create new solutions from
old ones (or to modify the current solutions). Eleven
well known and consolidated approaches in this category
will be reviewed here.

However, there are other metaheuristics that are not yet
consolidated and hence will not receive careful review in
this section. The majority of them are inspired from
nature, in different aspects. The examples are:
gravitational algorithms [38], [39], [40] inspired from
the solar system; harmony search [41] inspired from
music; bacterial foraging optimization [42] and
artificial immune systems [43] inspired from medical
concepts; Biogeography-Based Optimization Algorithms
[44] inspired from migration of species; variable mesh
optimization algorithm [45] inspired from topology;
glowworm algorithms [46] inspired from insects; cuckoo
search algorithm [47] inspired in the behavior of laying
their eggs in the nests of other species of as well as frog-
leaping algorithm [48] inspired from the frog behavior.

5.1 Genetic Algorithms

Genetic algorithms (GAs) are stochastic optimization
algorithms that emulate the mechanics of natural
evolution [49] [50]. They are attractive to be applied in
engineering optimization tasks due to the two following
reasons. First, a GA evaluates many points in the search
space simultaneously, as opposed to a single point, thus
reducing the chance of converging to the local optimum.
Second, a GA uses only values of objective functions;
therefore they do not require the search space to be
differentiable or continuous.

Essentially, a GA is an iterative procedure maintaining a
constant population size. An individual in the population
is a possible solution to the problem with a string
analogous to a chromosome in nature. At each step of
iteration, new strings are created via applying genetic
operators on selected parents, and subsequently some
old weak strings are replaced by new strong ones. In this

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

612

Downloaded by [New Y ork University] at 05:20 22 May 2015

N. Xiong, D. Molina, M.L. Ortiz, F. Herrera

manner, the performance of the population will be
gradually improved in the evolutionary process.

There are two types of GAs: generational GAs, in which
the new population generated (by offspring and selected
individuals) replace completely the previous one, and
steady-state GAs, in which in each step the offspring can
replace existing individuals into the population.

A classical GA works with binary code, i.e., individuals
in the population are represented by binary strings.
However, binary coding would not be the most
appropriate choice in applications to optimization
problems with continuous spaces. One reason lies in the
matter of resolution, i.e., a binary string is inherently
related to some loss of precision for representing the
continuous value of a variable. The other reason is the
extra job of decoding that is needed when doing fitness
evaluation for a binary string in the population.

The other alternative is to directly adopt arrays of real
numbers as population individuals. Real-coded GAs
have been studied by many researchers and nowadays
become a popular, extended version of GAs for solving
real-valued optimization problems. The interesting
features of real-coded GAs together with their used
mechanisms and genetic operators were discussed in
[51].

5.2 Genetic Programming

Genetic programming (GP) provides a method to
automatically create a computer program from high level
statements of the problem. It was first proposed by Koza
in his book [52] in 1992. Since then GP has attracted
much research interest and it has been found very useful
for knowledge elicitation in machine learning as well as
for solving many real-world problems [53], 54].

The main idea of GP is to evolve a population of
computer programs by utilizing the principle of
Darwinian natural selection and biologically inspired
operators. Hence the general search strategy of GP is
very similar to that of GA. However, GP uses flexible
structured trees rather than strings to represent individual
computer programs in the population. An internal node
in the tree is associated with an operator or function,
while a leaf node represents a constant or variable.

GP starts with an initial population of randomly created
trees. It is important to generate these initial trees with a
uniform distribution to cover different sizes and shapes.
Then the trees in the population are stochastically

selected based on their fitness values for undergoing
genetic operators such as reproduction, crossover and
mutation. Crossover produces offspring trees by
combining subtrees from the parents. Mutation is
implemented by a random change of a randomly
selected part of the tree. A survey of various crossover
and mutation operators designed for GP is given in [55],
[56].

5.3 Evolution Strategies

Evolution Strategies (ES) were proposed by Rechenberg
[57] and further developed by Schwefel. In these
algorithms, a generation of offspring are created by
selection of solutions (and recombination if more than
one parent are involved) and a normally (Gaussian)
distributed mutation. In the original model (p+1)-ES,
two parents selected from the p solutions are combined
and mutated, and the new offspring replaces the worse
parent if it improves that parent. The other model is
(ut0)-ES, in which in each step A solutions are
generated and compete with the parents. Another
different algorithm is (p, 1)-ES, with A > p, in which in
each generation A offspring are generated, and the u best
of them replace the parents, no matter how good or bad
the parents are.

One of the most popular and advanced ES models is
Covariance Matrix Adaptation Evolution Strategy,
CMA-ES [58]. CMA-ES is an algorithm that has proven
to be very effective in continuous optimization. In this
algorithm, the exploration is done by a Gaussian formula
that is adapted during the search. In each step, A
solutions are created according to a Gaussian function
N(m, C) with mean m and covariance C. These A
individuals are evaluated and ranked, creating the index
rank(i)={i-th best solution}, and the p best solutions are
used for guiding the search: m is calculated by an
average with weights (more influence from solution with
better fitness) and C is also adapted, in shape and size,
to enforce the generation of solutions similar to the u
best solutions. In [58] these transformations are
described in detail.

This CMA-ES algorithm can guide the search very
quickly to optimum by its adaptation of parameters, and
it is very invariant to transformations. Unfortunately, its
results strongly depend on the initial parameters (mainly
the initial center of the Gaussian distribution), and it is
not very adequate for high-dimension problems [59]. To
avoid the dependency on the initial solution, several
multi-start algorithms have been proposed that have won

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

613

Downloaded by [New Y ork University] at 05:20 22 May 2015

the real coding competitions in the IEEE Congress on
Evolutionary Computation: IPOP-CMAES [60], winner
in 2005, that increases the population size after each
restart; BIPOP-CMA-ES [61], winner in 2009, that
combines two different mechanisms of restarts, one with
an increasing population size, and the other with a small
population size; and an hybrid algorithm, ICMAES-ILS
[62] combining an ILS with [IPOP-CMA-ES, has won
the competition in 2013.

5.4 Evolutionary Programming

Evolutionary programming (EP) was originally proposed
by Fogel as an evolutionary approach to artificial
intelligence [63]. As it emphasizes the behavior linkage
between parents and offspring, genetic recombination is
not carried out in the evolutionary process. EP has now
been applied to solve many numerical and combinatorial
optimization problems.

In EP, offspring are created by mutating individual
solutions in the current population according to a
probability distribution. Then selection is made from the
mutated and current solutions to form to a new
generation. This selection is usually made through a
stochastic tournament procedure.

Further, mutation in EP can be performed in different
ways. In the standard EP, a parent solution is mutated by
random numbers generated from a normal probability
distribution. Adaptive scheme was developed in R-
meta-EP [64] (an extension of the standard EP) to adapt
both standard deviation and covariance matrix of the
normally distributed mutations. Yao and Liu proposed
another EP algorithm, called Fast Evolutionary
Programming [65], by wusing Cauchy probability
distribution in replacement of normal distribution to
produce offspring in the larger neighborhood. Later,
Levy probability distribution was adopted in [66] as a
generalization of the Cauchy-based mutations to achieve
higher variation and diversity of the search.

5.5 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) [67] [68]
differ from most other EAs in that evolution from one
generation to the next one is not done by combination of
previous solutions, but by estimating the probability
distribution of the fittest individuals, and then sampling
the generated model to generate new solutions. Thus, the
generation of new solutions is done according to the
probability distribution of best solutions, thereby
avoiding the use of combination operators. However,
estimating the probability distribution associated with

A Walk into Metaheuristics

the set of the individuals selected from the previous
generation constitutes a hard work to perform.

Several EDA approaches have been developed, in
function of the probabilistic models used and the
methods employed to learn them. They could be divided
into: univariate EDAs, which assume independency
between the variables, like PBIL; bivariate EDAs, which
take into account some pairwise interactions, like
MIMIC; and multivariate EDAs, which consider more
complex interactions, like Bayesian Optimization
Algorithm, BOA [69]. In [70] and [68] there are more
details. EDAs have been applied successfully to several
types of problems [71], [72].

5.6 Particle Swarm Optimization

Particle swarm optimization (PSO) algorithms [73] [74]
mimic the flocking behaviors of animals in their
movement. Similar to GAs, PSO algorithms work with a
population of particles, in which each particle contains a
feasible solution to the problem and its velocity. The
particles move around in the search space to improve
their fitness (objective values) iteratively. The movement
of each particle is determined in terms of both its best
position in the history and also the best position known
so far from all particles. In view of this, the speed of a
particle at iteration k+1 is updated as:

_ kK o_
Ve “W Ve (Ppb Xk)+

+C2'r2'(P§b_XK)

®)

In Eq. (8) P, and P, denote respectively the best
position of the particles and the best known position
from all particles, w is the momentum, X is the position
of the particle at iteration k, »; and r; are two randomly
generated positive numbers, and ¢, and ¢, are the
parameters used to balance the individual and social
influences. Although it is a metaheuristic originally
designed for continuous optimization, other discrete
versions have been proposed [75].

The Comprehensive Learning PSO, CLPSO [76], was
proposed as a variant of the standard PSO. Instead of
using the best known position as in the original PSO, it
uses the best within a group of P,. Its equation is as
follows:

d _ d d
Vier WVt P g~ X)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

614

Downloaded by [New Y ork University] at 05:20 22 May 2015

N. Xiong, D. Molina, M.L. Ortiz, F. Herrera

where Ppegiag) defines which particle’s P, the current
particle should follow. This variation is very popular by
its good results in many problems.

5.7. Differential Evolution

Differential evolution (DE) [77] [78] is a stochastic and
meta-heuristic technique that has been developed for
solving optimization problems with real parameters. It
provides a powerful tool for searching for optimal
solutions in high-dimensional spaces that are nonlinear,
non-differentiable, non-continuous, and containing
multiple local optima. DE is similar to GAs in the sense
that both are evolutionary, population-based algorithms.
But DE algorithms differ from GAs in the way
evolutionary operators are manipulated to produce new
child solutions. The main loop of DE algorithms is
briefly explained in the following.

A DE algorithm maintains a population of real-valued
parameter vectors and works iteratively. Each iteration
starts with mutation, in which three distinct parameter
vectors are randomly selected for every population
member. The weighted differences between two
parameter vectors are added to the third parameter
vector to get the perturbed vector, as indicated in Eq.
(10).

V=X +F (X ,— X, (10)

Then crossover is done to combine the population
member and the perturbed vector to yield a new trial
vector. Every parameter in the perturbed vector has a
certain probability to enter the trial vector, following Eq.

(11).

[d;0,1|1<R
] zfran d{ ’ } (1)
otherwise

Finally the trial vector U; replaces the old population
member X; if it has a lower objective value.

Because DE initially was too sensible to its parameters,
several adaptive versions were proposed. SaDE [79] and
JADE [80] are the most popular and successfully DEs.
SaDE adapts automatically the parameters F' and CR

during the search, obtaining very good results in
continuous optimization. JADE combines adaptation
with an external memory of solutions to guide the search
for results, showing an efficient algorithm for
multimodal optimization.

DE attains increasing popularity in engineering
applications due to its attractive features such as fewer
running parameters to specify, ease in programming,
high efficiency, as well as strong global search ability. A
comprehensive review of various DE algorithms
together with associated operators is given in [81].

5.8. Artificial Bee Colony Algorithms

Artificial Bee Colony algorithms (ABC) were recently
proposed as a new group of metaheuristic search algo-
rithms inspired by the behavior of a bee colony [82].
These algorithms use three concepts from bee colonies:
Food sources, Employed foragers and unemployed for-
agers. There are different food sources, and the value of
each food source is different, represented by a quantity
(They are the solutions to optimize). Employed foragers
are associated with a particular food source which they
are exploiting, thus they are responsible for the exploita-
tion of current solutions/food source. Unemployed for-
agers are looking out for a food source to exploit. There
are two types: scouts, searching randomly the environ-
ment for new food sources, and onlookers, that establish
a food source by the information shared by employed
foragers.

Although this type of algorithms is very recent, it is
rather popular and presents an increasing activity of re-
search in this category. A good and very actual review of
ABC algorithms is given in [83].

5.9. Memetic Algorithms

Memetic algorithms (MAs) [84] [85], or Memetic
Computing, are population-based metaheuristic search
methods inspired by the principle of natural evolution
and Dawkin’s notion of memes capable of local
adaptation. MAs are hybridization of metaheuristics and
local search methods. According to the idea of
Lamarckian learning, local search can be done to
improve the found solutions, focusing the population
algorithm on the exploration of the domain search. In
real-world problems, local search can use information
about the problem [86], however there are well-known
local search algorithms that can be applied without any
additional information [87].

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

615

Downloaded by [New Y ork University] at 05:20 22 May 2015

As hybridization of evolutionary algorithms and local
search, the aim of MAs is to exploit the best search
regions gathered by global sampling with the population
algorithm. Hence an important demand for MAs is the
synergy between the exploration abilities of the
population algorithm and the exploitation abilities of the
local search [88].

For discrete or combinatorial optimization, MAs have
proven to be the best alternative in problems like TSP or
QAP [89]. In these problems, MAs tend to combine
searches for exploring the entire decision space and
searches which focus on portions of the decision space.
Local search in MAs for discrete optimization performs
an intensive exploitation of the search space using
information about the problems, enhancing the
performance. In [90] there is a survey about
hybridization in combinatorial optimization.

For continuous MAs it is very important to decide to
which and how long the local search would be applied.
The local search method can be randomly selected [87]
but the intensity is a difficult issue. The intensity can be
applied in function of the solution. It can be made by
levels [91] or applying the local search several times
over the same solution, creating LS Chaining [92].

MAs are especially interesting in continuous
optimization because they have shown to obtain very
good results. During the last years, in the IEEE
Conference on Evolutionary Computation, CEC, many
special sessions have been organized. In these special
sessions the organizers give the benchmark and the
experimental conditions, to allow comparing the results
of the different proposals. In these special sessions on
continuous optimization, the majority of the best
algorithms were MAs. In CEC2013 [93] one winner was
a multi-start algorithm, NBIPOPaCMA [94], but the
other two were MAs: ICMAES-ILS [95] combining an
ILS with IPOP-CMA-ES as global search algorithm and
DRMA-LSCh-CMA [96], using local chaining and a
new niching technique. In CEC'2014 [97], there are
again two MAs among the three winner algorithms:
GaAPADE [98], the first winner, a hybridization of an
GA, an DE and an Evolutionary Strategy; L-SHADE
[99], a hybridization of SHADE with LS and a reducing
population (SHADE without LS got the fourth place in
CEC’2013, clearly the LS improves the results). MVMO
[100] was the only non-MA among the winners in
CEC’2014.

A Walk into Metaheuristics
In [101] there is a good review of MAs, for more details.

5.10. Ant Colony Optimization

Ant colony optimization (ACO) [102] [103] mimics the
behavior of a colony of ants in searching for food. Prior
to applying ACO, the optimization problem has to be
transformed into the problem of path finding on a graph.
Then a group of ants work collectively to find a shortest
path on the graph by pheromone communication during
path formation [104].

An ant builds its path incrementally. It starts from a
randomly selected vertex and then chooses an edge to go
to the next vertex. The choice of an edge is stochastic yet
its probability is decided by the pheromone values and
heuristic information associated with the edge. The most

well-known rule for determining the selection
probability for edge c; is given in Eq. (12)
a B
Tii Nij
— y 1y
P(c,)= (12)

> T

where S; denotes the set of feasible edges immediately
after the current partial path, 7; and #; are the pheromone
and heuristic values respectively associated with edge ¢,
o and f are the parameters controlling the relative
importance of pheromone versus heuristic information.

Further, when the ants completed their paths, the quality
of their solutions is used to update the pheromone values
of the edges. These updated values are then utilized by
the ants in the next iteration to build new paths. This
procedure continues until the maximum iteration number
is reached or all ants tend to produce similar paths (i.e.
the algorithm has converged).

In [106] there is an interesting review of ACO
algorithms tackling different engineering domains.

5.11. Scatter Search

Scatter Search [107] [108] is an optimization algorithm,
especially applied in combinatorial optimization, but it
can be applied in continuous optimization as well. It
operates on a set of solutions, the reference set, that are
combined to create new ones (using the subset of the
best solutions as parents to guide the search). It also uses
several techniques to enforce the exploration and a local

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

616

Downloaded by [New Y ork University] at 05:20 22 May 2015

N. Xiong, D. Molina, M.L. Ortiz, F. Herrera

search method is often employed as a mechanism for
improvement.

Path relinking is a very important concept in scatter
search. The idea is to consider the path between
solutions in terms of moves that separate both solutions.
Thus, based on two solutions, a number of new
intermediate solutions can be generated following the
path that connects them: starting from an initiating
solution, several moves are performed to reduce the
distance to a guiding solution. The role of initiating and
guiding solutions are interchangeable. This technique
can produce better solutions, and several other
combinatorial algorithms, like GRASP [109] or Tabu
Search [110] can also be incorporated here to further
improve the results.

6. Current Important Issues

Various (basic) metaheuristic techniques have been
addressed in the preceding sections. They target at the
optimization problems with only one objective function
and only one global optimum. However, more
challenging situations will be encountered in real
applications. One is due to the multi-modal nature of
many practical problems that contain several global and
local optima to identify. The other is caused by multi-
objective optimization tasks that entail discovering a set
of trade-off (Pareto-optimal) solutions. Moreover, high
computational cost is often needed when applying
metaheuristics, thus it is would be very beneficial to
have parallel version of the metaheuristic algorithms to
be able to run in in multiple computers to locate good
solutions as fast as possible. Multi-modal optimization,
multi-objective optimization, as well as parallel
metaheuristics represent three important issues for the
research community, which will be carefully discussed
in the remaining of this section.

6.1 Handling Multi-Modal Optimization Problems

The objective in multi-modal optimization problems is
to find a number of global or local optima. One strategy
to achieve this is to restart the optimization process
many times, intending to obtain a new optimum at each
restart. Unfortunately, one could possibly obtain the
same result from a previous search. The other way is to
locate a set of different optima all together from a single
optimization process, which appears more attractive and
useful and will be addressed in this paper.

Population-based optimization techniques maintain and
deal with a set of possible solutions simultaneously
during the search process. Nevertheless they were
originally designed to locate a single global optimum
rather than multiple optima. This limitation can be
overcome by some numerical techniques, commonly
known as niching methods. A niching method modifies
the behavior of a traditional (population-based)
algorithm to maintain solutions in different areas of the
domain search to avoid convergence to only one area.
That imply a greater diversity of the population for
support of discovery of multiple optima from a single
run of the algorithm.

6.1.1 Niching Methods

The concept of niching is inspired from the nature in
which organisms can only survive in the regions to
which they are specially adapted. In optimization
algorithms, niching methods are used to maintain
subpopulations in a population such that convergence to
multiple optimal solutions is possible. The commonly
used niching methods include crowding, fitness sharing,
clearing, speciation and clustering, which will be briefly
introduced below.

De Jong [111] proposed the original crowding method,
in which an offspring competes with the most similar
individual from randomly sampled individuals from the
population. This can be used to select similar solution
for replacement, like deterministic crowding [112], or to
select randomly several solutions to compare and choose
one of them, like the restricted competition selection
method, RTS [113]. The number of solutions compare is
called crowding factor.

The fitness sharing method was introduced by Holland
[114] and Goldberg & Richardson [115]. Instead of
using directly the fitness f of an individual, it uses the
modified version f; defined as follows:

___f()
2. Sim(d;) (13)

j=1--N

fsli)

where f(i) and f,(i) are the original and modified

fitness functions respectively and Sim is a similarity
function defined as

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

617

Downloaded by [New Y ork University] at 05:20 22 May 2015

d. |

. 1-|—L| ifd.<o

Slm(dij): Gshare f ij share (14)
0 otherwise

where d is the distance between individuals iandj, N is
the population size, a is the sharing level and gar is the
sharing radius which specifies the threshold of distance
for two individuals to have nonzero similarity. It is very
sensitive to the sharing radius.

Clearing method [116] attempts to select only the best
individual while discarding the inferior ones in each
niche. This method removes the solutions that are too
close (using a minimum distance among solution, called
niching radius) to a better solution. This leads to higher
diversity of the population since a number of similar
solutions are discarded in a clearing procedure, but it has
the disadvantage of been very sensitive to the niching
radius.

Speciation has been commonly used in multimodal
optimization tasks to maintain diversity and stable
niches over generations [117, 118]. It is realized by
dividing the population into different species according
to similarity among its individuals. Each species is
formed around the species seed that has the highest
fitness value among all the species members. All
individuals that fall within the species radius from the
species seed are considered to belong to the same
species. The main disadvantage of the speciation method
lies in the difficulty of selecting a proper value for the
radius parameter.

Single Linkage Hierarchical Clustering is a technique to
help building subswarms for particle swarm optimizer in
a dynamic environment [119]. Compared with k-means
clustering [120], it can adaptively adjust the number of
subswarms needed to automatically identify the
promising search region for each subswarm.

6.1.2. Niching Optimization Algorithms

Niching methods have been widely applied with the
population-based optimization techniques to ensure
maintaining solutions in different areas of the domain
search, creating a high diversity of the population to
support searching multiple optimal solutions
simultaneously. Next we discuss some of the works done
in this direction.

A Walk into Metaheuristics

Initially, the niching techniques were used with genetic
algorithms creating sharing genetic algorithm and
clearing-based genetic algorithm [121]. Unfortunately,
both of them have a strong dependency of the niche
ratio. Lin and Wu [122] presented the use of a clustering
technique to identify the radius of each niche before
fitness sharing is performed. In [123], a dynamic fitness
sharing is proposed that estimates dynamically the niche
ratio considering the distance between solutions. There
have been proposed also adaptive hierarchical niching
technique [124] capable of obtaining good results [125].
Another option that gives extraordinary good results is
to use a hybridization of different populations, each one
with a different niching technique (or parameter) [126].

Perez, Posada and Herrera [127] made an empirical
study to compare different niching genetic algorithms in
terms of efficacy, multi-solution based efficacy (the
capability to find multiple optima) and diversity in the
final set of solutions. The results of this study
demonstrated that a niching GA having a certain type of
replacement process performed much better than its
counterpart without including that replacement.

Although initially these techniques were used with GAs,
several niching DE algorithms have been proposed to
enhance the diversity among population members in
tackling multi-modal problems. Thomsen [128] studied
the integration of the fitness sharing scheme and the
crowding mechanism with DE, revealing that the
crowding DE was superior to sharing DE when the
crowding factor was equal to the population size. The
crowding concept is also adopted in the crowding-based
DE algorithm proposed in [129], where an offspring
replaces the most similar individual from the population
if the fitness value of the offspring is better. Besides, a
modified fitness sharing DE algorithm was introduced in
[130] for comparison among various DE variants.

Species-based algorithms utilize information from
different niches of the old population to create a new
generation with good diversity, different species to
acquire localized convergences towards multiple global
optima. The species are determined using species radius.
This technique have been used with genetic algorithm
[131] DE [132], or SPSO [133]. The problem with these
algorithms is that it is not a trivial task for users to
specify proper values of this parameter in real
application.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

618

Downloaded by [New Y ork University] at 05:20 22 May 2015

N. Xiong, D. Molina, M.L. Ortiz, F. Herrera

The introduction of DE gives the possibility of
developing new niching techniques. Qu, Suganthan and
Liang [130] proposed a neighborhood-based mutation
strategy for niching DE algorithms. Following this
strategy, both the base individual and individuals for
generating difference vectors are selected from a local
neighborhood. This encourages members of the
population to converge towards the optimal points in
their local niches. Beneficially, the neighborhood size
for mutation is easy to specify.

The use of an external archive can be used to maintain
all the solutions found so far and it also encourages
continuous search in unexplored
initialization for offspring already in the archive. JADE
[80], using an external memory, in conjunction with the
adaptation of its parameter, obtains very good results.

areas via re-

In 2013, an algorithm was proposed using an alternative
method for mutation, DE/nrand/1 [134], that was one of
the winners in the niching competition in CEC2013
[135]. It uses a scaled difference of two random
population members to mutate the nearest neighbor
individual, in combination with an external archive to
guide the search, and a restart mechanism. Another
winner, DRMA-LS-CMA [96] proposed the idea of
creating the niches dividing the domain space into
hypercubes, to avoid the computational cost of the
Euclidean distance.

In PSO there have been proposed also several niching
algorithms. The main idea of niching PSO algorithms,
like NichePSO [136], is to update the position of a
particle with the influence from the best particle in its
neighborhood rather than the best one from the whole
swarm. Hence, Eq (8) for particle speed updating in the
original PSO is adapted to the following form:

Vi =WV, e[PR X, |+

+c2-r2(lbest(1<]—-)(k)

K+1

(15)

where /best(k) denotes the best position in the
neighborhood of the current particle at iteration k.

The niched ant colony optimization algorithm was
addressed in [137], with the division of the ant colony
into a set of distributed niches. Each niche-colony had

its own pheromone matrix in evolving towards an
optimal solution. The multiple pheromone matrices
connected with different niches led to higher diversity
among individual solutions in comparison with standard
ant colony algorithms.

CMA-ES niching algorithms [138, 139] were proposed
with the intention to employ standard CMA-ES locally
for different portions of the population with each
subpopulation carrying and updating its own covariance
matrix and step size. In [138] the niches were built using
individual niche radius that was adapted for each
individual along with its adaptive strategy parameters.
Following this idea, NEA2 [139] adopted the nearest-
better clustering algorithm as a radius-free approach to
identifying different niches of the search space to run
CMA-ES locally. This algorithm was the winner of the
niching competition on CEC’2013 [135].

Another important trend is the hybridization combining
DE and PSO. Initially one of them was used as a LS
method to the other or as a perturbation method to avoid
premature convergence. But, nowadays there are more
models using other cooperation techniques such as co-
evolution. Readers can find a review of this type of
hybridization in [140].

In [141] there is an interesting review of evolutionary
algorithms for multimodal optimization.

6.2. Handling Multi-Objective Optimization Tasks

In complex engineering problems there is often more
than one objective to consider for deciding optimal
solutions. Generally, a multi-objective optimization
problem (MOP) can be stated as

Minimize F(X)=(f1(X).f5(X), f(X)]
Subject to X=(x1,x2,---,xn)€£2

where X=(xi, X, ..., Xa) 1S the vector of design variables,
Q denotes the region of feasible solutions in the
decision (variable) space, and F(X) is an objective vector
containing a set of real-valued objective functions fi, f,
I 5

Let be two feasible X | X,E€2 solutions, X is said to

(X,)<f.|Xx,
dominate X, if and only if fl(Xl)_f’(er) for any

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

619

Downloaded by [New Y ork University] at 05:20 22 May 2015

i€1,2,+,m| and fj(X1)<fj(X2) for at least one

index je{l’2’“"m} . A solution X*€Q is Pareto-
optimal if there is no other X€Q such that X dominates
X* The objective vector F(X*) of a Pareto-optimal
solution X* is called a Pareto optimal objective vector.
The set of all Pareto-optimal solutions is called the
Pareto set, and the set of all Pareto optimal objective
vectors, as shown in Fig. 1, is termed as the Pareto front
[142].

°
@
®
<C 'o
g o
5 °
Q % e
0
o ®e
Yo
® []
Z' pareto Front ®® @ >

objective B
Fig. 1. Pareto front with two objectives

MOPs in real applications can have many or an infinite
number of Pareto optimal solutions. It is important to
present a manageable number of them to a decision
maker for the final choice. The selected Pareto optimal
solutions should yield evenly distributed samples in the
objective space, thus offering a good approximation of
the Pareto front.

As for discovery of Pareto optima, there are basically
three categories of methods: one is based on the
aggregation of multiple objectives into a scalar function;
other is based on decomposition to handle solutions of
the subproblems at the same time; and the third uses
dominance relation among solutions. They will be
outlined in subsections 6.2.1, 6.2.2 and 6.2.3
respectively.

6.2.1. Optimization Based on a Scalar Function

In the weighted sum approach [142], every objective is
assigned with a weight in terms of its importance and the
overall function is built by a weighted average of the

A Walk into Metaheuristics

objectives. Let W:(W1 e ',Wm) be a weight vector

m
with w>0Vi=1,...,m and > w=1, the
i=1

combined function to optimize is formulated as follows

g,(XIW)=2, wf[X] (16)

i=1

Obviously, any solution that minimizes the overall
function in Eq. (16) is a Pareto-optimal solution to the
original MOP. This means that a set of Pareto-optimal
solutions (for the MOP) can be acquired by optimizing
the function in Eq. (16) under different weight vectors.
However, when the Pareto front is not convex, not all
Pareto optimal solutions can be found by using this
method.

In the Tchebycheff approach [142], the overall objective
function is formulated as

*
1

g2<X|W,z*> :maxi|wi(fl.('X]—z.

} a7

where Z' =
characterized by the
z; =min{f,|X | XeQ)Viel1,---,m .

* *
zZ 1,---,Zm) is a reference point, which is

following expression

Minimization of the function in Eq. (17) with a specified
weight vector gives rise to a Pareto optimum for the
original MOP. Different values of the weights can lead to
different Pareto optima. Further, every Pareto optimum
is obtainable by seeking the best solution for Eq. (17)
with a set of properly defined weights. One weakness
with this approach is that its aggregation function is not
smooth for a continuous MOP.

As stated above, good samples of the Pareto set can be
created by processing the aggregated overall function
with diverse weight vectors. A particular set of weights
adopted in the overall function corresponds to a sub-
problem of the original MOP. Traditionally, such sub-
problems for the MOP are solved in a sequential proce-
dure. However this sequential manner is not so attractive
in practice due to its low efficiency.

The population-based optimization approaches have the
potential to be adapted for dealing with multiple sub-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

620

Downloaded by [New Y ork University] at 05:20 22 May 2015

N. Xiong, D. Molina, M.L. Ortiz, F. Herrera

problems of the MOP at the same time. The multi-objec-
tive genetic local search [143], [144] was developed to
simultaneously optimize all combinations of multiple
objectives via either the weighted sum approach or the
Tchebycheff approach. It generates a random weight
vector at each iteration to construct the aggregated func-
tion for fitness evaluation.

6.2.2. Optimization Based on Decomposition

Zhang and Li [145] proposed an evolutionary algorithm
based on decomposition (MOEA/D) to solve the
subproblems of the MOP at the same time. The
population consists of the best solutions found so far for
each subproblem. In the evolutionary process, the
solution for each subproblem is improved by utilizing
information only from the neighboring subproblems,
which greatly reduces computational complexity of the
algorithm. This work also obtained the Outstanding
Paper Award of IEEE Transactions on Evolutionary
Computation in 2010.

Since decomposition may result in tasks with different
computational difficulties, different amounts of
computation could be carried out on different
subproblems, as it was done in MOEA/D-DRA [146].
That algorithm was the winner for unconstrained
problems in the Competition for Multi-Objective
Evolutionary Algorithms in CEC'2009 [147].

In recent years, other extensions of the MOEA/D
algorithm have been proposed, such as hybridization of
MOEA/D with DE [148] and with ACO [149]
respectively. Besides, parallel implementation of the
MOEA/D algorithm was developed in [150].

6.2.3. Optimization Based on Dominance Relation

The third category of approaches to MOPs attempt to
search for a diverse set of Pareto optimal solutions by
directly considering multiple objectives rather than
aggregated evaluation functions. In principle,
population-based optimization techniques can serve well
this purpose since they do exploration in parallel and can
handle multiple objectives at the same time. For
instance, multi-objective genetic algorithms (see
examples in [151], [152]) were developed and
demonstrated as capable of guiding the search in light of
multiple objective values within a single running of the
evolutionary process.

However, conventional population-based techniques
were originally designed for optimizing a single fitness
function. They have to be modified to exploit solution
dominance and other relevant information in the
selection operator. As one of the earliest efforts in this
direction, Zitzler and Thiele [153] proposed the Strength
Pareto Evolutionary Algorithm (SPEA), in which the
fitness of an individual in the population is assigned
according to the archive members that dominate it.
Later, this algorithm was further developed into an
enhanced version called SPEA-II [154]. The SPEA-II
algorithm improves the original one in the following
aspects. First, evaluation of an individual considers not
only the individuals dominating it but also those
dominated by it. Second, density value is incorporated
into the fitness assessment to enable more precise
guidance of search. Third, a better archive truncation
method is used to preserve boundary solutions.

In the non-dominated sorting genetic algorithm (NSGA)
proposed by Srivinas and Deb [152], population
members are first classified according to dominance
relation into different levels of rank, and individuals in
the same rank are assigned with an equal fitness value.
Then all such fitness values are modified using a fitness
sharing method to encourage an even selection of
parents for creation of offspring. The Fast Non-
dominated Sorting Genetic Algorithm (NSGA-II) [155]
is based on NSGA but it has two major improvements
over the original one. First, it employs a fast non-
dominated sorting algorithm to speed wup the
classification of population members into different
ranks. Second, it introduces the crowding-distance
metric to enable the comparison and selection of
individuals at the same rank to enter the next generation.
In [156] and [157] a new extension was proposed,
NSGA-III, focused on many objectives optimization.

NSGA-III differs from previous one the
maintenance of diversity among individuals that aided
by supplying and adaptively updating a number of well
spread reference points. In this way it is more adequate
for optimization with more objectives than NSGA-IL
NSGA-III has been successfully applied for box
constraints and general constraints problems.

The dominance relation is also useful for PSO
algorithms to select global and local best particles in
face of multiple objectives. Different selection strategies
have been proposed for this purpose. In [158] the
tournament niche method was used to decide the global
best particle, and the local best particle was identified

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

621

Downloaded by [New Y ork University] at 05:20 22 May 2015

according to Pareto-dominance. The other interesting
strategy is to stochastically choose the global best
particle from the non-dominated solutions using density-
based probabilities [159].

The Pareto Differential Evolution Approach was
proposed in [160], which calculates the non-dominance
rank and crowding distance for the combined population
consisting of both individuals from the current
population and newly created offspring. Then the best
individuals are selected for entering the next generation
in terms of the non-dominance rank of individuals as
well as the diversity metric (crowding distance) for
solutions on an identical rank. Xue et al. [161] did a
similar work in using the non-dominance rank and
crowding distance to distinguish individuals in the
combined population. Further, they converted non-
dominance and diversity information into fitness scores
of solutions to guide the choice of the most competent
individuals into the next generation.

Robic and Filipic [162] developed a DE for MOP, in
which the treatment of a new solution depends on the
result of comparison with its parent solution. The new
solution immediately replaces its parent if it dominates.
Otherwise, if the parent solution dominates, the new
solution is discarded. In case when both solutions are not
dominated, the new solution is added into the current
population without replacement of its parent. After
processing all new solutions, the whole population is
truncated in terms of the non-dominance rank and
crowding distance to select a fixed number (population
size) of individuals to survive in the next generation.
Compared with the work in [160], the main merit of this
algorithm lies in the immediate replacement of an
inferior parent solution by a new stronger one such that
the new stronger solution can take part in producing
other new solutions. However, discarding dominated
solutions in the algorithm could cause loss of
information (good solutions) when evolving a set of
solutions from one generation to another. To overcome
this weakness, Ali et al. [163] proposed an improvement
scheme that maintains a secondary population to store
those candidate solutions that are temporarily excluded
from the current population. Every newly created
solution enters the secondary population if it does not
dominate the parent solution. Otherwise, when the new
solution dominates the parent solution, the new solution
is added into the current population while its parent is
moved to the secondary population. Finally, the

A Walk into Metaheuristics

individuals of the new generation are selected from the
mixture of the current and secondary populations
following the same selection criterion as that used in
[160].

Another Pareto-frontier differential evolution algorithm
was presented in [164], which suggests selecting the
parents for mating from the set of non-dominated
solutions. The Pareto-adaptive € -dominance was used
in [165] for updating the external archive and saving
extreme solutions for a multiobjective DE algorithm.
The parents in this DE algorithm are selected
alternatively by a random scheme and an elitist scheme.

6.3. Parallel Metaheuristics

The majority of implementations of metaheuristics are
run sequentially, even when parallel-based algorithms
search in parallel. However, the introduction of parallel-
ism can reduce the search time and improve the quality
of the solutions, specially nowadays when every com-
puter has several processors. There are several specific
reviews about parallel metaheuristics [166], [167],
[168], and about the parallel version of certain algo-
rithms [169], [170]. In this subsection we are going to
make a brief survey of them, which readers can consult
for more details.

For trajectory and multi-trajectory metaheuristics, there
are mainly three different ways of incorporating paral-
lelism in the literature: parallel evaluations of neighbors
(or new solutions), in which the behavior of the algo-
rithm is the same; parallel evaluation of a single solu-
tion, especially interesting in very time-consuming
evaluations; and parallel multi-start models in which
several trajectory-based methods are running at the
same time [171]. The last one is the only one among
them that can offer different results than sequential im-
plementation of the algorithm. The searchers can be ho-
mogeneous, or heterogeneous, share information or not,
there are many possibilities.

For population-based algorithms, there are two strate-
gies, to parallel the operations over the same population
(evaluation, Euclidean distance calculation, etc.) or split
it into several subpopulations, which is called island
model [172]. The island model is able to tackle niching
problems, and usually there is a migration policy to
share information for improving the search, such that
results of one subpopulation (as the best current solu-
tion) could guide the other subpopulations. An extreme
model is called cellular method [167], designed for
high-parallelism in which one solution can only com-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

622

Downloaded by [New Y ork University] at 05:20 22 May 2015

N. Xiong, D. Molina, M.L. Ortiz, F. Herrera

municate with its neighbors. Sometimes these models
can be combined.

6.3.1. Island Model and Cellular Evolutionary Algo-
rithms

The island model is one of the most used parallel mod-
els. In them, the population or swarm is divided in sev-
eral subpopulations/subswarms, as shown in Fig. 2.
Originally it was proposed for Genetic Algorithms
[172], this model is now also used in DE [173][174]
and parallel PSO [175].

Fig. 2. An island with subpopulations/subswarms
In this model, each subpopulation evolves in parallel
with the others, thus the algorithm can be run in differ-
ent processes, each of them working on a different sub-
population. The best improvement could be obtained
with a different processor for each subpopulation, but it

can also be used with less processors than subpopula-
tions.

These subpopulations shares information for guide bet-
ter the search. This sharing of information implies many
decisions: the topology (the connections between is-
lands) [176], the frequency and which solutions should
be exchanged [177], and how the new solutions should
be integrated into the population.

The above model produces distributed evolutionary al-
gorithms, dEAs, or coarse-grain, in which each solu-
tion can communicate with all other individuals in the
same subpopulation. There are also fine-grain algo-
rithms or cellular evolutionary algorithms, cEAs, in
which individuals can only interact with their neighbors
in the reproductive cycle where the variation operators
are applied. This reproductive cycle is executed inside
the neighborhood of each individual and consists in se-
lecting parents among its neighbors, applying some op-
erators to them, and replacing the individual by the cre-
ated offspring following a given criterion (usually when

it is worse than the new one). These algorithms based
on the Cellular Model (as shown in Figure 3) can be
parallelized in more processors than the original island
model.

6.3.2 Technology for Parallel Metaheuristics

The design of a parallel algorithm cannot be completely
separated from the hardware architecture in which the
algorithm is going to be implemented. Flynn [178] pro-
posed the division in several categories, in which the
more relevant are: multiple instruction-multiple data,
MIMD, in which several autonomous processors are
used, a multi-core system or a distributed system; and
single instruction-multiple data, SIMD, in which the
same instructions can be run at the same time over sev-
eral data.

Fig. 3. Cellular Model where each solution is only
connected with its neighbors.

The MIMD model is implemented by a multi-processor
architecture. One popular option is the use of multi-core
systems because they allow using shared memory for
the data, a very efficient and simple way of communi-
cation. Another option is using autonomous computers,
in which there is no shared memory and the information
has to be transmitted by the network. These two sys-
tems can be used together, which is very usual nowa-
days.

The parallel programming of multi-processor system is
the most classic model. One can use solution ad-hoc us-
ing TCP sockets (or any messaging library) to commu-
nicate different systems, and the utilities from the oper-
ative system (threads) for multi-core communications.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

623

Downloaded by [New Y ork University] at 05:20 22 May 2015

However, it could be difficult to reuse the solution. An-
other better option is to use a higher library for develop-
ing parallel computing applications that allow one to
concentrate more on the programming, and less into the
communication. The most popular standard for scien-
tific computation in distributed system is the MPI stan-
dard with several implementations [179] and OpenMP
[180] for shared memory systems. Also, one can use
some of the frameworks described in Section 7.

The SIMD model is implemented in systems in which

the same instruction can be broadcast to all processors,
applying the same operation to different data. Requiring
fewer instructions to process a given mass of data,
SIMD operations are very efficient in processing data,
which is very important in many mathematical opera-
tions.

The most popular way of programming in SIMD is by
Graphics Processing Units (GPUs). These elements in-
cluded in the majority of current graphical cards were
designed for improving the complex calculations re-
quired for image processing for modern video-games.
However, they can be used for general purpose algo-
rithms. General purpose computation on GPUs
(GPGPU) [181] allows algorithms to perform parallel
computations over different data using the general pur-
pose computing capabilities of modern GPUs. Recently,
several parallel EAs for optimization using GPUs have
been published, such as PSOs [182] or DEs [183][184].

The GPGPU computation discipline has been a very ac-
tive research topic in the last years, especially since
popular computing frameworks like CUDA or OpenCL
were introduced. These platforms have allowed for us-
ing the great computing capabilities of modern GPUs
for general purpose problems by using extensions of
high level programming languages. CUDA is the most
popular, it is the platform provided by NVIDIA which
allows for developing applications on popular NVIDIA
GPUs using a subset of C/C++ (Fortran and other pro-

A Walk into Metaheuristics

gramming languages are also supported) with some ex-
tensions that provide access to the GPU.

6.2.3 New models of Parallelism

In the beginning, the well-known structure master-slave
was used, in which one central processor carried out the
task with the help of a group of slave processors that
run several actions in parallel. In this model the number
of slaves could be increased, but the master is the bot-
tleneck. Another alternative are distributed systems, in
which all computers run the algorithm with a small
population with frequent exchange of individuals be-
tween them, following the island model. In this model,
all computers have the same responsibility. However,
the communication between them requires a topology.
This topology limits the growth of the model, creating a
static communication structure that should be adequate
for the hardware resource available for an efficient run
(i.e. a processor for each subpopulation).

Fig. 4. Distributed systems.

In recent years, inspired by the new networks possibili-
ties, new models have arisen. One of them is inspired
from the peer-to-peer platforms, P2P. In a P2P system
there is no centralized component, each component
shares information only with its neighbors, and the
number of components is not defined a-priori. But
there are unstructured peer-to-peer networks in which
the number of nodes can change dynamically [185].
This model and technology have obtained good results
in very scalable systems. This technique can be used in
conjunction with a parallel EA, to create peer-to-peer
EAs [186]. In these models, because there is a static
neighborhood, selection is locally made using the cur-
rent neighborhood. P2P EAs are a promising approach
to hard optimization problems with a greater scalability
[187].

Another new model is Cloud Computing [188]. In this
model there are available remote resources available on
demands, allowing using/paying the resources on a
short-term basis as needed (for example, processor by
hours and storage by the day) as releasing when they are
no longer useful. In a parallel algorithm, it is very
interesting, because we can run a distributed algorithm

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

624

Downloaded by [New Y ork University] at 05:20 22 May 2015

N. Xiong, D. Molina, M.L. Ortiz, F. Herrera

without requiring a specific infrastructure, and it is very
scalable [189]. Nowadays, there is a start with the
emergence of EAs that use cloud computing for solving
very hard problems [190], [191].

7. Software Support Tools

Recently a number of software systems have been
developed that provide -customizable tools for
implementing optimization techniques to solve various
practical problems. They bring benefits to both expert
and non-expert users in project development, saving
time and cost. They can also support the evaluation and
comparison of different metaheuristic optimization
methods to tackle a specific problem at hand.

Parejo et al. [192] conducted a comparative study of 10
selected metaheuristic optimization frameworks as listed
in Table 1. The adopted criteria for comparison cover six
areas of interest, including: Cl) Metaheuristic
techniques; C2) Adaptation to the problem and its
structure; C3) Advanced characteristics; C4) General
optimization process support; C5) Design,
implementation and licensing; C6) Document and
support. Every area is further divided into a number of
features and each feature is assigned with a weight
reflecting its importance. These weights are used in
evaluations to calculate the scores of a framework in
different aspects.

The study in [192] indicates that ECJ achieves the best
overall performance among the 10 compared
frameworks. However, ECJ still has to be improved in
areas Cl and C5 as its scores are below the average.
ParadisEO, with excellent performance in areas C1 and
C3, is assessed as the second best in terms of all the
evaluation criteria as a whole, yet it is scored below the
average in C4 area. According to criteria C1 alone, FOM
and ParadisEO are the best candidates since they offer
the most support to the realization of various
metaheuristics.

Table 1: The 10 metaheuristic optimization

frameworks (MOFs)
MOFs Prog. Lang. Platforms
EasyLocal [193] C++ Unix
ECJ [194] Java All
ParadisEO [195] CH++ All
EvA2 [196] Java All

FOM [197] Java All
HeuristicLab [198] C# Windows
JCLEC [199] Java All
MALLBA [200] C++ Unix
2fgtgililtf1?11tl(;“r;olkit [201] | 728 All

Opt4j [202] Java All

MOEA (http://www.moeaframework.org) is another well
known framework that contains free and open source
Java library. It is mainly designed to support developing
and experimenting with multi-objective evolutionary
algorithms and other general-purpose optimization
techniques. Apart from including a set of base
algorithms such as NSGA-II and MOEA/D, MOEA also
contains a Service Provider Interface that enables new
algorithms, problems and operators to be integrated into
the framework.

8. Future Trends

Here we would like to point out that, owing to
increasingly sophisticated application environments, the
following issues are becoming highly important and they
represent the new trends of research and development of
metaheuristics optimization methods and systems.

8.1. Large Scale Optimization Problems

Large scale optimization problems appear very
frequently in modern industrial scenarios, where the
number of decision variables (or design parameters)
tends to be extremely high (from several hundreds to
thousands). The performance of many metaheuristic
algorithms severely deteriorates as the size of the search
space grows exponentially with the increasing number of
variables. It is paramount to investigate new, more
powerful methods and algorithms to tackle high problem
dimensionality, to better explore the huge search space
with only limited computational budget.

Cooperative co-evolutionary algorithms attains much in-
terest to cope with complex optimization problems with
many variables [203, 204]. They apply the divide-and-
conquer approach to decompose a large scale problem
into a set of low dimensional ones. Variable interaction
is an important factor to consider for finding an appro-
priate decomposition for a particular problem. Recently,
the differential grouping method [205] has been pro-
posed for automatic identification of non-separable and
separable variables for a co-evolutionary algorithm.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

625

Downloaded by [New Y ork University] at 05:20 22 May 2015

In the last years, several special issues [206] and special
sessions [207] [208] were organized with the proposal of
specific benchmarks for competitions on large scale
optimization. The winners in these competitions were
hybrid algorithms [209] [210] and cooperative
algorithms [211]. The current best algorithm seems to be
MOS [210], which combines DE with a specific LS
method for large scale optimization and a hybridization
mechanism is employed to dynamically decide the
algorithm to apply based on a quality measure.

8.2. Expensive Optimization Problems

Expensive optimization problems are encountered in
many engineering applications where the evaluation of a
solution/design is often implemented through a time
consuming procedure such as simulation or finite
element method. Costly fitness evaluation would cause a
prohibitively high computational cost for an
optimization algorithm. A smart way to reduce the
overall search time is to use computationally efficient
models to partly replace the original fitness function
during the optimization process. Such models are termed
as approximate fitness models [212], surrogates or
surrogate models [213]. Surrogate assisted optimization
is becoming a hot and significant topic for improving
computational efficiency of metaheuristic algorithms.

First of all, surrogates of good quality must be
constructed. They have to approximate the original
fitness function with reasonable accuracy to prevent the
optimization algorithm from being misled into a false
optimum. Building an ensemble of homogeneous or
heterogeneous surrogates is useful to increase the
accuracy in fitness prediction. Another method for
accuracy improvement is resorting to dimension
reduction [214, 215], i.e., to build a surrogate in a new,
transformed space of lower dimensionality.
Nevertheless, the effect of error from surrogates is not
always negative. Sometimes such error can be utilized
beneficially for smoothing the rugged fitness landscape
and thereby accelerating the search process [216].
Therefore, mitigating model error and tolerating
prediction uncertainty turn out to be two different
aspects to take into account in building a set of surrogate
models.

The other key issue concerns the surrogate management
strategy for when and where to apply the surrogate

A Walk into Metaheuristics

models in replacement of the original fitness
evaluations. One intuitive way is to perform original
fitness evaluations on those trial solutions that are
representative (according to cluster analysis) or
potentially strong in fitness assessment. On the other
hand, surrogate models are not good candidates for
fitness evaluations when the models have a high degree
of uncertainty in approximating the true fitness values.
In some works [215, 216], surrogates were used only for
search within a local area in an evolutionary algorithm.
An important question for future research is how we
could develop a systematic methodology for optimal
usage of the surrogate models, such that the number of
original fitness evaluations could be reduced as much as
possible maintaining good results.

8.3. Automatic Tuning and Self-Adaptation of
Algorithmic Parameters

Although metaheuristics are proved powerful problem
solvers in wide practical applications, their performance
heavily depends on the setting of their parameters. An
improper assignment of parameters would lead to poor
results when applied to a particular problem.
Traditionally, adjustment of algorithmic parameters is
done manually by trial and error, which is a tedious and
very time consuming task.

Automatic parameter tuning refers to automatically
finding a good set of parameters of the algorithm before
its execution [217]. It can be considered as a complex
optimization task. The search methods specifically
designed for automatic parameter tuning include:
Iterated F-Race [218], Iterated Racing Procedure [219]
(as an extension of Iterated F-Race), Sequential
Parameter Optimization [220], ParamILS [221], and
Sequential Model-Based Optimization [222]. Automatic
tuning enables thorough exploration of the algorithm
design space that results in better parameter settings than
those from manual tuning. Fine tuning parameters by
computers can also provide an unbiased starting point
for fair comparison of performance of different
optimization algorithms.

Self-adaptation of parameters is also called parameter
control [217]. It aims to adaptively change the values of
the parameters in function of the results obtained during
the execution of the algorithm. Usually adaptive
behavior of parameters can make substantial
improvement of the performance of an algorithm in

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

626

Downloaded by [New Y ork University] at 05:20 22 May 2015

N. Xiong, D. Molina, M.L. Ortiz, F. Herrera

contrast to using constant parameter values. One
example for this was demonstrated in the adaptive DE
algorithm, SaDE [79]. More recently, a self-adaptive
evolutionary optimization method, SaEvO [223], was
proposed. The main part in SaEvO is a memetic
algorithm (using DE and VPN) designed for solving the
optimization problem, and an artificial immune system
is integrated as the second part to adapt the parameters
of the global search (DE) and local search (VPN)
respectively during the optimization process.

Further, from the user perspective, it would be ideal to
have parameter-free algorithm and not having that tune
the different parameter to each problem. Many works are
being done on self-adaptation of parameters within
metaheuristic algorithms to ultimately reach this goal.
The more an algorithm can adapt its parameters, the
closer it meets the parameter-free requirement. The other
way to advance towards parameter-free algorithms is to
develop new rules, operators and mechanisms to be used
in the algorithms such that the original parameters play
no role, see examples in [225] and [224]. But the
research in this topic has just begun with merely initial
results.

8.4. Synergy with Cloud Computing

Cloud computing is an emerging computing
infrastructure that provides flexible and on-demand
access to a large pool of computational resources [188],
[226]. It makes possible to easily use remote resources
and thereby overcoming the limits by the local
infrastructure. Costly computation and data intensive
tasks can be conducted in a clouding environment to
achieve shorter computing time while not incurring extra
cost for hardware.

The rise of cloud computing produces significant impact
on metaheuristics. It creates an opportunity to explore
new implementations of metaheuristic algorithms by
using remote and virtual computing resources. Indeed,
parallel metaheuristics receive growing interests to solve
complex and large scale optimization problems. With the
availability of the cloud infrastructure, the computing
task can be distributed to many virtual resources outside
the local system, leading to great acceleration of the
optimization process. However, the marriage of cloud
computing with metaheuristics is just at the infant stage.
How to manage the usage of cloud resources in terms of
job scale and properties would be an important issue for
research and application of cloud-based metaheuristics
in complex optimization scenarios.

9. Relevant discussion topics

In this section, we are going to introduce several topics
that often appear in the literature, because they are
important for the success of metaheuristic or because
they have been the object of discussion in recent years.
The next list of items will be discussed in along the
section:

1. The importance of a good trade-off between
exploration/exploitation.

2. How memorizing additional information can
improve the search.

3. Whether it is important that algorithms are
nature-based or not.

4. The discussion between designing
metaheuristics for one specific problem and
designing them for a benchmark of problems.

5. The influence of the Non-free luch theory.

6. New hybrid metaheuristics.

For reasons of space the discussion is brief, but we are
cognizant that these issues require a thorough analysis
due to their importance. The references provided allow
the reader to have a deeper insight into these topics.

It is well-known that part of the success of a search
algorithm is its trade-off between exploration of the
search domain and the exploitation of the information
obtained by the generated solutions [227], [228]. To do
that, it is crucial to combine during the search the
maintaining of good diversity around the complete
domain with an intensification in the most promising
regions [229]. Thus, a tendency is to introduce better
operations to enforce one or both criteria to improve the
behavior of metaheuristics [130], [230].

The population is not the only memory structure used in
metaheuristics algorithms. Sometimes, additional
memory structures are used to improve the search.
Initially, these memory structures were mainly used by
algorithms especially designed to used them, as Tabu
Search [17] (for avoid cycles) or Scatter Search [108] (to
have diverse solutions to introduce diversity).
Nowadays, by contrast, the incorporation of an
additional memory that store solutions or other
information obtained during the search is a new trend.
The memory structure can be used to store the decisions
chosen [17] (to avoid cycles), to store the current state
(to continue in a near future [92]) or to measure the
results obtained by each component (as the local search
or the exploration algorithm applied) to adapt its
application. Measuring and comparing the performance
obtained by each component allow to have a set of
different techniques and to apply the most promising one

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

627

Downloaded by [New Y ork University] at 05:20 22 May 2015

in each time, using self-adaptive parameters [79], [231].
An archive of generated solutions can maintain a
growing set of good solutions to better guide the search
[80]. This is specially interesting in multiobjective
optimization and multimodal optimization: In
multiobjective optimization to store the nondominated
solutions to improve the optimization [160], [232]. In
multimodal optimization, the number of optima could be
many times greater than the population size, thus an
additional memory storing found solutions allows the
algorithm to remove them from the population to favor
the exploration [233], [96], [234].

One aspect that it is a discussion topic is the huge
number of nature-inspired metaheuristics. Unfortunately,
some of them are innovative with respect to the natural
element that has inspired it but they are not really
innovative in its behavior and they do not offer a real
improvement over previous algorithms. There are
algorithms very well inspired from nature (as PSO) but
there are others that do not need this natural origin to
obtain good results (as DE). Thus, this explosion of
nature-inspired algorithms is currently the object of
debate [235], [236].

Recently, there is a discussion about two different ways
of focusing the optimization problem. One option is the
design of metaheuristics that try to obtain good results in
a group of problem, and the other is to chose an real
problem, and try to obtain the best metaheuristic for that
problem. Each option has its advantages and drawbacks:
On one hand, it is true that metaheuristics can improve
existing algorithms in specific problems [237] and that
solving real engineering problem can have a great
interest for companies, but the resulting algorithms
sometimes are too specific to them and not easily
adaptable for new problems (the reusability of the effort
is reduced); on the other hand, the design of algorithms
with a robust behavior in many problems is the ideal but
not only they can get worse results on specific real-
world problems but also they are tested using
benchmarks that contain many functions difficult to
optimize but with no interest in real-world [238], [239].

Another important topic of debate is whether the ideal
aim in optimization with metaheuristics, to have an
efficient and parameter-free algorithm to solve different
problems (as much as possible), is possible to achieve it.
The theory of non-free Iunch [240] denies that
possibility, indicating that any two algorithms are
equivalent when their performance is averaged across
all possible problems. This theory implies that there
would never be an algorithm statistically better than the
other, because although it could be better than others in a

A Walk into Metaheuristics

group of functions, it should be worse in others, being
similar in average. However, new studies shows that in
the field of real-world problems this theory could not be
applied [241].

Empirical results appears to support, at least partially,
the previous affirmation showing a great difficulty in
getting an optimization algorithm that improves the
others in the majority of functions. In response to that,
an increasing number of researchers propose hybrid
metaheuristics, that combine by hybridization different
algorithms that could work well together, to increase the
types of functions in which the algorithm has a good
behavior. Initially, the hybridizations were mainly MAs
adding an exploitation algorithm to a global exploration
algorithm to improve the accuracy, but in recent years
the variety of algorithms used for hybridization is
overwhelming: PSO s with DEs [140], ACOs with
CMA-ES [95], ... Another important change in new
hybrid metaheuristics is how the different algorithms are
used. Instead of applying the different algorithms during
each iteration, several of them apply each time only one
of the component algorithms: one at the beginning and
other at the end of the running, or select alternative
which should be use during the run (usually with an self-
adaptive criterion) [79]. Withit this tendency, the term
memetic computing, (MC), has been proposed as as a
paradigm that uses the notion of meme(s) as any units of
information encoded in computational representations
for the purpose of problem-solving. Thus, MC is a more
general concept than MA and it can include the new
hybrid metaheuristics [242], [243], [244].

10. Conclusion

This paper gives a walk into the principles and the state-
of-the-art of metaheuristic methods for solving complex,
nonlinear engineering optimization problems. All the
techniques discussed are classified into three basic types:
trajectory based approaches, multi-trajectory based
approaches, and population based approaches,
depending on whether a single point or multiple points
are generated as new approximate solution(s) in each
step of the iterations. Generally, the trajectory based
approaches are simple and effective for optimization
problems with a low number of parameters. However,
when the dimension of the space increases, they become
less efficient and are more likely to get stuck in a local
optimum. In many practical applications, a multi-
trajectory based search method is used, combining the
trajectory based search with a multi-start strategy to
increase the chance to find a global optimum. The
population based approaches are superior to the

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

628

Downloaded by [New Y ork University] at 05:20 22 May 2015

N. Xiong, D. Molina, M.L. Ortiz, F. Herrera

trajectory based ones in global search capability; they
seem to be more suitable to be applied in high-
dimensional search spaces. But, larger memory
requirements and more computational cost are connected
with them as side effects.

Secondly, we have discussed three issues especially
interesting: multimodal optimization in which we are
interested in obtaining several optima; multi-objective
optimization that aims to find solutions to
minimize/maximize several objectives at the same time;
as well as parallel design and implementation of
metaheuristic algorithms. Also we have reviewed the
available software frameworks for metaheuristics,
considering their different features.

Later, we have remarked several issues that are
considered as crucial challenges for application of
metaheuristics in complex engineering scenarios: large
scale optimization, i.e., optimization of solutions with
high dimensionality; optimization using a very small
number of evaluations in cases of expensive (in time)
fitness functions; and the challenge of alleviating
parameters in metaheuristic algorithms, using automatic
tuning or self-adaption of parameters.

Finally, we have presented several relevant discussion
topics that that are important for the success of
metaheuristics and discussed in the literature: the
influence of a good balance between the exploration and
exploitation; how an additional memory can be used to
improve results; the importance of a nature inspiration
for a metaheuristic; the alternative of metaheuristics
designed for specific problems or designed for more
general problems; the influence of the non-free lunch
theory over optimization, and new tendencies in hybrid
metaheuristics.

Acknowledgement

The work is within the EMOPAC project (project no
16317) granted by the Swedish Knowledge Foundation.
We are also grateful to ABB FACTS, Prevas, and VG
Power for co-financing the research. This work was
supported in part by the Spanish Ministry of Education
and Science under Grant TIN2011-28488 and TIN 2012-
37930-C02-01 and the Andalusian Government under
Grant P10-TIC-6858.

1

5

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

References

. L. Shi, S. Olafsson and Q. Chen, An optimization framework
for product design, Management Science 47 (2001) 1681-
1692.

. M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear
Programming and Network Flows, 2nd edn. (John Wiley &
Sons, New York, 1990).

. D. G. Luenberger, Linear and Non-linear Programming
(Addison-Wesley, New York, 1990).

. M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear
Programming — Theory and Algorithms (John Wiley & Sons,
New York, 1993).

. L. G. Khachian, A polynomial algorithm in linear

programming, Soviet Mathematics Doklady 20 (1979) 1093-
1096.

. N. Karmarkar, A new polynomial algorithm for linear
programming, Combinatorica 4 (1984) 373-395.

. W. H. Swann, A survey of non-linear optimization techniques,
FEBS Letters 2 (1969) 39-55.

. I. H. Osman and G. Laporte, Metaheuristics: A bibliography,
Annals of Operations Research 63 (1996) 513-562.

. F. Glover and G. A. Kochenberger (Eds.), Handbook of

metaheuristics, International Series in Operations Research &

Management Science (Springer, 2003).

1. Boussaid, J. Lepagnot, P. Siarry, A survey on optimization

metaheuristics, Information Sciences, 237 (2013) 82-117.

S. Russel and P. Norvig, Artificial Intelligence: A Modern

Approach, 2nd edn. (Prentice Hall, New Jersey, 2003).

S. B. Kjer, Evaluation of the "Hill Climbing" and the

"Incremental Conductance" maximum power point trackers

for photovoltaic power systems, [EEE Transactions on

Energy Conversion 27 (4) (2012) 922-929.

K. A. Sullivan and S. H. Jacobson, Ordinal hill climbing

algorithms for discrete manufacturing process design

optimization problems, Discrete Event Dynamic Systems 10

(2000) 307-324.

S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by

simulated annealing, Science 220 (1983) 671-680.

P. Van Laarhoven and E. Aarts, Simulated Annealing: Theory

and Applications (Kluwer Academic Publishers, Norwell,

1987).

F. Glover, Tabu search — Part one, ORSA Journal Computing 1

(1989) 190-206.

F. W. Glover and M. Laguna, Tabu Search (Springer, 1997).

R. Chelouah and P. Siarry, Tabu Search applied to global

optimization. European Journal of Operational Research, 123

(2) (200) 256-270.

J. Blazewicz, P. Lukasiak and M. Milostan, Application of

tabu search strategy for finding low energy structure of

protein, Artificial Intelligence in Medicine 35 (1-2) (2013)

135-145.

R. E. Aleman and R. R. Hill, A tabu search with vocabulary

building approach for the vehicle routing problem with split

demands, Journal of Metaheuristics 1 (1) (2010) 55-80.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

629

Downloaded by [New Y ork University] at 05:20 22 May 2015

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

. M. Avriel, Nonlinear Programming: Analysis and Methods
(Dover Publishing, 2003).

R. Battiti, First- and second-order methods for learning:
Between steepest descent and Newton’s method, Newural
Computation 4 (1992) 141-166.

J. F. Bonnans, J. Ch. Gilbert, C. Lemaréchal and C. A.
Sagastizabal, Numerical Optimization, Theoretical and
Numerical Aspects, 2nd edn. (Springer, 20006).

J. A. Nelder and R. A. Mead, A simplex for function
minimization, Computer Journal 7 (1965) 308-313.

J. S. Arora, O. A. Elwakeil and A. 1. Chahande, Global
optimization method for engineering applications: a review,
Structural Optimization 9 (1995) 137-159

R. Helena, O. M. Lourengo and T. Stiitzle, Iterated local
search, in Handbook of Metaheuristics (Springer, 2003), pp.
320-353.

N. Mladenovic and P. Hansen, Variable neighborhood search,
Computers and Operations Research 24(11) (1997) 1097-
1100.

P. Hansen, N. Mladenovic and J. A. M. Perez, Variable
neighborhood search: Methods and applications, Annals of
Operation Research 175 (2010) 367-407.

T. A. Feo and M. G. C. Resende, Greedy randomized adaptive
search procedures, Journal of Global Optimization 6 (1995)
109-134.

L. Pitsoulis and M. G. C. Resende, Greedy randomized
adaptive search procedures, in Handbook of Applied
Optimization (Oxford University Press, 2002), pp. 168-181.
M. Prais and C. C. Ribeiro, Reactive GRASP: An application
to a matrix decomposition problem in TDMA traffic
assignment, INFORMS Journal on Computing 12 (2000) 164-
176.

J.C. Culberson, and F. Luo, Exploring the k-colorable
landscape with iterated greedy, Dimacs Series in Discrete
Mathematics and Theoretical Computer Science, American
Mathematical Society (1996) pp. 245-284.

R. Ruiz, T. Stiitzle, A simple and effective iterated greedy
algorithm for the permutation flowshop scheduling problem,
European Journal of Operational Research, 177(3) (2007)
2033-2049.

K.C Ying and M.H. Cheng, Dynamic parallel machine
scheduling with sequence-dependent setup times using an
iterated greedy heuristic, Expert Systems with Applications,
37(4), (2010), 2848-2852.

M. Lozano, D. Molina and Garcia-Martinez, Iterated greedy
for the maximum diversity problem, European Journal of
Operational Research, 214(1) (2011) 31-38.

G. Minella, R. Ruiz and M. Ciavotta, Restarted Iterated Pareto
Greedy algorithm for multi-objective flowshop scheduling
problems, Computers and Operational Research 38(11)
(2011) 1521-1533.

F.J. Rodriguez, M. Lozano, C. Blum and C. Garcia-Martinez,
iterated greedy algorithm for the large-scale unrelated parallel
machines scheduling problem, Computers and Operational
Research 40(7) (2013) 1829-1841.

R. A. Formato, Central force optimization: A new
metaheuristic with applications in applied electromagnetics,

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

A Walk into Metaheuristics

Progress in Electromagnetics Research 77 (2007) 425-491.

P. K. Roy, B. Mandal and K. Bhattacharya, Gravitational
search algorithm based optimal reactive power dispatch for
voltage stability enhancement, Electronic = Power

Components and Systems 9(9) (2014) 956-976.

A. Hatamlou, Black hole: A new heuristic optimization

approach for data clustering, Information Science 222 (2013)
175-184.

Z. W. Geem, J. H. Kim and G. V. Loganathan, A new
heuristic optimization algorithm: Harmony search,
Simulation 76(2) (2001) 60-68.

Y. Lui and K. M. Passino, Biomimicry of social foraging
bacteria for distributed optimization: Models, principles, and
emergent behaviors, Journal of Optimization Theory and
Applications 115(3) (2002) 603-628.

L. N. de Castro and J. . Timmis, Artificial immune systems

as a novel soft computing paradigm, Soft Computing 7 (8)
(2003) 526-544.

D. Simon, Biogeography-based optimization, [EEE
Transactions on Evolutionary Computation 12 (2008) 702-
713.

A. Puris, R. Bello, D. Molina and F. Herrera, Variable mesh
optimization for continuous optimization problems, Soft

Computing 16 (2012) 511-525.

K. N. Krishnanand and D. Ghose, Glowworm swarm
optimization for simultaneous capture of multiple local

optima of multimodal functions, Swarm Intelligence 3(2)
(2009) 87-124.

X.S. Yang and S. Deb, Engineering Optimisation by Cuckoo

Search, Int. J. Mathematical Modelling and Numerical
Optimisation 1 (4) (2010) 330-343.

X. Li, J. Luo, M.-R. Chen and N. Wang, An improved
shuffled frog-leaping algorithm with external optimisation for

continuous optimisation, Information Sciences 192 (2012)
143-151.

D. E. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning (Addison-Wesley, New York, 1989).
D. E. Goldberg, The Design of Innovation: Lessons from and
for Competent Genetic Algorithms (Kluwer Academic
Publishers, Norwell, MA, USA, 2002).

F. Herrera, M. Lozano and J. L. Verdegay, Tackling real-coded
genetic algorithms: Operators and tools for behavioral

analysis, Artificial Intelligence Review 12 (1998) 265-319.

J. R. Koza, Genetic Programming: On the Programming of

Computers by Means of Natural Selection (Complex Adaptive
Systems) (The MIT Press, 1992).

R. I. McKay, N. X. Hoai, P. A. Whigham and Y. S. M.

O’Neill, Grammar-based genetic programming: A survey,
Genetic Programming and Evolvable Machines 11 (2010)
365-396.

B. L. William, P. Riccardo, F. M. Nicholas and R. K. John,

Genetic programming: An introduction and tutorial, with a
survey of techniques and applications, in Computational
Intelligence: A Compendium, Studies in Computational
Intelligence (SCI) (Springer-Verlag, 2008), pp. 927-1028.

R. Poli, W. B. Langdon and N. F. McPhee, 4 Field Guide to

Genetic Programming (Lulu Enterprises, UK Ltd., 2008).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

630

Downloaded by [New Y ork University] at 05:20 22 May 2015

56

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

N. Xiong, D. Molina, M.L. Ortiz, F. Herrera

. A. Piszcz and T. Soule, A survey of mutation techniques in

genetic programming, in Proc. 8th Annual Conf. Genetic and
Evolutionary Computation, GECCO ’06 (New York, 2006),
pp. 951-952.

1. Rechengerg, Evolutionsstrategie =~ — Optimierung
technischer Systeme nach Prinzipien der biologischen

Evolution (PhD thesis) (Fromman-Holzboog, 1973).

N. Hansen and A. Ostermeier, Completely derandomized
self-adaptation in evolution strategies, Evolutionary

Computation 9 (2) (2001) 159-195.

T. Liao, A. M. M. de Oca, and T. Stiitzle, Tuning parameters
across mixed dimensional instances: A performance
scalability study of Sep-G-CMA-ES, in Proc. the 13th

Annual Conf. Genetic and Evolutionary Computation

(GECCO '11) (New York, 2011), pp. 703-706.

A. Auger and N. Hansen, A restart CMA evolution strategy
with increasing population size, in Proc. IEEE Congress on

Evolutionary Computation (2005), pp. 1769-1776.

N. Hansen, Benchmarking a BI-Population CMA-ES on the
BBOB function testbed, in Proc. Genetic and Evolutionary

Computation Conference (2009), pp. 2389-2396.

T. Liao and T. Stutzle, Benchmark results for a simple hybrid
algorithm on the CEC 2013 benchmark set for real-parameter
optimization, in Proc. IEEE Congress on Evolutionary
Computation (2013), pp. 1938-1944.

L. J. Fogel, A. J. Owens and M. J. Walsh, Artificial
Intelligence through Simulated Evolution (John Wiley, New
York, USA, 1966).

D. B. Fogel, L. J. Fogel, J. Atma and G. Fogel, Hierarchic
methods of evolutionary programming, in Proc. the First
Annual Conf. Evolutionary Programming (La Jolla, CA,
1992), pp. 175-182.

X. Yao, Y. Liu and G. Lin, Evolutionary programming made
faster, /[EEE Transactions on Evolutionary Computation 3
(1999) 82—-102.

C. Y. Lee and X. Yao, Evolutionary programming using
mutations based on the levy probability distribution, /EEE
Transactions on Evolutionary Computation 8 (2004) 1-13.

H. Mithlenbein and G. Paaf3, From recombination of genes to
the estimation of distributions in binary parameters, In
Lecture Notes in Computer Science 1411: Parallel Problem

Solving from Nature - PPSN 1V (Springer,1996), pp 178-187.

P. Larraiiaga and J.A. Lozano, Estimation of Distribution

Algorithms: A New Tool for Evolutionary Computation
(Kluwer Academic Publishers, 2001).

M. Pelikan, D. E. Golderg and F. G. Lobo, A survey of
optimization by building and using probabilistic models,
Computational Optimization and Application 21 (2002) 5-22.

M. Hauschild and M. Pelikan, An introduction and survey of
estimation of distribution algorithms, Swarm and
Evolutionary Computation 1 (2011) 111-128.

J. Ceberio, E. Irurozki, A. Mendiburu and J.A. Lozano, A
review on estimation of distribution algorithms in
permutation-based combinatorial optimization problems,
Progress in Artificial Intelligence 1(1) (2012) 103-117.

R. Armafanzas, 1. Inza, R. Santana, Y. Saeys, J. L. Flores, J.

A. Lozano, Y. Van de Peer, R. Blanco, V. Robles, C. Bielza

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

and P. Larrafiaga, A review of estimation of distribution
algorithms in bioinformatics, BioData Mining 1(6) (2008).

J. Kennedy and R. Eberhart, Particle swarm optimization, in
Proc. IEEE Conf. Neural Networks (1995), pp. 1942—-1948.

J. Kennedy, R. C. Eberhart and Y. Shi, Swarm Intelligence
(Morgan Kaufman, San Francisco, USA, 2001).

W.-N. Chen et al, A novel set-based particle swarm
optimization method for discrete optimization problems,
IEEE Transactions on Evolutionary Computation 14(2)
(2010) 278-300

J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar,
Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions, /EEE Transactions on
Evolutionary Computation 10(3) (2006) 281-295.

R. Storn and K. Price, Differential evolution - A simple and
efficient heuristic for global optimization over continuous
spaces, Journal of Global Optimization 11 (1997) 341-359.
K. V. Price, R. M. Rainerm and J. A. Lampinen, Differential
Evolution: A Practical Approach to Global Optimization
(Springer-Verlag, 2005).

A. K. Qin, V. L. Huang and P. N. Suganthan, Differential
evolution algorithm with strategy adaptation for global
numerical optimization, /EEE Transactions on Evolutionary
Computation 13(2) (2002) 398-417.

J. Zhang and A. C. Sanderson, JADE: Adaptive differential
evolution with optional external archive, /EEE Transactions
on Evolutionary Computation 13(5) (2009) 945-958.

S. Das and P. N. Suganthan, Differential evolution: A survey
of the state-of-the-art, I[EEE Transactions on. Evolutionary
Computation 15 (2011) 4-31.

D. Karaboga and B. Basturk, A powerful and efficient
algorithm for numerical function optimization: artificial bee
colony (ABC) algorithm, Journal of Global Optimization
39(3) (2007) 459-471.

D. Karaboga, B. Gorkemli, C. Ozturk and N. Karaboga, A
comprehensive survey: artificial bee colony (ABC) algorithm
and applications, Artificial Intelligence Review 42(1) (2012)
21-57.

P. Moscato, On Evolution, Search, Optimization, Genetic
Algorithms and Martial Arts: Towards Memetic Algorithms,
Caltech Concurrent Computation Program Report 826 (1989).
N. Krasnogor and J. Smith, A tutorial for competent memetic
algorithms: Model, taxonomy, and design issues, /EEE
Transaction on Evolutionary Computation 9(5) (2005) 474-
488.

J. Du, R. Rada, Memetic algorithms, domain knowledge, and
financial investing, Memetic Computing, 4(2) (2012) 109-
125.

Y. S. Ong and A. J. Keane, Meta-Lamarckian in memetic
algorithm, /EEE Transactions on Evolutionary Computation 8
(2) (2004) 99-110.

E. G. Talbi, A taxonomy of hybrid metaheuristics, Journal of
Heuristics 8(5) (2002), 541-564.

P. Merz, Advanced fitness landscape analysis and the
performance of memetic algorithms, Evolutionary
Computation 12(3) (2004) 303-325.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

631

Downloaded by [New Y ork University] at 05:20 22 May 2015

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

C. Blum, J. Puchinger, G. R. Raidl and A. Roli, Hybrid
metaheuristics in combinatorial optimization: A survey,
Applied Soft Computing 11(6) (2011) 4135-4151.

Q. H. Nguyen, Y.-S. Ong and N. Krasnogor, A study on the
design issues of memetic algorithm, in Proc. IEEE Congress
on Evolutionary Computation (2007), pp. 2390-2397.

D. Molina, M. Lozano, C. Garcia-Martinez and F. Herrera,
Memetic algorithms for continuous optimization based on
local search chains, Evolutionary Computation 18(1) (2010)
27-63.

J. J. Liang, B-Y. Qu, P. N. Suganthan and A. G. Hernandez-
Diaz, Problem definitions and evaluation criteria for the CEC
2013 special session and competition on real-parameter
optimization, Technical Report 201212, Computational
Intelligence Laboratory, Zhengzhou University, Zhengzhou,
China and Technical Report, Nanyang Technological
University, Singapore (2013).

I. Loshchilov. CMA-ES with restarts for solving CEC 2013
benchmark problems, in Proc. IEEE Congress on Evolution-
ary Computation (2013), pp. 369-376.

T. Liao and T. Stutzle, Benchmark results for a simple hybrid
algorithm on the CEC 2013 benchmark set for real-parameter
optimization, in Proc. IEEE Congress on Evolutionary Com-
putation (2013), pp. 1938-1944.

B. Lacroix, D. Molina and F. Herrera, Dynamically updated
region based memetic algorithm for the 2013 CEC special
session and competition on real parameter single objective
optimization, in Proc. IEEE Congress on Evolutionary
Computation (2013), pp. 1945-1951.

J. J. Liang, B-Y. Qu and P. N. Suganthan, Problem definitions
and evaluation criteria for the CEC 2014 special session and
competition on single objective real-parameter numerical
optimization, Technical Report 201311, Computational
Intelligence Laboratory, Zhengzhou University, Zhengzhou,
China and Technical Report, Nanyang Technological
University (2013).

S. Elsayed, S. Ruhul, D. Essam and N. Hamza, Testing united
multi-operator evolutionary algorithms on the CEC2014 real-
parameter numerical optimization, in Proc. IEEE Congress on
Evolutionary Computation (2014), pp. 1650-1657.

R. Tanabe and A. Fukunaga, Improving the search
performance of SHADE using linear population
reduction, in Proc. IEEE Congress on Evolutionary
Computation (2014), pp. 1658-1665.

I. Erlich, J. L. Rueda and S. Wildenhues, Evaluating the
mean-variance mapping optimization on the IEEE-CEC 2014
test suite, in Proc. IEEE Congress on Evolutionary Computa-
tion (2014), pp. 1625-1632.

F. Neri and C Cotta, Memetic algorithms and memetic
computing optimization: A literature review, Swarm and
Evolutionary Computation 2 (2012) 1-14.

M. Dorigo, V. Maniezzo and A. Colorni, The ant system:
Optimization by a colony of cooperating agents, [EEE
Transactions on Systems, Man, and Cybernetics — Part B 26
(1996) 29-41.

M. Dorigo and T. Stiitzle, Ant Colony Optimization (MIT
Press, 2004).

size

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

A Walk into Metaheuristics

M. Dorigo and L. M. Gambardella, Ant colony system: A
cooperative learning approach to the traveling salesman
problem, /[EEE Transactions on Evolutionary Computation 1
(1997) 53-66.

T. Liao, T. Stiitzle, M. A. Montes de Oca and M. Dorigo, A
unified ant colony optimization algorithm for continuous
optimization, European Journal of Operational Research
234(3) (2014) 597-609.

B. Chandra Mohan and R. Baskaran, A survey: ant colony
optimization based recent research and implementation on
several engineering domains, Expert Systems with
Applications 39(4) (2012) 4618—4627.

F. Glover, A template for scatter search and path relinking,
Lecture Notes on Computer Science 1363 (1997), pp.13-54.
M. Laguna and R. Marti, Scatter Search: Methodology and
Implementations in C (Springer, 2013).

J. G. Villegas, C. Prins, C. Prodhon, A. L. Medaglia and N.
Velasco, A GRASP with evolutionary path relinking for the
truck and trailer routing problem, Computers and Operations
Research 38(9) (2011) 1319-1334.

V. A. Armentano, A. L. Shiguemoto and A. Lekketangen,
Tabu search with path relinking for an integrated production
distribution problem, Computer and Operational Research
38 (2011) 1199-1209.

K. A. De Jong, An analysis of the behavior of a class of
genetic adaptive systems, Doctoral Dissertation (Comut.
Commun. Sci., University Michigan, Ann Arbor, ML, 1975).

S. W. Mahfoud, Niching methods for genetic algorithms,
Ph.D. Dissertation (Univ. of Illinois, Urbana-Champaign,
1995).

C. H. Lee, D. Cho and H. Jung, Niching genetic algorithm
with restricted competition selection for multimodal function
optimization, /[EEE Transactions on. Magnetics 35(3) (1999)
1722-1725.

J. Holland, Adaptation in Natural and Artificial Systems
(University of Michigan Press, Ann Arbor, MI, 1975).

D. E. Goldberg and J. Richardson, Genetic algorithms with
sharing for multimodal function optimization, in Proc. 2nd
Int. Conf. Genetic Algorithms (1987), pp. 41-49.

A. Petrowski, A clearing procedure as a niching method for
genetic algorithm, in Proc. [EEE Conf. Evolutionary
Computation (Japan, 1996), pp. 798-803.

J. Li, M. Balazs, G. T. Parks and P. J. Clarkson, A species
conserving genetic algorithm for multimodal function
optimization, Evolutionary Computation 10(3) (2002) 207-
234.

X. Li, Efficient differential evolution using speciation for
multimodal function optimization, in Proc. Conf. Genetic and
Evolutionary Computation (2005), pp. 873-880.

S. Yang and C. Li, A clustering particle swarm optimizer for
locating and tracking multiple optima in dynamic
environments, [EEE Transactions on Evolutionary
Computation 14(6) (2010) 959-974.

T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R.
Silverman and A. Y. Wu, An Efficient k -Means clustering
algorithm: Analysis and implementation, /EEE Transactions

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

632

Downloaded by [New Y ork University] at 05:20 22 May 2015

121.

122.

123.

124,

125.

126.

128.

1209.

130.

133.

134.

135.

N. Xiong, D. Molina, M.L. Ortiz, F. Herrera

on Pattern Analysis and Machine Intelligence 24(7) (2002)
881-892.

B. Sareni and L. Krdhenbiihl, Fitness sharing and niching
methods revisited, [/EEE Transactions on Evolutionary
Computation 2(3) (1998) 97-106.

C. Lin and W. Wu, Niche identification techniques in
multimodal genetic search with sharing scheme, Advances in
Engineering Software 33 (2002) 779-791.

A. D. Cioppa, C. De Stefano and A. Marcelli, Where are the
niches? Dynamic fitness sharing, [EEE Transactions on
Evolutionary Computation 11 (2007) 453—465.

G. Dunwey, P. Fengping and X. Shifan, Adaptive niche
hierarchy genetic algorithm, in Proc. IEEE Conf. TENCON
(2002), pp. 39-42.

E. Perez, M. Posada and F. Herrera, Analysis of new niching
genetic algorithms for finding multiple solutions in the job
shop scheduling, Journal of Intelligent Manufacturing 23
(2012) 341-256.

E. L. Yuand P. N. Suganthan, Ensemble of niching algorithm,
Information Sciences 180(15) (2010) 2815-2833.

. E. Perez, M. Posada and F. Herrera, Analysis of new niching

genetic algorithms for finding multiple solutions in the job
shop scheduling, Journal of Intelligent Manufacturing 23
(2012) 341-256.

R. Thomsen, Multimodal optimization using crowding-based
differential evolution, in Proc. IEEE Congress on
Evolutionary Computation (2004), pp. 1382-1389.

S. Kundu, S. Biswas, S. Das and P. N. Suganthan, Crowding-
based local differential evolution with speciation-based
memory archive for dynamic multimodal optimization, in
Proc. Conf. Genetics and Evolutionary Computation (2013),
pp- 33-40.

B. Y. Qu, P. N. Suganthan and J. J. Liang, Differential
evolution with neighborhood mutation for multimodal
optimization, [EEE Transactions on Evolutionary
Computation 16 (5) (2012) 601-614.

. J. Li, M. Balazs, G. T. Parks and P. J. Clarkson, A species

conserving genetic algorithm for multimodal function
optimization, Evolutionary Computation 10(3) (2002) 207-
234.

. X. Li, Efficient differential evolution using speciation for

multimodal function optimization, in Proc. Conf. Genetic and
Evolutionary Computation (2005), pp. 873-880.

D. Parrott and X. Li, Locating and tracking multiple dynamic
optima by a particle swarm model using speciation, /EEE
Transactions on Evolutionary Computation 10(4) (2006) 440-
458.

M. G. Epitropakis, X. Li and E. K. Burke, A dynamic archive
niching differential evolution algorithm for multimodal
optimization, in Proc. IEEE Congress on Evolutionary
Computation (Cancun, Mexico, 2013), pp. 79-86.

X. Li, A. Engelbrecht and M.G. Epitropakis, Benchmark
functions for CEC'2013 special session and competition on
niching methods for multimodal function optimization,
Technical Report (Evolutionary Computation and Machine
Learning Group, RMIT University, Australia, 2013).

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

R. Brits, A. P. Engelbrecht and F. van den Bergh, Locating
multiple optima using particle swarm optimization, Applied
Mathematics and Computation 189(2) (2007) 1859—-1883.
P.-Y. Yin et al., Niched ant colony optimization with colony
guides for QoS multicast routing, Journal of Network and
Computer Applications (2014), in press.

O. M. Shir and T. Baeck, Niche radius adaptation in the
CAM-ES niching algorithm, in Proc. Conf. Parallel Problem
Solving from Nature (Springer-Verlag, Berlin, Germany,
2006), pp. 142-151.

M. Peruss, Niching the CMA-ES via nearest-better clustering,
in Proc. Conf. Genetic and Evolutionary Computation
(Portland, USA, 2010), pp. 1711-1717.

B. Xin, J. Chen, J. Zhang, H. Fang and Z.-H. Peng,
Hybridizing differential evolution and particle swarm
optimization to design powerful optimizers: A review and
taxonomy, [EEE Transactions on Systems, Man, and
Cybernetics, Part C 42(5) (2012) 744 —767.

K. Deb and A. Saha, Finding multiple solutions for
multimodal optimization problems using a multi-objective
evolutionary approach, in Proc. 12th Annual Conf. Genetic
and Evolutionary Computation (USA, 2010), pp. 447-454.

K. Miettinen, Nonlinear Multiobjective Optimization (Kluwer,
Norwell, MA, 1999).

H. Ishibuchi and T. Murata, Multi-objective genetic local
search algorithm and its application to flowshop scheduling,
IEEE Transactions on Systems, Man, & Cybernetics 28
(1998) 392-403.

A. Jaszkiewicz, On the performance of multiple-objective
genetic local search of the 0/lknapsack problem — A
comparative experiment, /EEE Transactions on Evolutionary
Computation 6 (4) (2002) 402-412.

Q. Zhang and H. Li, MOEA/D: A multiobjective evolutionary
algorithm based on decomposition, [EEE. Transactions on
Evolutionary Computation 11(6) (2007) 712-731.

Q. Zhang, W. Liu and H. Li, The Performance of a New
version of MOEA/D on CECO09 unconstrained MOP test
instances, Working Report CES-491 (School of Computer
Science and Electrical Engineering, University of Essex,
02/2009).

Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu and S.
Tiwari, Multiobjective optimization test instances for the
CEC 2009 special session and competition, Working Report
CES-887 (School of Computer Science and Electrical
Engineering, University of Essex, 2008).

H. Li and Q. Zhang. Multiobjective optimization problems
with complicated Pareto sets, MOEA/D and NSGA-II, /[EEE
Transactions on Evolutionary Computation 12(2) (2009)
284-302.

L. Keng, Q. Zhang and R. Battiti MOEA/D-ACO: A
multiobjective evolutionary algorithm using decomposition
and ant colony, /EEE Transactions on Cybernetics 43(6)
(2013) 1845-1859.

J. J. Durillo, Q. Zhang, A. J. Nebro and E. Alba, Distribution
of computational effort in parallel MOEA/D, in Lecture
Notes in Computer Science, Volume 6683 (Springer, 2011),
pp 488-502.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

633

Downloaded by [New Y ork University] at 05:20 22 May 2015

151

152.

153.

154,

155.

156.

158.

159.

160.

161.

162.

163.

164.

165.

. C. M. Fonseca and P. J. Fleming, Multiobjective optimization
and multiple constraint handling with evolutionary
algorithms, part I: A unified formulation, /EEE. Transactions
on Systems, Man, & Cybernetics, Part A 28 (1998) 26-37.

N. Srinivas and K. Deb, Multiobjective function optimization
using nondominated sorting genetic algorithm, Evolutionary
Computation 2 (1995) 221-248.

E. Zitzler and L. Thiele, Multiobjective evolutionary
algorithms: A comparative case study and the Strength Pareto
Approach, [EEE Transactions on Evolutionary Computation 3
(4) (1999) 257-271.

E. Zitzler, M. Laumanns and L. Thiele, SPEA2: Improving the
Strength Pareto Evolutionary Algorithm, Technical Report
(Computer Engineering and Networks Laboratory (TIK),
Swiss Federal Institute of Technology, 2001).

K. Deb, A. Pratap, S. Agrawal and T. Meyarivan, A fast and
elitist multiobjective genetic algorithm: NSGA-II, [EEE
Transactions on Evolutionary Computation 6 (2002) 182-197.
K. Deb and H. Jain. An evolutionary many-objective
optimization algorithm using reference-point-based
nondominated sorting approach, part I: Solving problems with
box constraints. [EEE Transactions on Evolutionary
Computation 18(4) (2014) 577-601.

. H. Jain and K. Deb. n Evolutionary Many-Objective
Optimization Algorithm Using Reference-Point-Based
Nondominated Sorting Approach, Part II: Handling
Constraints and Extending to an Adaptive Approach. [EEE
Transactions on Evolutionary Computation 18(4) (2014) 602-
622.

D. S. Liu, K. C. Tan, C. K. Huang, C. K. Goh and W. K. Ho,
On solving multiobjective bin packing problems using
evolutionary particle swarm optimization, European Journal
of Operational Research 190 (2008) 357-382.

P. K. Tripathi, S. Bandyopadhyay and S. K. Pal, Multi-
objective particle swarm optimization with time variant inertia
and acceleration coefficients, Information Sciences 177
(2007) 5033-5049.

N. K. Madavan, Multiobjective optimization using a Pareto
differential evolution approach, in Proc. IEEE Congress on
Evolutionary Computation (2002), pp. 1145-1150.

F. Xue, A. C. Sanderson and R. J. Graves, Pareto-based multi-
objective differential evolution, in Proc. IEEE Congress on
Evolutionary Computation (2003), pp. 862-869.

T. Robic and B. Filipic, DEMO: Differential evolution for
multiobjective optimization, in Proc. 3rd Int. Conf.
Evolutionary Multicriterion Optimization (2005), pp. 520-
533.

M. Ali, P. Siarry and M. Pant, An efficient differential
evolution based algorithm for solving multi-objective
optimization problems, European Journal of Operational
Research 217 (2012) 404-416.

R. Sarker and H. Abbass, Differential evolution for solving
multiobjective optimization problems, 4sia Pacific Journal of
Operational Research 21 (2) (2004) 225-240.

W. Gong and Z. Cai, An improved multiobjective differential
evolution based on Pareto-adaptive epsilon-dominance and

166.

167.

168.
169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

A Walk into Metaheuristics

orthogonal design, European Journal of Operational
Research 198 (2) (2009) 576-601.

E. Alba, G. Luque and S. Nesmachnow, Parallel
metaheuristics: recent advances and new trends,
International Transactions in Operational Research 20(1)
(2013) 1-48.

E. Alba, Parallel Metaheuristics: A New Class of Algorithms
(Wiley, New York, 2005).

E. Talbi, Parallel Combinatorial Optimization (Wiley, 2006).

F. Caraffini, F. Neri, G. lacca and A. Mol, Parallel memetic
structures, Information Sciences 227 (2013) 60-82.

A. Mendiburu, J. Miguel-Alonso and J.A. Lozano, A review
of parallel estimation of distribution algorithms, in Studies in

Computational Intelligence, Parallel and Distributed
Computational Intelligence (Springer, Berlin-Heidelberg,
2010).

V. O. Shylo, T. Middelkoop and P. Pardalos, Restart
strategies in optimization: parallel and serial cases, Parallel
Computing 37(1) (2011) 60-68.

R. Tanese, Distributed genetic algorithms, in Proc. 3rd Int.

Conf. Genetic Algorithms (1989), pp. 434-439.

J. Lampinen, Differential evolution: New naturally parallel
approach for engineering design optimization, in
Developments in Computational Mechanics with High

Performance Computing (Civil-Comp Press, 1999), pp. 217-
228.

A. P. Piotrowski, J. J. Napiorkowski and A. Kiczko,
Differential evolution algorithm with separated groups for
multi-dimensional optimization problems, European Journal
of Operational Research 216(1) (2012) 33-46.

J. F. Schutte, J. A. Reinbolt, B. J. Fregly, R. T. Haftka and A.

D. Georg, Parallel global optimization with the particle
swarm algorithm, International Journal for Numerical
Methods in Engineering 61(13) (2004) 2296-2315.

M. Hijaze and D. Corne, An Investigation of topologies and
migration schemes for asynchronous distributed evolutionary
algorithms, in Proc. World Congress on Nature &

Biologically Inspired Computing (2009), pp. 636-641.

M. Rucinski, D. 1zzo and F. Biscani, On the impact of the
migration topology on the island model, Parallel Computing
36(10-11) (2010) 555-571.

M. J. Flynn, Some computer organizations and their
effectiveness, /[EEE Transactions on Computation C 21(9)
(1972) 948-960.

W. Gropp, E. Lusk, N. Doss and A. Skjellum, A high-
performance, portable implementation of the MPI message
passing interface standard, Parallel Computing 22(6) (1996)
789-828.

B. Chapman, G. Jost and R. Pas, Using OpenMP: Portable
Shared Memory Parallel Programming (Scientific and
Engineering Computation) (MIT Press, Cambridge, MA,
2007).

J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone
and J. C. Phillips, GPU Computing, Proceedings of IEEE
96(5) (2008) 879-899.

R. M. Calazan, N. Nedjah and L. D. M. Mourelle, Parallel
GPU-based implementation of high dimension particle

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

634

Downloaded by [New Y ork University] at 05:20 22 May 2015

183.

184.

185.

186.

187.

188.

189.

190.

192.

193.

194,

196.

N. Xiong, D. Molina, M.L. Ortiz, F. Herrera

swarm optimizations, in Proc. IEEE 4th Latin American
Symposium on Circuits and Systems (2013), pp. 1-4.

P. Kromer, V. Snasel, J. Plato§ and A. Abraham, Many-
threaded implementation of differential evolution for the
CUDA platform, in Proc. 13th Annual Conf. Genetic and
Evolutionary Computation (New York, USA, 2011), pp.
1595-1602.

F. Fabris and R.A. Krohling. A co-evolutionary differential
evolution algorithm for solving minmax optimization
problems implemented on GPU using C-CUDA, Expert
Systems with Applications 39(12) (2012) 10324-10333.

L. Filali, F. Bongiovanni, F. Huet and F. Baude, A Survey of
structured P2P systems for RDF data storage and retrieval, in
Transactions on Large-Scale Data- and Knowledge-Centered
Systems I1I (Springer, 2011), pp. 20-55

M. V. Steen and A. E. Eiben, Peer-to-peer evolutionary
algorithms with adaptive autonomous selection, in Proc.
Conf. Genetic and Evolutionary Computation (2007), pp.
1460-1467.

J. L. Laredo, A. E. Eiben, M. Steen, P. A. Castillo, A. M.
Mora and J. J. Merelo, P2P evolutionary algorithms: A
suitable approach for tackling large instances in hard
optimization problems, in Proc. 14th Int. Euro-Par Conf.
Parallel Processing (2008), pp. 622-631.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, 1. Stoica and M.
Zaharia, A view of cloud computing, Communications of the
ACM 53(4) (2010) 50-58.

Q. Zhang, L. Cheng and R. Boutaba, Cloud computing:
State-of-the-art and research challenges, Journal of Internet
Services and Applications 1(1) (2010) 7-18.

W.P. Lee, Y. T. Hsiao and W. C. Hwang, Designing a parallel
evolutionary algorithm for inferring gene networks on the
cloud computing environment, BMC Systems Biology 8(5)
(2014).

. K. Meri, M. G. Arenas, A. M. Mora, J. J. Merelo, P. A.

Castillo, P. Garcia-Sanchez and J. L. J. Laredo, Cloud-based
evolutionary algorithms: An algorithmic study, Natural
Computing 12(2) (2013) 135-147.
J. A. Parejo, A. Ruiz-Cortes, S. Lozano and P. Fernandez,
Metaheuristic optimization frameworks: A survey and
benchmarking, Soft Computing 16 (2012) 527-561.
L. Di Gaspero and A. Schaerf, Easylocalt++: An object-
oriented framework for flexible design of local search
algorithms, Softw Pract Exp. 33 (8) (2003) 733-765.
S. Luke, et al., Ecj: A java- based evolutionary computation
research system (2009), http://cs.gmu. edu/eclab/projects/ecj/
S. Cahon, N. Melab and E. G. Talbi, ParadisEO: A
framework for the reusable design of parallel and distributed
metaheuristics, Journal of Heuristics 10(3) (2010) 357-380.
M. Kronfeld, H. Planatscher and A. Zell, The EvA2
optimization framework, in Proc. Conf. Learning and
Intelligent Optimization, eds. C. Blum, R. Battiti (Springer,
2010), pp 247-250.

. J. A. Parejo et al., FOM: A framework for metaheuristic

optimization, in Proc. Int. Conf. Computational Science
(Springer, 2003), pp. 886—895.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

S. Wagner, Heuristic optimization software systems modeling

of heuristic optimization algorithms in the heuristic lab
software environment, Ph.D. Thesis (Johannes Kepler
University, Linz, 2009).

S. Ventura et al., JCLEC: A java framework for evolutionary
computation, Soft Computing—A Fusion of Foundations,
Methodologies and Applications 12(4) (2008) 381-392.

E. Alba et al., MALLBA: A software library to design
efficient optimisation algorithms, International Journal of
Innovative Computing and Applications 1 (2007) 74-85.

J. Brownlee, OAT: The optimization algorithm toolkit,
Technical Report (Complex Intelligent Systems Laboratory,
Swinburne University of Technology, 2007).

M. Lukasiewycz, F. R. M. Glass and S. Helwig, Opt4j — The
optimization framework for java (2009), http://www.opt4j.org
S. Ye, G. Dai, L. Peng and M. Wang, A hybrid adaptive
coevolutionary differential evolution algorithm for large-scale
optimization, in Proc. IEEE Congress on Evolutionary
Computation (Bejing, 2014), pp. 1277-1284.

X. Li and X. Yao, Cooperatively coevolving particle swarms
for large scale optimization, [EEE Transactions on
Evolutionary Computation 16(2) (2012) 210-224.

M. N. Omidvar, X. Li, Y. Mei and X. Yao, Cooperative co-
evolution with differential grouping for large scale
optimization, [EEE Transactions on Evolutionary

Computation 18(3) (2013) 378-393.

M. Lozano, D. Molina and F. Herrera, Editorial scalability of
evolutionary algorithms and other metaheuristics for large-
scale continuous optimization problems, Soft Computing 15
(11) (2011) 2085-2087.

K. Tang, X. Li, P. N. Suganthan, Z. Yang and T. Weise,
Benchmark functions for the CEC'2010 special session and
competition on large scale global optimization, Technical
Report (Nature Inspired Computation and Applications
Laboratory, USTC, China, 2009).

X. Li, K. Tang, M. Omidvar, Z. Yang and K. Qin, Benchmark
functions for the CEC2013 special session and competition
on large scale global optimization, Technical Report
(Evolutionary Computation and Machine Learning Group,
RMIT University, Australia, 2013).

D. Molina, M. Lozano and F. Herrera, MA-SW-Chains:
Memetic algorithm based on local search chains for large
scale continuous global optimization, in Proc. IEEE

Congress on Evolutionary Computation (2010), pp 1-8.

A. LaTorre, S. Muelas and J.-M. Pena, Multiple offspring
sampling in large scale global optimization, in Proc. IEEE

Congress on Evolutionary Computation (2012), pp 1-8.

Z. Yang, K. Tang and X. Yao. Large scale evolutionary
optimization using cooperative coevolution, Information
Sciences 178 (2008) 2985-2999.

A. E. 1. Brownlee, J. A. W. McCall and Q. Zhang, Fitness
modeling with Markov networks, /EEE Transactions on
Evolutionary Computation 17(6) (2013) 862-879.

Y. Jin, Surrogate-assisted evolutionary computation: recent
advances and future challenges, Swarm Evolutionary

Computation 1(2) (2011) 61-70.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

635

Downloaded by [New Y ork University] at 05:20 22 May 2015

214.

215.

216.

217.

218.

2109.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

Y. Tenne, K. Izui and S. Nishiwaki, Dimensionality-reduction
frameworks for computationally expensive problems, in Proc.
IEEE Congress on Evolutionary Computation (2010), pp. 1-8.
B. Liu, Q. Zhang and G. G. E. Gielen, A Gaussian process
surrogate model assisted evolutionary algorithm for medium
scale expensive optimization problems, /EEE Transactions on
Evolutionary Computation 18(2) (2014) 180-192.

D. Lim, Y. Jin, Y.-S. Ong and B. Sendhoff, Generalizing sur-
rogate-assisted evolutionary computation, /EEE Transactions
on Evolutionary Computation 14(3) (2010) 329-355.

A. E. Eiben and S. K. Smit, Parameter tuning for configuring
and analyzing evolutionary algorithms, Swarm and Evolution-
ary Computation 1 (2011) 19-31.

M. Birattari, Z. Yuan, P. Balaprakash and T. Stutzle, F-race
and iterated F-race: An overview, in Experimental Methods
for the Analysis of Optimization Algorithms (Springer, 2010),
pp. 311-336.

M. Lopez-Ibanez, J. Dubois-Lacoste, T. Stuzle and M. Birat-
tari, The irace package, iterated race for automatic algorithm
configuration, Technical Report (IRIDIA, Universite Libre de
Bruxelles, 2011).

T. Bartz-Beielstein, C. Lasarczyk and M. Preuss, The sequen-
tial parameter optimization toolbox, in Experimental Methods
for the Analysis of Optimization Algorithms (Springer, 2010),
pp- 337-360.

F. Hutter, H. H. Hoos, K. Leyton-Brown and T. Stutzle,
ParamILS: An automatic algorithm configuration framework,
Journal of Artificial Intelligence Research 36 (2009) 267-306.
F. Hutter, H. H. Hoos and K. Leyton-Brown, Sequential
model-based optimization for general algorithm configura-
tion, in Proc. 5th Int. Conf. Learning and Intelligent Opti-
mization (Springer, 2011), pp. 507-523.

J. Santamaria, S. Damas, O. Cordon and A. Escamez, Self-
adaptive evolution toward new parameter free image
registration methods, [EEE Transactions on Evolutionary
Computation 17(4) (2013) 545-557.

B. B. Barrios, Q. Castella, A. A. Juan, H. R. Lourenco and M.
Mateo, ILS-ESP: An efficient, simple, and parameter-free
algorithm for solving the permutation flow-shop problem
(Barcelona GSE Working Paper Series, 2012).

G. Caldas, R. Schirru, FPBIL: A parameter-free evolutionary
algorithm, in W. Kosinski (Eds.) Advances in Evolutionary
Algorithms (I-Tech Education and Publishing, 2008), pp. 49-
75.

T. Erl, Z. Mahmood and R. Puttini, Cloud Computing,
Technology & Architecture (Prentice Hall, 2013).

J. Chen, B. Xin, Z. Peng, L. Dou and J. Zhang. Optimal
contraction theorem for exploration-exploitation tradeoff in
search and optimization, /EEE Transactions on Systems, Man,
and Cybernetics Part A:Systems and Humans, 39(3) (2009)
680-691.

PAN. Bosman and D. Thierens, The balance between
proximity and diversity in multiobjective evolutionary
algorithms, IEEE Transactions on Evolutionary Computation
7(2) (2003) 174-188.

M. Crepinsek, S.-H. Liu, and M. Mernik. Exploration and
exploitation in evolutionary algorithms: A survey. ACM
Comput. Surv. 45(3), (2013), 33 pages.

230

231.

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244.

A Walk into Metaheuristics

. B. Ostadmohammadi Arani, P. Mirzabeygi and M. Shariat
Panahi. An improved PSO algorithm with a territorial
diversity-preserving scheme and enhanced exploration-
exploitation balance, Swarm and Evolutionary Computation,
11 (2013) 1-15.

A. LaTorre, S. Muelas and J.M. Pefia, A MOS-based dynamic

memetic differential evolution algorithm for continuous
optimization: a scalability test, Soft Computing, 15(11) (2011)

2187-2199.

JE. Fieldsend, RM. Everson and S. Singh, Using
unconstrained elite archives for multiobjective optimization,
IEEE Transactions on Evolutionary Computation, 7(3)
(2003), 305-323.

M.G. Epistropakis, X. Li and E.K. Burke, A dynamic archive
niching differential evolution algorithm for multimodal
optimization, in Proc. IEEE Congress on Evolutionary
Computation (2013) pp 79-86.

C.K. Chow and S.Y. Yuen, An Evolutionary Algorithm That
Makes Decision Based on the Entire Previous Search History,
IEEE Transactions on Evolutionary Computation 15(6) 741-
769.

K. Sorensen. Metaheuristics—the metaphor exposed.
International Transactions in Operational Research, 22(1)
(2015) 3-18.

A. Piotrowski, J. Napiorkowski, P.M. Rowinski, How novel is
the “novel” black hole optimization approach? Information
Sciences, 267 (2014) 191-200.

L. Bianchi, M. Dorigo, L.M. Gambardella, W.J. Gutjar, A
survey on metaheuristics for stochastic combinatorial
optimization, Natural Computing, 8(2) (2009), 239-287.

K. Narukawa, T. Rodemann, Examining the Performance of
Evolutionary Many-Objective Optimization Algorithms on a
Real-World Application, in Proc of Sixth International
Conference on Genetic and Evolutionary Computing (ICGEC,
2012), pp. 316-319.

R.W. Garden and A.P. Engelbrecht, Analysis and
Classification of Optimisation Benchmark Functions and
Benchmark Suites, in Proc. IEEE Congress on Evolutionary
Computation (Bejing, 2014), pp. 1641-1649.

D.H. Wolpert and W.G. Macready, No free lunch theorems for
optimization, [EEE Transactions on Evolutionary
Computation, 1(1) (1997) 67-82.

C. Garcia-Martinez, F.J. Rodriguez and M. Lozano, Arbitrary
function optimisation with metaheuristics: No free lunch and
real-world problems: No free lunch and real-world problems,
Soft Computing, 16(12) (2012) 2115-2133.

F. Neri and C. Cotta, Memetic algorithms and memetic
computing optimization: A literature review, Swarm and
Evolutionary Computation 2 (2012) 1-14.

S. Das, M.H. Lim, Guest editorial: Special issue on
engineering applications of memetic computing, [EEE
Transactions on Systems, Man and Cybernetics Part C:
Applications and Reviews, 42(5) (2012) 609-611.

X.S. Chen, Y.S. Ong, M.H. Lim and K.C. Tan, A Multi-Facet
Survey on Memetic Computation, /EEE Transactions on
Evolutionary Computation 15(5) (2011) 591-607.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

636

