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Abstract—There are many real-world classification problems in-
volving multiple classes, e.g., in bioinformatics, computer vision, or
medicine. These problems are generally more difficult than their
binary counterparts. In this scenario, decomposition strategies usu-
ally improve the performance of classifiers. Hence, in this paper, we
aim to improve the behavior of fuzzy association rule-based clas-
sification model for high-dimensional problems (FARC-HD) fuzzy
classifier in multiclass classification problems using decomposition
strategies, and more specifically One-versus-One (OVO) and One-
versus-All (OVA) strategies. However, when these strategies are ap-
plied on FARC-HD, a problem emerges due to the low-confidence
values provided by the fuzzy reasoning method. This undesirable
condition comes from the application of the product t-norm when
computing the matching and association degrees, obtaining low
values, which are also dependent on the number of antecedents of
the fuzzy rules. As a result, robust aggregation strategies in OVO,
such as the weighted voting obtain poor results with this fuzzy
classifier. In order to solve these problems, we propose to adapt
the inference system of FARC-HD replacing the product t-norm
with overlap functions. To do so, we define n-dimensional overlap
functions. The usage of these new functions allows one to obtain
more adequate outputs from the base classifiers for the subsequent
aggregation in OVO and OVA schemes. Furthermore, we propose
a new aggregation strategy for OVO to deal with the problem of
the weighted voting derived from the inappropriate confidences
provided by FARC-HD for this aggregation method. The quality
of our new approach is analyzed using 20 datasets and the con-
clusions are supported by a proper statistical analysis. In order to
check the usefulness of our proposal, we carry out a comparison
against some of the state-of-the-art fuzzy classifiers. Experimental
results show the competitiveness of our method.

Index Terms—Aggregations, fuzzy rule-based classification sys-
tems, multiclassification, one-versus-one, overlaps.
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I. INTRODUCTION

FUZZY rule-based classification systems (FRBCSs) are
well known and widely used tools in the field of pattern

recognition and classification problems. They provide an inter-
pretable model by using linguistic labels in the antecedents of
their rules [1]. FRBCSs have been applied in multiple real-world
problems, including domotics [2], anomaly intrusion detection
[3], image processing [4], and medical problems [5], among
others.

In classification, two types of problems can be differentiated
depending on the number of classes that compose the output of
the problem: binary (two classes) and multiclass problems (more
than two classes). Usually, it is more difficult to build a classifier
in the latter case due to the overlapping among the examples of
the different classes of the problem, which makes the defini-
tion of decision boundaries more complex. Even so, multiclass
problems are present in several applications domains, such as
fingerprints recognition [6], handwritten digits [7], microarrays
[8], or cardiovascular disease classification [5]. A commonly
used solution to deal with multiclass classification problems
is to use decomposition techniques [9], [10], which try to di-
vide the original multiclass problem into easier to solve binary
classification problems, which are faced by independent binary
classifiers named base classifiers.

Different decomposition strategies have been proposed in the
specialized literature [10]. Two of the most well known and used
ones are One-versus-One (OVO) and One-versus-All (OVA) [9],
which can be included within the wider error correcting output
codes framework [11]. The OVO scheme divides the original
problem into as many subproblems as possible pairs of classes,
whereas in OVA the division results in as many subproblems
as classes in the original one. In both strategies, each binary
problem is addressed by an independent base classifier. When
classifying a new example, the outputs of all the base classifiers
are combined to make the final decision (aggregation phase).

In this paper, we aim to improve the performance of fuzzy as-
sociation rule-based classification model for high-dimensional
problems (FARC-HD) [12] in multiclass problems using decom-
position strategies. Previous works have shown that although the
base classifier can be capable of solving multiclass problems,
such as FARC-HD, these strategies usually work better than ad-
dressing the problem directly [9], [13]–[16]. However, two main
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difficulties emerge when carrying out the proposed hybridiza-
tion.

1) The aggregation of the classifiers in OVA and OVO
schemes directly depends on the confidences provided
by the base classifiers. In the case of FARC-HD, due
to the usage of additive combination [17] as fuzzy rea-
soning method, we consider as confidence the sum of
the association degrees obtained for each class, which are
computed by multiplying the matching degrees (of the ex-
ample with the antecedents of the rules using the product
t-norm to model the conjunction) and the rule weight. For
this reason, when combining FARC-HD and decompo-
sition strategies the confidences obtained when carrying
out the inference process of FARC-HD are not suitable
for the subsequent aggregation. From our point of view,
this is due to the usage of the product in the inference of
FARC-HD, which produces small confidences with low
variations for each pair of classes and penalizes the rules
with the largest number of antecedents.

2) Aggregation strategies that usually have a robust and ac-
curate performance in OVO, such as the weighted voting
(WV) [18], [9], [19], do not obtain good results when
using FARC-HD as base classifier (while others do not
present this problem). Our hypothesis is that the confi-
dence estimation of the nonpredicted class provided by
FARC-HD distorts the combination in OVO when using
this aggregation strategy.

In order to address the former problem, we propose to
adapt the inference process of FARC-HD in such a way that
the confidences obtained allow decomposition strategies to pro-
duce more accurate aggregations and consequently, can lead to
improve the classification in OVO and OVA models. To do so,
we will use overlap functions [20], which satisfy similar prop-
erties to those of the product, in the inference of FARC-HD.
These functions allow us to obtain values with a higher varia-
tion than those provided by the product, in such a way that the
confidences used in OVO and OVA (stored in the score-matrix
or vector) are better modeled and, hence, greater knowledge is
acquired for the posterior aggregation.

Since overlaps functions are originally defined for 2-D prob-
lems, in this paper, we introduce the concept of n-dimensional
overlap functions to be able to compute the overlap among
n input values. More specifically, according to the problem re-
lated to the number of antecedents, we propose the usage of
n-dimensional overlap functions that do not decrease the results
as the number of input values n increases.

In addition, aiming at facing the latter problem, we propose
an alternative to the usage of the WV in the aggregation phase
of OVO strategy. To do so, we propose an aggregation strategy
named WinWV, which follows the idea of the WV, in which
we do not consider the confidences obtained by nonpredicted
classes, since its usage is not appropriate for the classification in
the case of FARC-HD (we will show that OVA and other OVO
aggregations are not affected by this problem).

In order to assess the quality of the methods, we use 20
numerical datasets from the KEEL dataset repository [21] and
we contrast the results obtained using nonparametric statistical

tests, as suggested in the specialized literature [22], [23]. In
these experiments, we will study the goodness of the usage n-
dimensional overlap functions and we will also analyze whether
the usage of WinWV allows the performance of the WV to be
enhanced. Moreover, we will show the validity of our proposal to
improve the performance of FARC-HD in multiclass problems,
comparing it against the original FARC-HD algorithm and some
of the best performing fuzzy methods, i.e., FURIA algorithm
[24], IVTURSFARC-HD [25], and PTTD [26].

The rest of this paper is organized as follows. In Section II,
we briefly introduce FARC-HD and decomposition strategies
and we describe some of the aggregations for OVO that we
use in this paper. Section III contains a detailed description of
our proposals to use FARC-HD with decomposition strategies
and puts forward the definition of the n-dimensional overlap
functions. The setup of the experimental framework is given in
Section IV and the analysis of the results obtained is presented
in Section V. Finally, Section VI concludes this paper.

II. PRELIMINARIES

In this section, we first recall some concepts about FRBCSs
and we briefly explain the FARC-HD algorithm [12] (see Sec-
tion II-A). Then, we describe OVO and OVA decomposition
strategies and some of the OVO aggregation methods studied in
the literature (see Section II-B). Finally, we review the related
works in Section II-C.

A. Fuzzy Rule-Based Classification Systems and Fuzzy
Association Rule-Based Classification Model for
High-Dimensional Problems

A classification problem consists of learning a mapping func-
tion called classifier from a set of training examples, named
training set, that allows one to classify previously unknown ex-
amples. Let xp = (xp1 , . . . , xpn ) be the pth example of the train-
ing set, which is composed of P examples, where xpi is the value
of the ith attribute (i = 1, 2, . . . , n) of the pth training example.
Each example belongs to a class yp ∈ C = {C1 , C2 , . . . , Cm},
where m is the number of classes of the problem.

We find multiple techniques used to cope with classification
problems. Among them, FRBCSs are widely used because they
provide an interpretable model by means of the use of linguistic
labels in their rules [1].

The two main components of FRBCSs are the following ones:
1) Knowledge Base: It is composed of both the rule base (RB)

and the database, where the rules and the membership
functions are stored, respectively.

2) Fuzzy Reasoning Method: This is the mechanism that
classifies examples using the information stored in the
knowledge base.

In this paper, we focus on a fuzzy rule learning algorithm
known as FARC-HD [12], since it is currently one of the most
accurate and interpretable FRBCSs in the literature. This algo-
rithm makes use of the following rule structure:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class = Cj with RWj (1)
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Fig. 1. Linguistic labels partitioning in FARC-HD.

where Rj is the label of the jth rule, x = (x1 , . . . , xn ) is an
n-dimensional pattern vector that represents the example, Aji is
a fuzzy set, Cj ∈ C is the class label, and RWj is the rule weight,
which is computed using the most common specification, i.e.,
the fuzzy confidence value or certainty factor defined in [27]:

RWj = CFj =

∑

xp ∈ClassCj

μAj
(xp)

P∑

p=1

μAj
(xp)

(2)

where μAj
(xp) is the matching degree of the example xp with

the antecedent part of the fuzzy rule Rj , which is computed
using (3), shown further in this section. In the case of FARC-
HD, linguistic labels are modeled using uniformly distributed
triangular membership functions, which form a strong partition
(see Fig. 1).

In order to generate the RB, FARC-HD applies a learning
process composed of three steps.

1) Fuzzy Association Rule Extraction for Classification:
With the aim of obtaining the fuzzy RB, a search tree
[28] is constructed for each class. To do so, the frequent
itemsets (an item is a linguistic label) are computed using
the support and confidence. Finally, the fuzzy rules are
generated from the obtained frequent itemsets. The num-
ber of linguistic terms in the antecedents of the rules is
limited by the maximum depth of the tree.

2) Candidate Rule Prescreening: This phase makes use of
subgroup discovery to preselect the most interesting rules
from the RB obtained in the previous stage by means
of a pattern weighting scheme [29]. The weights of the
examples are based on the coverage of the fuzzy rules.

3) Genetic Rule Selection and Lateral Tuning: An evolution-
ary algorithm is used both to perform a lateral tuning of
the fuzzy sets [30] and to select the most accurate rules
from the RB generated in the previous steps.

Let xp = (xp1 , . . . , xpn ) be a new example to be classified,
FARC-HD applies a fuzzy reasoning method called additive
combination [17], computed in four steps.

1) Matching Degree. In this step, the strength of activation
of the if-part for all rules in the RB with the pattern xp is
computed

μAj
(xp) = T (μAj 1 (xp1), . . . , μAj nj

(xpnj
)) (3)

where μAj i
(xpi) is the matching degree of the example

with the ith antecedent of the rule Rj , T is a t-norm (in
the case of FARC-HD the product), and nj is the number
of antecedents of the rule.

2) Association Degree. The association degree of the pattern
xp with each rule in the RB is computed

bj (xp) = μAj
(xp) · RWj . (4)

3) Confidence Degree. In this stage, the confidence degree for
each class is computed. To obtain the confidence degree
of a class, the association degrees of the rules of that
class, i.e., those whose consequent class is the class we
are considering, are summed

confl(xp) =
∑

Rj ∈RB ; Cj = l

bj (xp), l = 1, 2, . . . ,m.

(5)
4) Classification. The class that obtain the highest confidence

degree is the predicted one

Class = arg max
l=1,...,m

(conf l(xp)). (6)

As we can observe in the rule structure and the fuzzy reason-
ing method, FARC-HD is capable of solving multiclass classifi-
cation problems directly. However, previous works have shown
that decomposition strategies usually work better than address-
ing the problem directly [9], [10], [13]–[16]. Therefore, we
propose to use the decomposition strategies with the aim of im-
proving the performance of FARC-HD when facing multiclass
problems. However, as we have stated in Section I, we will show
that there are some issues we need to address when combining
FARC-HD and these strategies.

B. Decomposition Strategies

Decomposition strategies [10] divide the original multiclass
problem into simpler binary problems that are faced by inde-
pendent binary classifiers, which are referred as base classifiers.
These strategies can be used both with classifiers that are able
to face only two-class classification problems and those having
an inherent multiclass support. In this paper, we consider two of
the most used decomposition strategies in the literature: OVO
and OVA [9] strategies.

1) One-Versus-One: OVO decomposition divides a problem
of m classes into m(m − 1)/2 binary subproblems (all possible
pairs of classes). Each problem is faced by a binary classi-
fier, which is responsible for distinguishing a pair of classes
{Ci, Cj}. When classifying a new example, each base classifier
will return a pair of confidence degrees rij , rji ∈ [0, 1] in favor
of classes Ci, Cj , respectively (if only a confidence degree is
given for the predicted class, the other is usually computed as
rji = 1 − rij , being Ci the predicted one). The outputs (confi-
dence degrees) provided by all the base classifiers are stored in
the score-matrix R as follows:

R =

⎛

⎜⎜⎜⎝

− r12 · · · r1m

r21 − · · · r2m

...
...

rm1 rm2 · · · −

⎞

⎟⎟⎟⎠ . (7)

Since each binary subproblem is faced by an independent
classifier, we normalize the score-matrix such that the range
of the confidences provided by all classifiers is the same. This
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normalization is very important when using FARC-HD because
it does not return confidences in [0,1] that can be interpreted as
probabilities. The score-matrix is normalized as follows:

rij =

⎧
⎨

⎩

rij

rij + rji
if rij �= 0 or rji �= 0

0.5 if rij = rji = 0.
(8)

Finally, the outputs of the base classifiers are aggregated and
the predicted class is obtained. This aggregation step is a key
factor for the classification process [9]. In this paper, we consider
four well-known OVO aggregation methods.

1) Voting Strategy [31]. Each base classifier votes for the
predicted class and the class having the largest number of
votes is given as output

Class = arg max
i=1,...,m

∑

1≤j �=i≤m

sij (9)

where sij is 1 if rij > rji and 0 otherwise.
2) Weighted Voting [18]. Each base classifier votes for both

classes based on the confidences obtained for them. The
class having the largest value is given as output

Class = arg max
i=1,...,m

∑

1≤j �=i≤m

rij . (10)

3) Non-Dominance Criteria [32]. The score-matrix is con-
sidered to be a fuzzy preference relation. Then, class with
the highest nondominance degree is the predicted one

Class = arg max
i=1,...,m

{
1 − max

j=1,...,m
r′j i

}
(11)

where R′ is the strict score-matrix.
4) Learning Valued Preference for Classification [33], [34].

This aggregation strategy, as in ND, considers the score-
matrix as a fuzzy preference relation. In this manner, the
original relation is decomposed into three new relations
with different meanings: the strict preference, the conflict,
and the ignorance. In order to obtain the output class, a
decision rule based on voting strategy is proposed

Class = arg max
i=1,...,m

∑

1≤j �=i≤m

Pij +
1
2
Cij +

Ni

Ni + Nj
Iij

(12)
where Ni is the number of examples from the class i in
the training data, Cij is the degree of conflict (the degree
to which both classes are supported), Iij is the degree of
ignorance (the degree to which none of the classes are
supported), and Pij and Pji are the strict preference for
i and j, respectively. These variables are computed as
follows:

Cij = min {rij , rji}
Pij = rij − Cij

Pji = rji − Cij

Iij = 1 − max {rij , rji}.
Owing to the way in which the multiclass problem is divided

in OVO scheme, there is an issue inherent to this decomposition

method: the noncompetent classifiers [19]. The learning process
of each base classifier is performed using only the examples be-
longing to the two classes that this classifiers will classify and,
consequently, it ignores the examples belonging to other classes.
Therefore, the remainder classes are unknown for these classi-
fiers and their outputs are irrelevant when classifying examples
of those classes. However, these outputs are aggregated in the
same way as the relevant ones, possibly misleading the correct
labeling of the example. Although this is an interesting line, it is
out of the scope of this paper and we leave it as a future research
line.

2) One-Versus-All: OVA decomposition divides a problem
of m classes into m binary problems, which are addressed by in-
dependent binary classifiers. Each base classifier distinguishes
one of the classes from all other classes. The learning process of
these classifiers is performed using the whole training data, con-
sidering the examples from the single class as positives and the
rest of examples as negatives. When classifying a new example,
each base classifier will return a confidence degree ri ∈ [0, 1] in
favor of the class Ci , which will be stored in a score-vector R

R = (r1 , . . . , ri , . . . , rm ) . (13)

As in OVO, we need to normalize the score-vector such that
the range of the confidences provided by all classifiers is the
same. In order to do so, we also need the score-vector in which
the confidences obtained by each classifier for the negative class
are stored R̂. With both vectors, the normalization of the score-
vector R is performed as follows:

ri =
ri

ri + r̂i
. (14)

Finally, the most commonly used aggregation in OVA con-
sider the usage of the maximum value in the score-vector and,
thus, the class with the highest confidence will be predicted.

C. Related Works

Decomposition strategies can be included in the broader cat-
egories of ensembles and multiple classifier systems (MCSs)
[35], [36]. These types of systems aim to improve the classifi-
cation performance by the combination of several classifiers. In
fact, ensembles and MCSs are usually referred to those meth-
ods where the base classifiers are able to predict any of the
classes of the problem; however, decomposition techniques are
also formed of sets of classifiers, but there is a major differ-
ence: each base classifier is not able to predict all the classes
in the problem (only two of them or two combinations of dif-
ferent classes are predicted). Such an important difference has
produced rather different approaches for each type of method.

Traditional ensembles aim to produce diverse base classi-
fiers [37], whose differences in their predictions allow them to
increase the performance, since they complement each other.
Widely used ensemble methods are Bagging [38] and Boosting
[39], [40]. These type of methods have been also considered
in the fuzzy community, where different approaches have been
proposed using fuzzy systems as base classifiers [41]–[44]. In
[41], the authors combined the FRBCSs obtained in the pareto
front of a multiobjective optimization genetic algorithm. An
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extension of the classical random Forests (a variant of bag-
ging) using fuzzy decision trees was presented in [42] and [45].
Boosting in the fuzzy context was applied in [46]. Trawiński
et al. [43], [44], [47] developed a methodology to construct
FURIA-based multiclassifiers in a series of works, including
all the different phases of an ensemble, from its construction
(also bagging-based) to the combination procedure presented in
the latter work. All these type of models are usually no longer
interpretable and, hence, the fuzzy classifiers are used instead
of other weak classifiers, such as the commonly used deci-
sion trees to take advantage of the fuzzy decision boundaries
to reach highly accurate models, which may need the usage of
thousands of rules [44], even though some authors focused on
reducing this number [48]. Moreover, FURIA [24] has been one
of the most extended base classifier in this framework, which
by itself is not as interpretable as classical FRBCSs [1], since
it make use of hyperrectangles adjusted for each rule instead of
using the same linguistic labels in each rule. For this reason, in
this paper, we only deal with decomposition-based ensembles,
which may maintain part of the interpretability of the original
models.

Otherwise, decomposition strategies have also attracted atten-
tion as a way of improving classification in multiclass problems
with FRBCSs [26], [32], [34], [49]. In this framework, different
base classifiers have been used (Fuzzy Ripper [34], FH-GBML
[50] or SLAVE [51]), as well as different combination meth-
ods have been proposed, such as the nondominance criterion
(ND) in [32] or the learning valued preference for classification
(LVPC) [34], [49] already described in Section II-B. In these
papers, the authors considered the score-matrix as a preference
relation from which the best alternative should be predicted. In
order to do so, the conflict and ignorance were modeled in [49]
and thereafter applied in the fuzzy Ripper algorithm presented
in [34]. Similarly with a different approach to output the class
from the score-matrix, Fernandez et al. [32] proposed the usage
of the ND criterion, showing good results with FH-GBML and
SLAVE classifiers. In addition, in [26], Senge and Hüllermeier
presented the top-down induction of fuzzy pattern trees (PTTD),
which made use of OVA approach.

However, recent developments with fuzzy classifiers are not
only related to ensemble strategies. Taking into account the good
properties of FRBCSs, several approaches [24], [25], [52]–[54]
have been proposed aimed at improving the tradeoff between
accuracy and interpretability [55]. FURIA [24] extended the
RIPPER algorithm using fuzzy rules and it provides accurate
results. In [52], Chen et al. combined a feature selection pro-
cess using the so-called modulator functions and a fuzzy rule
extraction mechanism based on fuzzy clustering. Castro et al.
[53] defined a fuzzy classifier using general fuzzy rules and
a new mechanism aimed at solving the conflicts among them.
In [54], Acilar and Arslan defined a new approach to design
fuzzy classifiers using k-means clustering and a memetic algo-
rithm to find the optimal values of fuzzy rules and membership
functions. In order to improve the interpretability of TSK fuzzy
classifiers, the usage of a minimax probability was proposed in
[56]. Finally, Sanz et al. [25] provided a framework to improve
the performance of FRBCSs using interval-valued fuzzy sets.

On account of the different fuzzy methodologies described
above, we have considered to include those following a similar
philosophy to our proposal in the experimental study. More
specifically, we have considered both aggregations defined in the
fuzzy context (ND and LVPC) [32], [34], [49], the PTTD [26]
method as an OVA-based fuzzy system, as well as FURIA [24]
and IVTURS [25] as state-of-the-art fuzzy classifiers. Finally,
we should mention that none of the ensemble/multiclassifier
approaches previously enumerated has addressed the problem
affecting the inference that we aim to overcome in this paper.

III. INTRODUCING n-DIMENSIONAL OVERLAP FUNCTIONS TO

ADAPT FARC-HD BEHAVIOR IN ONE-VERSUS-ALL

AND ONE-VERSUS-ONE

In this paper, we propose to combine FARC-HD with OVA
and OVO decomposition strategies in order to improve the per-
formance of FARC-HD in multiclass classification problems.
However, the confidences provided by FARC-HD are not ad-
equate for them due to the use of the product to compute the
association degree, as we will show in the experimental anal-
ysis. Thus, the inference process needs to be adapted for the
sake of a better synergy between FARC-HD and decomposition
schemes.

In the remainder of this section, we first describe the way in
which we introduce FARC-HD in OVO and OVA models, as
well as the problems that we have to address when carrying out
this combination (see Section III-A). Next, we recall the concept
of 2-D overlap functions and we present the new definition of
n-dimensional overlap functions, as well as their construction
method (see Section III-B). Then, we describe the modifica-
tion of the inference of FARC-HD using n-dimensional overlap
functions aiming at improving the synergy between FARC-HD
and decomposition strategies (see Section III-C). Finally, we
present a new aggregation strategy for the OVO model named
WinWV that solves the problems of the WV with the confi-
dences of FARC-HD (see Section III-D).

A. Using Fuzzy Association Rule-Based Classification Model
for High-Dimensional Problems as Base Classifier in the
One-Versus-All and One-Versus-One Strategies

In order to use OVO and OVA strategies with FARC-HD, we
need to fill the score-matrix of OVO [(7) and the score-vector of
OVA (13)] with the confidences provided by FARC-HD for each
class. More specifically, we consider as confidences the confi-
dence degree for each class computed using (5). Both the match-
ing and the association degrees of the example with the fuzzy
rules are computed by (3) and (4), respectively, using the product
t-norm.

When low values are aggregated using the product t-norm,
the range in which the result can vary is small (the lower the
input values are, the smaller the range becomes), which may
happen when computing the matching degree of several fuzzy
rules. This effect is further accentuated as the number of an-
tecedents of the rules increases, which implies that the associa-
tion degrees of those rules with more antecedents will be smaller
and will have a lower variation. This behavior implies that the
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confidences stored in the score-matrix and score-vector will
have low variations as well, which is not desirable for the subse-
quent aggregation performed in OVO and OVA schemes. Con-
sequently, it seems suitable to modify the inference process in
such a way that the aggregation of the values involved in the
computation of the association degrees is made using functions
whose results are in a wider range, maintaining more informa-
tion for the aggregation process (see Section III-C).

The previous problem does not affect the behavior of the
original FARC-HD, since the confidences obtained after the in-
ference process are not used beyond classification and, hence,
this variation does not affect the final result given by the al-
gorithm. However, in decomposition strategies, the confidences
provided by FARC-HD are used in the aggregation phase and,
hence, the predictions are used beyond the decision of the class
prediction of the base classifiers. Thus, a low variation in the
confidences might have a negative effect in OVO and OVA mod-
els, which is especially reflected in the unexpected behavior of
robust aggregation strategies used in OVO, such as the WV,
as we will show in the experimental study. For this reason, a
new aggregation strategy that solves the problems of the WV is
needed (see Section III-D).

B. n-Dimensional Overlap Functions

The concept of overlap function [20] was introduced in im-
age processing in order to classify those pixels that it was not
clear whether they belonged to the object or to the background.
This concept has been applied in many image processing prob-
lems [57]–[59] and used in [60] to model the indifference in
preference relations. However, the application range of these
functions has turned out to be much wider, since they allow one
to recover many of the characteristics of the t-norms without
imposing the associativity. Precisely because the associativity
is not demanded, the extension of the concept of overlap func-
tion to dimensions higher than two is not direct. Moreover, this
extension is necessary in order to use overlap functions in prob-
lems in which the associativity is not necessary or even natural
and in which t-norms have been used. In this paper, we propose
a definition of overlap function in any finite dimension, which
particularly allows one to recover the 2-D case. Additionally,
we present the construction method of overlap functions using
rational expressions.

We first recall the following definition of two-dimensional
overlap functions.

Definition 1 ([20]). A function O : [0, 1] × [0, 1] → [0, 1] is
an overlap function if satisfies the following conditions.

1) O(x, y) = O(y, x) for all x, y ∈ [0, 1].
2) O(x, y) = 0 if and only if x · y = 0.
3) O(x, y) = 1 if and only if x · y = 1.
4) is increasing.
5) is continuous.
Following this concept, we define the extension of the previ-

ous two-dimensional overlap functions to n dimensions.
Definition 2. A n-dimensional function On : [0, 1]n →

[0, 1] with n ≥ 2 is a n-dimensional overlap function if the
following properties hold.

1) On is symmetric.

2) On (x1 , . . . , xn ) = 0 if and only if
n∏

i=1
xi = 0.

3) On (x1 , . . . , xn ) = 1 if and only if
n∏

i=1
xi = 1.

4) On is increasing.
5) On is continuous in each of the variables.
Example 1: The following functions are examples of n-

dimensional overlap functions:
1) The minimum is a n-dimensional overlap function which

is also a t-norm.

On (x1 . . . , xn ) = min(x1 , . . . , xn ). (15)

2) Take p > 0. Then, the function

On (x1 , . . . , xn ) =

(
n∏

i=1

xi

)p

(16)

is a n-dimensional overlap function. Furthermore, On is
associative if and only if p = 1.

a) If p = 1, we recover the product, which is a t-norm
as well

On (x1 , . . . , xn ) =
n∏

i=1

xi. (17)

b) If p = 1
n , we have the geometric mean

On (x1 , x2 , . . . , xn ) = n

√√√√
n∏

i=1

xi. (18)

3) The harmonic mean is a n-dimensional function

On (x1 , x2 , . . . , xn )

=

⎧
⎪⎪⎨

⎪⎪⎩

n
1
x1

+ . . . + 1
xn

if xi �= 0, for all i = 1, . . . , n

0, otherwise.

(19)

4) The function

On (x1 , . . . , xn ) = sin

(
π

2

(
n∏

i=1

xi

)α)
(20)

where α ≤ 1
2n

, is another example of n-dimensional

overlap function.
As we have shown, both the product, which is used in the orig-

inal FARC-HD, and the minimum, which is another t-norm that
is commonly used in FRBCs, are examples of n-dimensional
overlap functions. Finally, we present a construction method for
n-dimensional overlap functions using rational expressions.

Theorem 1: The mapping On : [0, 1]n → [0, 1] is a n-
dimensional overlap function if and only if there exist f, g :
[0, 1]n → [0, 1] with

On (x1 , . . . , xn ) =
f(x1 , . . . , xn )

f(x1 , . . . , xn ) + g(x1 , . . . , xn )

where
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1) f and g are symmetric.
2) f is nondecreasing and g is nonincreasing.

3) f(x1 , . . . , xn ) = 0 if and only if
n∏

i=1
xi = 0.

4) g(x1 , . . . , xn ) = 0 if and only if
n∏

i=1
xi = 1.

5) f and g are continuous.
Proof. To see the necessity, assume that On is a n-

dimensional overlap function. We can define f(x1 , . . . , xn ) =
On (x1 , . . . , xn ) and g(x1 , . . . , xn ) = 1 − f(x1 , . . . , xn ).
Hence, the properties (1)–(5) of the theorem are direct as well
as

f(x1 , . . . , xn )
f(x1 , . . . , xn ) + g(x1 , . . . , xn )

=
On (x1 , . . . , xn )

1
.

Let us take a look at what happens with the sufficiency.
We must see that the function defined in (1) is in fact a
n-dimensional overlap function. The continuity, the symmetry,
and the monotony are evident. In addition

On (x1 , . . . , xn ) = 0 iff f(x1 , . . . , xn ) = 0 iff
n∏

i=1

xi = 0

and On (x1 , . . . , xn ) = 1 iff f(x1 , . . . , xn )

= f(x1 . . . , xn ) + g(x1 , . . . , xn )
that is, if and only if g(x1 , . . . , xn ) = 0 and if and only if
n∏

i=1
xi = 1.

Example 2: The function

On (x1 , . . . , xn ) =

(
n∏

i=1

xi

) 1
n

(
n∏

i=1

xi

) 1
n

+ max
1≤i≤n

(1 − xi)

is an example of n-dimensional overlap function.

C. Modification of the Inference Process Using n-Dimensional
Overlap Functions

Once the n-dimensional overlap functions and the construc-
tion methods have been presented, we show the proposed mod-
ification of the inference process of FARC-HD in order to im-
prove the aggregation in OVO and OVA strategies. More specif-
ically, we propose to compute the matching degree and the
association degree of the example with the fuzzy rules using the
previously defined n-dimensional overlap functions. To do so,
we replace the t-norm in the matching degree computation (3)
by an overlap function:

μAj
(xp) = On (μAj 1 (xp1), . . . , μAj nj

(xpnj
)). (21)

We must stress that the matching degree is employed to com-
pute both the support and the confidence used in the first step of
the learning algorithm shown in Section II-A. Thus, this mod-
ification also affects the learning process of the algorithm as
well.

Similarly, we substitute the product in the association degree
computation (4) by an overlap function, according to

bj (xp) = O(μAj
(xp),RWj )

= O(On (μAj 1 (xp1), . . . , μAj nj
(xpnj

)),RWj ). (22)

The reason for computing the association degree using an
overlap function instead of the product is the same as in the
case of the matching degree, that is, the low variation of the
association degrees obtained when multiplying the matching
degree and the rule weight.

In this paper, we have considered five different overlap func-
tions to observe their effect in the RB and their influence on
the accuracy of the model (for the sake of brevity, in the exper-
iments, we take the overlap O in (22) the same as On ). Each
overlap function returns lower or higher values than the rest
for the same input tuple. According to the values returned by
the overlap functions, we can establish an order among them.
Thus, we will consider that an overlap function is greater than
other one if the values returned by the first function are higher
than those returned by the second one for the same arguments.
A short description of each function is shown below, sorted in
ascending order by the returned value.

1) Product: The returned value is the product of input values
(17). Indeed, this is the case of the original FARC-HD
and, hence, we are able to recover the original method
using the proposed extension of overlap functions.

2) Minimum: Returns the minimum of input values (15). This
is a t-norm as well, but unlike the product, the returned
value does not decrease when the number of arguments
increases. The minimum is commonly used in FRBCs.

3) Harmonic Mean: The returned value is the harmonic mean
of input values if all of them are different than zero and 0
otherwise (19).

4) Geometric Mean: Returns the geometric mean of input
values (18).

5) Sine: This an example of an overlap function that returns
higher values than means (20). The use of this type of
functions is interesting in order to check what happens in
these cases. In the experiments carried out in Section V,

we take α =
1
2n

.

Among the considered overlap functions, the first one is the
product (used in the original FARC-HD). The product is a
t-norm that returns values with a lower variation than the other
functions and whose returned value decreases as the number of
arguments increases. Next, we have the minimum, which is a
t-norm as well, but whose returned value does not depend on the
number of arguments. Then, we consider the harmonic and the
geometric means as representatives of means that return higher
values than t-norms [61]. Finally, we have considered a func-
tion (SIN) that returns higher values than means. This variety
of overlap functions allows us to have a general overview in the
experiments (see Section V).

According to (19) and (18), both the harmonic and the ge-
ometric means return 0 when one of the arguments is 0. This
property is satisfied by t-norms as well, and it is very important to
conserve the necessary discrimination capability of FARC-HD.
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Fig. 2. Values returned by the different overlap functions. (a) Considering (1, x) as input (b) Considering (x, x) as input.

In the experimental study, we will show that another desirable
property that the overlaps should satisfy in order to work well
in our framework is the idempotence, which is satisfied if

On (x, . . . , x) = x. (23)

Among the previous overlaps, the minimum, the harmonic
mean, and the geometric mean satisfy this property.

In Fig. 2(a) and (b), we can graphically observe the pre-
viously mentioned differences in the values returned by each
overlap function (we depict overlaps with n = 2 to ease the vi-
sualization of their behavior). Fig. 2(a) depicts the behavior of
the overlap functions when aggregating a value with the value 1,
whereas Fig. 2(b) shows the returned values when aggregating
a value with itself. Looking at Fig. 2(a) and (b), we can see that
the proposed n-dimensional overlap functions provide a higher
variation than the product when the input arguments are small.
However, both figures show that there is a huge difference be-
tween the SIN and the rest of the overlap functions. In fact, in
Fig. 2(b), we can observe that the returned value is greater than
the input arguments when aggregating a value with itself, which
might not be a desirable behavior in this framework, as it may
produce a loss of the discrimination capabilities of FARC-HD.

D. Adapting the Weighted Voting to Fuzzy Association
Rule-Based Classification Model for High-Dimensional
Problems Confidence Estimation: WinWV

In addition to the adaptation of the inference process of the
base classifiers to OVO and OVA using overlap functions, we
propose a new aggregation method for the OVO strategy named
WinWV, which is a modification of the WV that does not achieve
the expected results.

As we described in Section II-B, each base classifier provides
a pair of confidence degrees rij , rji ∈ [0, 1] in favor of classes
Ci, Cj so that rij is the confidence predicting the class Ci and
rji is the confidence predicting the class Cj . Although we have
improved the confidences provided by FARC-HD making them
more suitable for the OVO strategy, we will show that the WV
is still not working as expected. From our point of view, the

reason is that the confidence estimation of the nonpredicted
class distorts the aggregation phase in OVO, as we will show in
Section V.

Likewise, the LVPC strategy does not work properly with
these type of confidences, as it can be observed in [32]. In this
case, the confidence for the nonpredicted class does not allow
one to model the conflict and ignorance degrees properly. Notice
that if these terms were not considered, the original WV would
be recovered. For this reason, we focus on solving the problems
of the WV with the confidence estimation of the nonpredicted
class.

To do so, we propose to consider only the confidence of the
predicted class, whereas that of the nonpredicted class is not
taken into account. Therefore, the WinWV aggregation strategy
works as follows:

Class = arg max
i=1,...,m

∑

1≤j �=i≤m

sij (24)

where sij is rij if rij > rji and 0 otherwise. Notice that OVA
and other combination strategies in OVO such as VOTE and
ND (see Section II-B) managing the confidence for the nonpre-
dicted class differently need not be modified in order to achieve
competitive results.

IV. EXPERIMENTAL FRAMEWORK

In this section, we present the setup of the experimental frame-
work used to develop the experiments carried out in Section V.
First, we describe the datasets selected for the experimental
study (see Section IV-A). Next, we show the parameter setup
considered for each method (see Section IV-B). Finally, we in-
troduce the statistical tests that are necessary to assess whether
significant differences exist among the results obtained (see
Section IV-C).

A. Datasets

In order to analyze the performance of our proposal, we
have considered 20 datasets selected from the KEEL dataset
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TABLE I
SUMMARY OF THE FEATURES OF THE DATASETS USED IN THE EXPERIMENTAL

STUDY

Id. Dataset #Ex. #Atts. #Num. #Nom. #Class.

aut autos 159 25 15 10 6
bal balance 625 4 4 0 3
cle cleveland 297 13 13 0 5
con contraceptive 1473 9 6 3 3
eco ecoli 336 7 7 0 8
gla glass 214 9 9 0 7
hay hayes-roth 132 4 4 0 3
iri iris 150 4 4 0 3
new newthyroid 215 5 5 0 3
pag pageblocks 548 10 10 0 5
pen penbased 1100 16 16 0 10
sat satimage 643 36 36 0 7
seg segment 2310 19 19 0 7
shu shuttle 2175 9 9 0 5
tae tae 151 5 3 2 3
thy thyroid 720 21 21 0 3
veh vehicle 846 18 18 0 4
vow vowel 990 13 13 0 11
win wine 178 13 13 0 3
yea yeast 1484 8 8 0 10

repository [21]. Table I summarizes the features of the se-
lected datasets, showing for each dataset the number of exam-
ples (#Ex.), number of attributes (#Atts.), number of numerical
(#Num.) and nominal (#Nom.) attributes, and the number of
classes (#Class.).

To carry out the different experiments, we consider a fivefold
stratified cross-validation model, i.e., we randomly split the
dataset into five partitions of data, each one containing 20% of
the patterns, and we employed a combination of four of them
(80%) to train the system and the remaining one to test it. We
use three different seeds for the execution of the methods in each
partition. In this manner, the result for each dataset is obtained
by computing the average of the five partitions using the three
seeds in each one. Instead of the commonly used cross validation
and in order to correct the dataset shift, that is, when the training
data and the test data do not follow the same distribution [62],
[63], we will use a recently published partitioning procedure
called distribution optimally balanced cross validation [64].

B. State-of-the-Art Fuzzy Classification Methods Used
for Comparison

In this section, we briefly describe the different methods used
throughout the experiments and the configuration that we have
considered for each one. We have selected three recognized
state-of-the-art fuzzy classifiers to compare with our proposal,
in addition to the comparison with the original FARC-HD algo-
rithm.

1) FURIA [24]: This algorithm modifies and extends the RIP-
PER rule induction algorithm [65]. In particular, FURIA
learns fuzzy rules of the form given in (1) instead of con-
ventional rules, using fuzzy sets with trapezoidal member-
ship functions. Additionally, the model built by FURIA
learns unordered rule sets instead of rule lists. The learn-
ing process is divided in two stages:

TABLE II
SETUP OF THE METHODS PARAMETERS

Algorithm Parameters

FURIA Num. of optimizations: 2
Num. of folds: 3

FARC-HD and Num. of linguistic labels per variable: 5
IVTURSFARC-HD Minimum Support: 0.05

Minimum Confidence: 0.8
Maximum depth: 3

Parameter k : 2
Evaluations: 20 000

Number of individuals: 50
α parameter: 0.02
Bits per gen: 30

Rule weight: certainty factor
Inference: Additive Combination

PTTD e parameter: 0.25%
Beam size: 5

1) Learn a rule set for each class using OVA decompo-
sition. To do so, a modified and extended version of
RIPPER is applied, which can be divided into the
building and the optimization phase.

2) Extract the fuzzy rules by fuzzifying RIPPER’s
rules using a greedy algorithm.

When classifying a new example, the class predicted by
FURIA is the one with maximal support. If the example is
not covered by any rule, a rule generalization (stretching)
is carried out and all rules are replaced by their mini-
mal generalizations, which is obtained by deleting all an-
tecedents that are not satisfied by the query. In the case of a
tie, a decision in favor of the class with highest frequency
is made.

2) IVTURS FARC-HD [25]: This method uses FARC-HD to
accomplish the fuzzy rule learning process and then, it
substitutes the original fuzzy sets by interval-valued (IV)
fuzzy sets and it modifies the inference process using
an IV fuzzy reasoning method. This inference process
uses IV restricted equivalence functions to increase the
relevance of the rules in which the equivalence of the
interval membership degrees of the patterns and the ideal
membership degrees is greater. In addition, it combines a
tuning of the parameters used in the IV fuzzy reasoning
method and rule selection, in order to both decrease the
complexity and increase the performance of the system.

3) PTTD [26]: This method constructs a fuzzy pattern tree
for each class (OVA decomposition) whose inner nodes
are marked with generalized fuzzy logical operators and
whose leaf nodes are associated with linguistic terms on
input attributes. The learning algorithm used by PTTD
builds the pattern tree in a top-down manner.

The configuration of the previous methods and that of our
proposal is shown in Table II.

C. Performance Measure and Statistical Tests

In order to test the performance of the different methods, we
have used the most common metric, that is, the accuracy rate.



ELKANO et al.: ENHANCING MULTICLASS CLASSIFICATION IN FARC-HD FUZZY CLASSIFIER: ON THE SYNERGY 1571

TA
B

L
E

II
I

A
C

C
U

R
A

C
Y

R
A

T
E

O
B

TA
IN

E
D

IN
T

E
ST

B
Y

E
A

C
H

M
E

T
H

O
D

FA
R

C
-H

D
O

V
A

O
V

O
N

D
O

V
O

V
O

T
E

D
at

as
et

PR
O

D
M

IN
H

M
G

M
SI

N
PR

O
D

M
IN

H
M

G
M

SI
N

PR
O

D
M

IN
H

M
G

M
SI

N
PR

O
D

M
IN

H
M

G
M

SI
N

au
t

80
.3

0±
6.

79
80

.9
4±

3.
39

80
.2

4±
7.

33
78

.8
5±

7.
62

81
.6

7±
7.

50
77

.6
6±

7.
03

79
.2

4±
6.

79
79

.2
9±

5.
85

81
.4

9±
4.

69
78

.0
9±

7.
93

79
.0

9±
7.

95
80

.1
8±

5.
38

80
.5

0±
8.

10
81

.0
9±

9.
12

77
.9

6±
10

.2
6

79
.2

7±
6.

79
80

.8
3±

3.
39

80
.9

9±
7.

33
80

.2
3±

7.
62

79
.3

5±
7.

50

ba
l

87
.5

1±
1.

80
86

.1
3±

2.
84

87
.7

3±
3.

07
88

.0
5±

2.
26

88
.5

3±
2.

38
89

.2
2±

1.
70

88
.5

2±
1.

92
89

.7
6±

1.
21

89
.5

9±
1.

78
90

.0
8 ±

1.
42

85
.2

7±
2.

00
85

.0
0±

2.
61

86
.6

0±
2.

41
86

.6
0±

1.
81

86
.5

5±
2.

18
85

.4
3±

1.
80

84
.5

2±
2.

84
85

.6
9±

3.
07

86
.7

1±
2.

26
86

.5
6±

2.
38

cl
e

57
.8

0±
3.

48
56

.9
7±

4.
92

56
.8

0±
5.

31
55

.9
0±

4.
18

57
.3

6±
5.

50
57

.2
7±

4.
12

58
.4

0 ±
4.

98
56

.3
5±

4.
54

56
.4

8±
3.

61
57

.9
5±

4.
49

56
.5

8±
3.

91
55

.1
5±

3.
96

58
.0

7±
4.

95
57

.0
6±

4.
51

56
.3

9±
4.

18
57

.4
9±

3.
48

56
.9

5±
4.

92
57

.7
4±

5.
31

57
.6

2±
4.

18
56

.9
5±

5.
50

co
n

53
.6

3±
2.

06
53

.0
7±

1.
82

53
.2

9±
2.

31
54

.0
8±

1.
78

53
.6

3±
1.

88
55

.1
3±

1.
62

55
.4

8 ±
1.

72
54

.7
2±

1.
76

53
.4

5±
1.

47
54

.6
0±

1.
43

54
.4

5±
1.

98
54

.1
7±

1.
97

54
.9

9±
2.

53
53

.7
7±

1.
68

54
.6

5±
1.

67
54

.4
5±

2.
06

54
.2

0±
1.

82
55

.1
5±

2.
31

53
.7

7±
1.

78
54

.2
7±

1.
88

ec
o

82
.9

3±
5.

00
82

.0
0±

4.
88

81
.9

5±
5.

60
81

.5
7±

5.
58

78
.9

3±
6.

64
83

.5
7±

5.
06

83
.3

0±
5.

64
84

.2
8±

5.
57

83
.4

4±
4.

35
82

.1
0±

5.
92

84
.6

3 ±
4.

23
84

.2
8±

3.
61

83
.3

1±
6.

06
82

.5
3±

6.
38

82
.9

8±
5.

78
84

.0
7±

5.
00

83
.8

3±
4.

88
83

.2
0±

5.
60

82
.9

0±
5.

58
82

.1
0±

6.
64

gl
a

66
.2

8±
5.

99
65

.5
8±

4.
19

70
.0

6±
4.

11
71

.0
6±

5.
03

72
.5

4±
6.

79
67

.8
5±

6.
61

68
.6

8±
3.

55
71

.3
1±

5.
39

70
.6

1±
6.

85
72

.1
5±

6.
93

68
.4

0±
4.

39
71

.0
8±

4.
16

69
.9

0±
4.

61
70

.8
6±

4.
80

71
.4

1±
5.

85
69

.9
0±

5.
99

72
.6

3 ±
4.

19
70

.1
8±

4.
11

71
.2

3±
5.

03
71

.8
3±

6.
79

ha
y

79
.2

1±
5.

00
79

.2
1±

5.
00

78
.4

2±
5.

98
77

.9
1±

4.
93

77
.6

4±
5.

07
81

.8
7±

4.
33

81
.8

7±
4.

33
82

.8
9 ±

5.
08

82
.6

6±
5.

93
81

.6
3±

4.
61

80
.9

0±
4.

79
80

.9
0±

4.
79

79
.4

0±
5.

55
80

.8
8±

4.
69

79
.6

2±
5.

15
81

.6
7±

5.
00

81
.6

7±
5.

00
81

.1
9±

5.
98

81
.6

5±
4.

93
81

.1
5±

5.
07

ir
i

95
.5

6±
4.

08
96

.2
2 ±

3.
29

95
.1

1±
3.

52
95

.5
6±

3.
29

95
.7

8±
4.

15
95

.7
8±

2.
95

94
.8

9±
3.

53
95

.5
6±

3.
25

95
.3

3±
3.

29
94

.8
9±

3.
75

95
.3

3±
4.

14
95

.1
1±

3.
53

95
.1

1±
3.

75
94

.8
9±

3.
75

93
.5

6±
4.

27
95

.7
8±

4.
08

95
.3

3±
3.

29
95

.3
3±

3.
52

95
.3

3±
3.

29
93

.7
8±

4.
15

ne
w

95
.0

4±
2.

70
96

.2
8±

2.
90

96
.1

2±
2.

61
95

.1
9±

2.
13

94
.2

6±
5.

23
95

.6
6±

2.
62

95
.8

1±
2.

67
95

.8
1±

2.
19

95
.6

6±
3.

27
93

.4
9±

2.
67

95
.3

5±
2.

78
96

.4
3±

2.
90

96
.4

3±
2.

62
95

.9
7±

2.
06

92
.4

0±
5.

52
95

.1
9±

2.
70

96
.5

9 ±
2.

90
96

.2
8±

2.
61

95
.6

6±
2.

13
92

.4
0±

5.
23

pa
g

94
.1

8±
1.

60
94

.0
6±

2.
06

94
.6

7±
1.

49
94

.5
5±

1.
34

94
.7

2±
1.

43
95

.2
1±

1.
64

94
.3

6±
2.

05
95

.2
1±

1.
23

94
.7

3±
1.

69
94

.7
8±

1.
32

94
.4

8±
1.

44
94

.6
5±

1.
94

96
.3

0±
1.

52
94

.9
0±

1.
26

95
.0

3±
1.

17
94

.1
2±

1.
60

94
.7

8±
2.

06
96

.4
3 ±

1.
49

94
.8

5±
1.

34
94

.8
5±

1.
43

pe
n

93
.0

5±
2.

23
91

.9
2±

2.
47

92
.5

8±
2.

49
93

.4
0±

3.
23

92
.5

9±
2.

22
93

.0
8±

3.
48

93
.5

9±
2.

27
94

.3
8±

2.
59

93
.8

3±
2.

52
92

.8
3±

3.
10

94
.9

2 ±
2.

15
94

.4
3±

2.
26

94
.8

8±
2.

20
93

.9
2±

2.
24

94
.2

5±
2.

29
94

.5
9±

2.
23

94
.3

4±
2.

47
94

.2
2±

2.
49

94
.1

3±
3.

23
94

.2
5±

2.
22

sa
t

80
.9

6±
3.

68
80

.5
9±

3.
64

80
.1

3±
3.

26
80

.6
8±

2.
89

80
.6

4±
1.

69
79

.4
9±

2.
63

79
.2

4±
4.

84
80

.7
8±

1.
97

80
.4

9±
3.

87
79

.5
9±

2.
98

82
.1

5±
4.

04
82

.0
5±

4.
19

82
.6

0±
2.

92
81

.2
5±

3.
13

79
.3

8±
2.

61
83

.4
9±

3.
68

83
.1

8±
3.

64
84

.0
5 ±

3.
26

83
.0

1±
2.

89
82

.2
3±

1.
69

se
g

93
.6

2±
0.

62
92

.7
6±

1.
14

93
.0

2±
1.

30
92

.9
4±

1.
21

93
.6

4±
1.

03
91

.8
5±

1.
00

93
.8

0±
1.

02
92

.7
3±

1.
34

92
.8

3±
1.

57
93

.3
1±

1.
65

93
.4

6±
0.

44
94

.3
2±

1.
06

95
.2

2±
1.

29
95

.2
5±

1.
33

95
.9

5±
1.

14
92

.9
9±

0.
62

94
.2

3±
1.

14
94

.9
9±

1.
30

95
.0

9±
1.

21
96

.1
2 ±

1.
03

sh
u

95
.5

0±
1.

02
99

.2
0±

1.
81

99
.4

5±
0.

22
99

.2
3±

0.
10

99
.4

5±
0.

14
96

.4
6±

2.
56

96
.2

0±
2.

11
96

.6
6±

1.
02

95
.7

5±
1.

79
97

.0
9±

1.
94

93
.8

7±
1.

01
98

.6
5±

1.
93

99
.6

0±
0.

20
99

.7
4 ±

0.
08

99
.6

6±
0.

17
93

.8
7±

1.
02

98
.6

9±
1.

81
99

.5
9±

0.
22

99
.7

1±
0.

10
99

.6
8±

0.
14

ta
e

57
.8

9±
11

.3
5

59
.0

3±
9.

16
57

.7
5±

8.
94

56
.4

3±
8.

42
55

.9
7±

9.
29

57
.1

1±
8.

02
57

.0
5±

9.
31

56
.4

2±
7.

63
56

.4
0±

7.
74

52
.8

3±
9.

67
55

.6
5±

11
.4

6
57

.4
4±

9.
40

59
.4

5±
9.

09
62

.0
7 ±

8.
52

60
.5

8±
8.

70
55

.6
4±

11
.3

5
57

.6
6±

9.
16

60
.5

5±
8.

94
61

.6
3±

8.
42

59
.8

8±
9.

29

ty
r

93
.5

2±
0.

38
92

.5
1±

0.
80

92
.4

6±
0.

64
92

.4
6±

0.
64

92
.3

7±
0.

64
93

.2
0±

1.
46

92
.3

7±
0.

88
92

.5
1±

0.
64

92
.5

1±
0.

64
92

.4
6±

0.
62

93
.6

1 ±
0.

34
92

.6
5±

0.
80

92
.5

1±
0.

64
92

.4
6±

0.
62

92
.5

1±
0.

64
93

.5
7±

0.
38

92
.6

5±
0.

80
92

.5
1±

0.
64

92
.5

1±
0.

64
92

.5
1±

0.
64

ve
h

69
.9

0±
2.

07
71

.4
7±

3.
00

71
.1

5±
3.

05
70

.4
8±

3.
58

70
.0

5±
3.

61
67

.8
8±

1.
99

69
.0

4±
2.

48
70

.0
5±

2.
20

69
.5

3±
2.

49
70

.8
3±

2.
99

73
.8

5 ±
2.

60
73

.5
5±

2.
26

72
.2

5±
3.

19
73

.0
7±

3.
58

72
.4

1±
3.

54
73

.2
5±

2.
07

72
.7

2±
3.

00
71

.9
0±

3.
05

72
.7

6±
3.

58
71

.8
5±

3.
61

vo
w

75
.3

2±
2.

38
72

.5
9±

3.
89

67
.4

7±
1.

14
66

.2
6±

3.
72

67
.1

7±
2.

19
65

.9
9±

3.
27

68
.2

5±
3.

41
64

.3
4±

3.
02

61
.5

8±
1.

84
66

.5
0±

3.
93

90
.7

4±
2.

82
90

.2
4±

3.
41

91
.3

5 ±
1.

49
90

.5
4±

3.
63

89
.3

9±
1.

86
90

.5
1±

2.
38

89
.2

6±
3.

89
90

.7
1±

1.
14

90
.5

7±
3.

72
90

.2
0±

2.
19

w
in

95
.5

6±
3.

99
93

.8
2±

3.
03

94
.3

9±
3.

55
93

.6
3±

3.
07

92
.7

9±
3.

59
95

.1
2±

2.
90

95
.6

9±
2.

14
97

.0
3 ±

2.
23

96
.2

4±
2.

57
94

.3
7±

2.
37

95
.7

5±
3.

52
96

.6
6±

2.
97

94
.9

4±
4.

27
95

.7
1±

3.
30

94
.7

6±
3.

54
95

.2
0±

3.
99

96
.4

7±
3.

03
94

.5
5±

3.
55

96
.1

1±
3.

07
94

.7
8±

3.
59

ye
a

59
.6

0±
2.

56
59

.0
1±

3.
56

59
.3

5±
3.

33
59

.6
4±

2.
88

59
.8

4±
3.

22
59

.0
5±

2.
48

59
.5

5±
1.

90
59

.4
8±

2.
96

60
.0

4±
2.

90
59

.8
0±

3.
10

60
.6

1±
2.

67
60

.6
6 ±

3.
34

60
.2

0±
3.

39
60

.0
0±

2.
91

59
.6

7±
3.

37
59

.9
7±

2.
56

60
.0

5±
3.

56
59

.9
9±

3.
33

59
.5

9±
2.

88
59

.3
7±

3.
22

A
V

G
80

.3
7±

3.
44

80
.1

7±
3.

39
80

.1
1±

3.
46

79
.8

9±
3.

39
79

.9
8±

3.
71

79
.9

2±
3.

37
80

.2
7±

3.
38

80
.4

8±
3.

08
80

.1
3±

3.
24

79
.9

7±
3.

64
81

.4
5±

3.
43

81
.8

8±
3.

32
82

.1
8±

3.
54

82
.1

3±
3.

47
81

.4
6±

3.
69

81
.5

2±
3.

44
82

.0
3±

3.
39

82
.2

6±
3.

46
82

.2
5±

3.
39

81
.7

1±
3.

71



1572 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 23, NO. 5, OCTOBER 2015

TA
B

L
E

IV
A

C
C

U
R

A
C

Y
R

A
T

E
O

B
TA

IN
E

D
IN

T
E

ST
B

Y
E

A
C

H
M

E
T

H
O

D
(I

I)

O
V

O
LV

PC
O

V
O

W
V

O
V

O
W

in
W

V

D
at

as
et

PR
O

D
M

IN
H

M
G

M
SI

N
PR

O
D

M
IN

H
M

G
M

SI
N

PR
O

D
M

IN
H

M
G

M
SI

N

au
t

76
.2

8±
7.

55
76

.2
2±

2.
73

74
.8

1±
6.

06
74

.7
4±

8.
45

71
.6

0±
8.

62
77

.4
8±

7.
83

79
.5

5±
3.

94
76

.9
1±

6.
50

78
.9

3±
6.

89
75

.8
6±

7.
75

78
.6

5±
7.

55
81

.4
0±

2.
73

80
.0

4±
6.

06
79

.4
3±

8.
45

78
.7

7±
8.

62
ba

l
83

.3
5±

2.
48

83
.1

9±
3.

03
84

.9
0±

2.
62

85
.0

1±
2.

09
84

.3
1±

2.
02

81
.8

5±
2.

40
80

.4
6±

3.
54

82
.1

7±
3.

03
81

.5
4±

1.
72

80
.0

9±
2.

62
84

.3
0±

2.
48

84
.0

8±
3.

03
85

.4
8±

2.
62

85
.8

0±
2.

09
86

.4
5±

2.
02

cl
e

57
.3

9±
2.

98
57

.2
7±

4.
36

58
.9

8±
4.

98
59

.4
3±

5.
27

56
.8

5±
6.

43
55

.7
0±

3.
19

56
.9

3±
4.

02
58

.2
0±

6.
26

58
.0

9±
5.

47
55

.7
2±

5.
33

56
.3

7±
2.

98
57

.1
6±

4.
36

57
.6

2±
4.

98
57

.8
6±

5.
27

56
.4

0±
6.

43
co

n
53

.8
6±

1.
95

54
.8

5±
1.

67
55

.5
6±

2.
17

53
.9

8±
1.

70
54

.7
4±

1.
73

54
.0

4±
1.

87
54

.9
4±

1.
73

55
.5

3±
2.

20
54

.6
5±

1.
72

54
.6

5±
1.

57
54

.4
7±

1.
95

53
.8

6±
1.

67
55

.2
4±

2.
17

53
.8

4±
1.

70
54

.8
3±

1.
73

ec
o

85
.3

4±
5.

04
84

.0
2±

4.
88

82
.9

4±
5.

60
81

.3
6±

4.
99

82
.2

2±
5.

54
85

.0
6±

4.
61

84
.7

8±
5.

63
82

.7
8±

4.
69

81
.5

6±
4.

66
81

.7
8±

5.
72

85
.2

6±
5.

04
84

.7
3±

4.
88

83
.4

0±
5.

60
82

.3
8±

4.
99

82
.6

8±
5.

54
gl

a
66

.7
2±

5.
00

68
.8

5±
4.

60
67

.0
0±

5.
67

68
.5

0±
4.

47
69

.2
6±

6.
34

67
.7

5±
6.

57
69

.2
6±

6.
86

68
.2

0±
8.

06
68

.8
5±

6.
43

67
.2

5±
5.

77
69

.9
4±

5.
00

71
.3

5±
4.

60
70

.0
1±

5.
67

70
.7

7±
4.

47
72

.3
8±

6.
34

ha
y

76
.6

5±
4.

34
76

.6
5±

4.
34

76
.1

5±
5.

14
76

.1
7±

4.
34

74
.6

5±
4.

56
81

.1
4±

3.
80

81
.1

4±
3.

80
81

.4
3±

4.
82

81
.3

9±
3.

91
80

.9
0±

4.
76

82
.1

6±
4.

34
82

.1
6±

4.
34

81
.9

4±
5.

14
82

.1
6±

4.
34

81
.6

7±
4.

56
ir

i
96

.2
2±

4.
02

95
.5

6±
3.

29
95

.3
3±

3.
52

95
.5

6±
3.

25
93

.7
8±

4.
15

96
.2

2±
3.

53
95

.5
6±

3.
00

95
.3

3±
3.

52
95

.5
6±

3.
25

93
.7

8±
4.

15
96

.0
0±

4.
02

95
.3

3±
3.

29
95

.3
3±

3.
52

95
.5

6±
3.

25
93

.7
8±

4.
15

ne
w

92
.0

9±
2.

78
92

.0
9±

2.
90

91
.3

2±
2.

61
89

.1
5±

2.
13

91
.4

7±
5.

32
95

.0
4±

3.
15

94
.4

2±
2.

29
95

.5
0±

2.
98

93
.9

5±
3.

38
91

.0
1±

5.
19

95
.3

5±
2.

78
96

.5
9±

2.
90

96
.2

8±
2.

61
95

.6
6±

2.
13

92
.2

5±
5.

32
pa

g
92

.5
9±

1.
64

92
.8

5±
2.

21
93

.1
5±

1.
46

92
.4

4±
1.

14
93

.3
3±

1.
62

93
.9

3±
1.

73
93

.8
1±

2.
05

95
.2

1±
1.

52
94

.3
0±

1.
60

94
.0

0±
1.

38
94

.1
2±

1.
64

94
.9

0±
2.

21
96

.0
6±

1.
46

94
.7

9±
1.

14
94

.6
0±

1.
62

pe
n

94
.3

2±
2.

01
93

.6
8±

2.
79

92
.4

9±
2.

47
92

.0
8±

2.
35

91
.7

7±
2.

17
94

.2
0±

2.
60

93
.7

4±
3.

06
92

.4
9±

2.
29

92
.1

4±
2.

72
92

.0
1±

2.
13

94
.7

7±
2.

01
94

.3
5±

2.
79

93
.4

9±
2.

47
93

.7
1±

2.
35

93
.9

8±
2.

17
sa

t
79

.5
5±

3.
23

77
.2

5±
3.

77
81

.2
6±

2.
53

77
.7

6±
3.

02
70

.5
3±

4.
79

78
.6

2±
3.

87
76

.2
1±

4.
99

80
.8

8±
2.

95
79

.1
0±

4.
32

70
.8

4±
4.

75
83

.5
9±

3.
23

82
.9

7±
3.

77
83

.9
4±

2.
53

84
.0

0±
3.

02
79

.6
2±

4.
79

se
g

92
.2

1±
0.

67
92

.5
4±

1.
35

90
.8

5±
1.

54
91

.3
4±

1.
37

92
.1

5±
0.

78
92

.2
1±

0.
79

92
.5

4±
2.

08
90

.8
5±

1.
22

91
.3

4±
2.

11
92

.0
6±

1.
53

93
.5

4±
0.

67
94

.1
6±

1.
35

94
.3

4±
1.

54
94

.4
2±

1.
37

95
.0

9±
0.

78
sh

u
91

.8
2±

1.
00

88
.7

2±
3.

35
89

.7
8±

2.
28

87
.9

3±
1.

44
97

.1
5±

0.
48

93
.2

3±
1.

75
91

.3
3±

4.
58

94
.1

5±
4.

58
92

.0
0±

4.
52

97
.2

9±
2.

99
93

.8
6±

1.
00

97
.5

9±
3.

35
98

.7
4±

2.
28

99
.0

9±
1.

44
99

.5
4±

0.
48

ta
e

53
.2

5±
9.

96
54

.9
8±

8.
91

55
.4

6±
9.

10
58

.5
8±

8.
89

55
.4

3±
8.

93
53

.0
3±

10
.1

6
54

.7
6±

10
.9

0
55

.6
8±

11
.1

5
58

.8
0±

8.
56

54
.1

3±
9.

56
57

.6
8±

9.
96

57
.8

8±
8.

91
60

.1
2±

9.
10

61
.8

3±
8.

89
60

.5
8±

8.
93

ty
r

93
.1

5±
0.

40
92

.6
9±

0.
75

92
.5

1±
0.

64
92

.5
1±

0.
64

92
.5

1±
0.

64
93

.1
1±

0.
68

92
.6

5±
0.

80
92

.5
1±

0.
64

92
.5

1±
0.

64
92

.5
1±

0.
64

93
.4

7±
0.

40
92

.6
0±

0.
75

92
.5

1±
0.

64
92

.5
1±

0.
64

92
.5

1±
0.

64
ve

h
73

.1
3±

2.
69

72
.9

6±
2.

60
69

.8
1±

3.
21

71
.8

9±
3.

89
70

.9
5±

3.
45

72
.9

7±
2.

70
72

.9
2±

2.
40

70
.0

5±
3.

04
72

.0
1±

4.
35

71
.1

9±
3.

28
73

.8
4±

2.
69

73
.0

8±
2.

60
71

.9
4±

3.
21

72
.9

5±
3.

89
72

.1
3±

3.
45

vo
w

83
.2

7±
2.

25
81

.8
2±

3.
80

82
.3

6±
1.

96
81

.3
5±

3.
15

81
.0

4±
3.

87
83

.2
7±

3.
01

81
.8

2±
4.

06
82

.3
6±

3.
37

81
.3

5±
3.

20
81

.0
4±

3.
87

86
.8

7±
2.

25
86

.2
0±

3.
80

86
.9

0±
1.

96
86

.0
3±

3.
15

86
.2

6±
3.

87
w

in
95

.0
1±

3.
00

96
.8

3±
3.

12
93

.0
0±

4.
07

95
.1

1±
2.

95
95

.1
1±

3.
65

95
.3

7±
3.

62
96

.0
8±

3.
10

94
.9

2±
4.

17
95

.5
0±

3.
95

95
.2

9±
3.

06
95

.1
5±

3.
00

96
.0

8±
3.

12
94

.5
3±

4.
07

95
.5

1±
2.

95
94

.9
2±

3.
65

ye
a

59
.1

0±
2.

29
59

.1
4±

3.
40

58
.0

8±
3.

11
56

.2
9±

3.
29

57
.0

8±
3.

70
59

.5
0±

2.
88

60
.2

5±
2.

61
59

.5
7±

3.
26

57
.3

3±
3.

18
57

.8
3±

2.
90

60
.6

5±
2.

29
60

.7
7±

3.
40

60
.7

2±
3.

11
59

.4
6±

3.
29

59
.3

8±
3.

70

A
V

G
79

.7
7±

3.
26

79
.6

1±
3.

39
79

.2
9±

3.
54

79
.0

6±
3.

44
78

.8
0±

3.
94

80
.1

9±
3.

54
80

.1
6±

3.
77

80
.2

4±
4.

01
80

.0
5±

3.
83

78
.9

6±
3.

95
81

.5
0±

3.
26

81
.8

6±
3.

39
81

.9
3±

3.
54

81
.8

9±
3.

44
81

.3
9±

3.
94



ELKANO et al.: ENHANCING MULTICLASS CLASSIFICATION IN FARC-HD FUZZY CLASSIFIER: ON THE SYNERGY 1573

TABLE V
ALIGNED FRIEDMAN AND HOLM TESTS TO COMPARE THE DIFFERENT OVERLAPS

FARC-HD OVA OVOND OVOVOTE OVOWinWV OVOLVPC OVOWV

PROD 43.80 57.90 (0.128) 55.23 (0.327) 56.53 (0.269) 54.40 (0.747) 37.90 42.38
MIN 48.63 (0.967) 51.72 (0.282) 49.03 (0.708) 49.77 (0.672) 46.42 (1.000) 41.22 (0.717) 42.95 (1.000)
HM 50.22 (0.967) 38.23 40.52 40.95 43.83 54.05 (0.157) 43.90 (1.000)
GM 56.25 (0.699) 48.95 (0.282) 45.65 (0.708) 43.65 (0.768) 47.95 (1.000) 56.67 (0.122) 49.13 (1.000)
SIN 53.60 (0.856) 55.70 (0.170) 62.08 (0.075) 61.60 (0.097) 59.90 (0.319) 62.65 (0.028) 74.15 (0.002)

TABLE VI
WILCOXON TEST TO COMPARE THE WV AND THE WINWV

Comparative R+ R- p-value Hypothesis

OVOWV
PROD versus OVOWinWV

PROD 7.00 203.00 0.000 Rej. OVOWinWV
PROD 95%

OVOWV
MIN versus OVOWinWV

MIN 21.00 189.00 0.002 Rej. OVOWinWV
MIN 95%

OVOWV
HM versus OVOWinWV

HM 14.50 195.50 0.001 Rej. OVOWinWV
HM 95%

OVOWV
GM versus OVOWinWV

GM 13.50 196.50 0.001 Rej. OVOWinWV
GM 95%

OVOWV
SIN versus OVOWinWV

SIN 5.50 204.50 0.000 Rej. OVOWinWV
SIN 95%

This metric is defined as percentage of correctly classified ex-
amples related to the total number of examples. However, the
accuracy rate may not properly reflect the behavior of different
algorithms in multiclass problems, as they do not take into ac-
count the classes of the examples in its computation. Therefore,
the usage of additional metrics (not opposite, yet complemen-
tary) increases the strength of the experimental study, yielding
more complete conclusions. For this reason, we have also con-
sidered Cohen’s kappa [66] measure as an evaluation criterion,
which evaluates the portion of hits that can be attributed to
the classifier itself (i.e., not to mere chance), relative to all the
classifications that cannot be attributed to chance alone.

For multiclass problems, kappa is a very useful, yet simple
meter for measuring a classifier’s classification rate, while com-
pensating for random successes. The major difference between
the classification rate and Cohen’s kappa is the scoring of the
correct classifications, since Cohen’s kappa scores the successes
independently for each class and aggregates them. This way of
scoring is less sensitive to randomness caused by a different
number of examples in each class. Nevertheless, for the sake
of space, we cannot include the experimental study carried out
with this metric, but we provide it as a supplementary mate-
rial of the paper. Anyway, we should stress that the conclusions
drawn are equivalent to those obtained with accuracy along the
whole experimental study.

Besides the performance measures used to evaluate the qual-
ity of the models, we want to study how the different overlap
functions affect the RB size. To do so, we consider the average
number of rules and antecedents by rule for each overlap func-
tion in both OVO and OVA models (considering all base clas-
sifiers) and the FARC-HD algorithm (directly executed without
decomposition strategies).

In order to give a statistical support to the analysis of the re-
sults, we carry out some nonparametric tests [22]. More specif-
ically, we use the Wilcoxon signed-ranks test [67] to perform

pairwise comparisons, the Aligned Friedman test [68] to check
whether there are statistical differences among a group of meth-
ods and the Holm post-hoc test [69] to find the algorithms that
reject the null hypothesis of equivalence against the selected
control method. A complete description of these tests and soft-
ware for their use can be found on the website available at:
http://sci2s.ugr.es/sicidm/.

V. EXPERIMENTAL STUDY

In this section, we analyze the results obtained by our propos-
als developing an experimental study composed of three steps
(the same is done with kappa in the supplementary material):

1) We analyze the effect of overlap functions in the final
performance of the model and we also study whether our
new aggregation strategy for OVO (WinWV) allows us
to improve the results of the WV (see Section V-A1).
Additionally, we show how the usage of overlap functions
affects the size of the RB and the training times (see
Section V-A2).

2) We show whether our new model is a suitable solution for
multiclass problems compared with the original FARC-
HD [12] and we analyze which decomposition strategy
obtains better results (see Section V-B).

3) We study whether our proposal improves the results ob-
tained by some of the state-of-the-art fuzzy classifiers,
such as FURIA [24], IVTURSFARC-HD [25], and PTTD
[26] (see Section V-C).

A. Study of the Behavior of n-Dimensional Overlap Functions

In this section, we first study the effect of the different overlap
functions in the final performance of the system (see Section V-
A1) and then we show the impact of these functions in the RB
and in the training times (see Section V-A2). Additionally, in
order to check whether the proposed new aggregation strategy
for OVO (WinWV) solves the problems of the WV with the
confidences provided by FARC-HD, a comparison between the
WV and the WinWV is performed (also in Section V-A1).

Tables III and IV show the accuracy rate obtained in testing
by each method in all datasets, together with the standard de-
viation (shown with ±). As we can observe in Table III, on the
one hand, we execute the FARC-HD algorithm directly (with
no decomposition strategies) using the five overlap functions
considered in this paper (PROD, MIN, HM, GM, SIN). On the
other hand, we present the results of OVA and OVO models con-
sidering the previously mentioned overlap functions for those
aggregation strategies that are not affected by the confidences of
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TABLE VIII
AVERAGE EXECUTION TIMES OF FUZZY ASSOCIATION RULE-BASED CLASSIFICATION MODEL FOR HIGH-DIMENSIONAL PROBLEMS, ONE-VERSUS-ALL, AND

ONE-VERSUS-ONE. (MM:SS.MS)

FARC-HD OVA OVO

Dataset PROD MIN HM GM SIN #BC PROD MIN HM GM SIN #BC PROD MIN HM GM SIN

aut 01:42.9 03:48.3 03:28.7 04:26.8 06:21.8 6 04:11.6 05:06.8 04:04.5 05:33.4 07:52.3 15 10:39.1 06:51.6 08:43.8 07:19.5 07:01.5
bal 00:22.9 00:32.0 00:23.3 03:13.5 04:15.2 3 01:23.4 01:16.3 00:54.0 02:59.3 04:29.9 3 00:39.6 01:03.2 01:14.2 02:21.1 02:33.7
cle 00:52.3 01:22.8 01:03.9 01:41.9 02:44.4 5 01:54.7 01:48.9 01:37.5 02:37.6 03:59.5 10 02:50.9 02:51.3 03:21.4 03:53.4 03:27.8
con 01:29.5 03:53.9 02:32.4 17:26.7 25:50.9 3 05:43.5 08:52.7 06:17.4 18:20.5 27:14.7 3 04:25.4 06:38.5 05:33.8 14:18.8 18:03.3
eco 00:17.9 00:38.0 00:27.5 00:58.9 01:29.3 8 00:47.0 00:52.3 00:48.9 02:02.3 02:48.9 28 02:00.4 02:37.3 03:21.4 04:03.9 02:17.3
gla 00:27.0 00:55.2 00:43.5 01:02.5 01:27.7 7 00:39.6 00:41.2 00:56.0 01:10.1 01:48.3 21 01:30.4 01:37.4 02:38.9 03:20.3 02:47.9
hay 00:04.3 00:06.3 00:04.3 00:10.3 00:15.0 3 00:13.7 00:12.1 00:09.7 00:25.2 00:34.7 3 00:12.0 00:19.4 00:44.0 01:12.4 00:22.8
iri 00:01.5 00:02.5 00:02.8 00:07.1 00:10.7 3 00:04.5 00:06.0 00:04.7 00:11.7 00:18.3 3 00:07.1 00:17.5 00:35.3 00:46.1 00:14.9
new 00:02.6 00:04.0 00:04.3 00:14.2 00:18.4 3 00:07.4 00:08.4 00:09.4 00:18.8 00:25.6 3 00:14.6 00:17.6 00:47.7 01:02.3 00:25.3
pag 00:13.6 00:22.9 00:20.2 00:30.6 01:01.2 5 00:42.0 01:11.2 00:41.4 01:15.4 02:06.2 10 01:01.6 01:19.0 01:58.0 02:26.8 01:48.8
pen 03:34.5 08:00.9 05:22.8 12:19.9 14:14.2 10 10:35.9 15:02.9 10:15.3 17:08.7 22:39.9 45 13:14.3 18:07.2 23:52.6 31:26.8 44:06.7
sat 08:53.4 16:34.4 15:38.5 20:16.2 22:58.6 7 07:25.6 09:28.7 08:57.3 14:09.8 17:56.2 21 17:25.3 23:37.5 20:10.7 35:55.2 28:34.4
seg 02:31.4 05:44.2 06:04.3 10:49.3 19:15.4 7 09:33.9 11:04.6 10:54.5 19:11.4 24:57.5 21 11:05.8 14:59.9 14:43.6 21:20.6 26:09.2
shu 00:17.4 00:36.2 00:34.7 01:05.6 01:33.9 5 01:28.5 01:26.6 01:15.4 02:35.2 04:15.8 10 01:19.7 02:30.3 02:52.6 03:39.9 03:56.3
tae 00:05.3 00:10.8 00:10.9 00:31.8 00:39.3 3 00:18.5 00:12.4 00:22.5 00:35.8 00:52.9 3 00:16.9 00:26.3 00:42.2 01:20.6 00:42.1
thy 00:11.7 00:28.9 00:23.8 00:50.2 00:55.8 3 00:50.2 00:55.6 00:50.2 01:04.5 01:39.8 3 01:08.7 01:03.5 01:24.7 01:51.0 01:10.3
veh 01:30.5 04:18.9 04:22.5 06:53.2 12:07.2 4 05:24.6 09:54.4 07:40.6 13:41.0 20:09.3 6 04:03.8 05:44.4 08:43.2 11:04.1 13:36.5
vow 02:50.0 06:07.2 05:17.4 07:10.5 11:08.3 11 06:41.7 07:33.2 07:24.9 11:46.4 19:50.3 55 40:17.3 27:25.8 38:41.0 35:54.1 00:36.8
win 00:09.6 00:33.7 00:34.1 00:49.3 01:05.0 3 00:32.0 00:39.7 01:04.2 01:09.5 01:57.8 3 00:23.5 01:02.6 00:41.0 01:30.5 00:52.7
yea 00:46.4 01:57.3 01:54.8 05:00.2 06:58.4 10 04:33.3 05:42.8 05:03.4 10:00.4 15:58.7 45 07:00.9 10:13.3 08:31.3 14:28.6 14:51.3

AVG. 01:19.2 02:48.9 02:28.6 04:46.9 06:44.5 5.45 03:09.5 04:06.7 03:28.5 06:18.8 09:05.8 15.55 05:59.8 06:27.1 07:28.8 09:57.8 11:40.9

FARC-HD in the case of OVO (ND and VOTE), whereas those
being affected (LVPC, WV) are shown in Table IV, together
with our proposed solution (WinWV).

1) Analysis of the System’s Performance: As we can observe
in Tables III and IV, in the case of the original FARC-HD, the
replacement of the product by an overlap function does not seem
to produce an improvement in the results. However, in the case of
OVA and OVO models, we find that the greater overlap function
we use, the better results we obtain in general (although the GM
does not improve the results of the HM, due to the fact that they
exhibit a similar behavior). The exception to this situation is the
usage of the greatest overlap function considered in this paper
(SIN). This could be due to the fact that this function returns
aggregated values that can be greater than the input ones,

which is not a desirable behavior in an inference system be-
cause part of the discrimination power is lost. Therefore, we can
observe that there is a limit beyond which an overlap function
might be too great to obtain good results. Anyway, no meaning-
ful conclusions can be extracted without carrying out the proper
statistical analysis.

In order to detect significant differences among the results
of each overlap function used throughout the experiments, we
carry out the aligned Friedman test and the Holm posthoc test,
whose results are shown in Table V. These results are grouped
in columns according to the method used to perform the com-
parison and in rows according to the overlap function used to
compute the association degree (which is the subject of the
study). The first column corresponds to the different overlap
functions over the original FARC-HD, while in the second one
OVA model is considered. The rest of the columns correspond
to the different OVO aggregation strategies considered in this

paper (LVPC, ND, VOTE, WV, and WinWV). The value of
each cell corresponds to the rank obtained with the Aligned
Friedman test that compares the different overlap functions for
each method (that is, a Aligned Friedman test is carried out
for each group of methods in a column). The value shown in
brackets corresponds to the adjusted p-value obtained by the
Holm posthoc test using as control method the one achieving the
smallest rank in the same column, which is shown in bold-face.
The adjusted p-value is underlined when there are statistical
differences (α = 0.1 considering the ratio between datasets and
algorithms).

As it can be observed in the first column of Table V, in the
original FARC-HD the best aggregation method is the product,
although there are no statistical differences among the five ag-
gregations. However, in OVA and OVO models, we can observe
that the greater the overlap function we use, the better the re-
sults we obtain (although the GM is greater than the HM, both
of them have a similar behavior), except in the case of the SIN,
due to the fact that it can give as output a value, which is greater
than all the input values, which seems to distort the aggregation
process in the OVA and OVO strategies.

Hence, the best method to compute the association degree for
OVA and OVO in almost all cases are those obtaining the highest
aggregated values preserving the idempotence (although the ge-
ometric and harmonic means return similar values, the latter one
tends to obtain better results, but without statistical differences).
The exception to this situation is when we use LVPC and WV
strategies, since they are severely affected by the poor quality
of the confidences of the nonpredicted classes, which is accen-
tuated in LVPC due to the difficulty in modeling the conflict
and ignorance terms (as we have mentioned in Section III-D).
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However, we must recall that removing these terms the origi-
nal WV is recovered. On this account, we only focus on WV
strategy.

For the sake of solving the problem of the WV with the
confidences, we propose a new aggregation strategy for OVO
(WinWV), which considers only the confidences of the predicted
classes. This way, we want to study whether our proposal allows
us to improve the results of the WV when using FARC-HD and
OVO. In the results presented in Table III, we can observe that
the results obtained by WV are different from those obtained
by the remainder OVO aggregations (except for LVPC which
suffers the same problem), in the sense that using overlap func-
tion has no effect on the results. Focusing on the differences
between WV and WinWV, we can observe that the usage of
WinWV allows us to enhance the results of WV.

In order to support this finding, we have carried out a number
of pairwise comparisons using the Wilcoxon signed-ranks test,
where we confront the original WV method against the pro-
posed modification for each overlap function considered in this
study. Table VI shows the results of these comparisons, where
R+ and R− indicate the ranks obtained by WV and WinWV,
respectively. As we can observe, the new aggregation strategy
statistically outperforms the original WV method with all over-
lap functions.

2) Analyzing the Effect of the Usage of n-Dimensional Over-
lap Functions in the Rule Base Size and the Training Time: In
addition to the performance of the different overlap functions,
we want to study the impact of these functions in the size of the
RB and in the time needed for its construction. Table VII shows
the average number of rules and antecedents by rule obtained
when the considered overlap functions are used in FARC-HD
(without decomposition strategies) and in OVA and OVO mod-
els, as well as the number of base classifiers (#BC) employed
in OVA and OVO for each dataset. As it can be appreciated
in Table VII, the usage of a greater overlap function implies a
growing trend of the number of rules and a higher complexity
of those rules (more antecedents). Thus, there is a relationship
between the value returned by the overlap function and the size
of the RB (the greater the overlap function the larger the RB). It
is also interesting to note that the execution times of the methods
with the different overlap functions (shown in Table VIII) fol-
lows the same trend (the construction of the RB is only shown
since the computational time required by the

different aggregations in OVO is negligible). The reason is
that the use of greater overlap functions implies that the aggre-
gation of the matching degrees returns higher values and, thus,
a higher number of rules and antecedents is needed in order
to maintain or improve the discrimination capability (therefore
affecting the computational time needed). Moreover, due to the
fact that we focus on overlap functions that are independent of
the number of antecedents of the rule, the penalization of those
rules with more antecedents is minimized. As a consequence,
more rules with larger number of antecedents can be learned,
which better describe the examples. Table VII confirms this sit-
uation, where we can find that the average number of rules of
the product is the lowest one among the five overlap functions
and increases when considering a greater overlap function.

TABLE IX
ALIGNED FRIEDMAN AND HOLM TESTS TO COMPARE THE DIFFERENT

AGGREGATIONS IN OVO

Algorithm Rank APV

OVOVOTE
HM 32.30

OVOND
HM 35.10 1.000

OVOWinWV
HM 36.55 1.000

OVOWV
HM 69.47 0.002

OVOLVPC
HM 79.08 0.000

In Table VII, we observe that the average number of rules
obtained in OVA and OVO is lower than that obtained in FARC-
HD. The reason is that we consider the average of all base
classifiers and since they solve binary problems, the definition
of the decision boundary in each binary problem is simpler than
in the original multiclass problem, which implies that fewer
rules are needed in each base classifier. We can also observe
that in the case of OVO, the number of rules generated by the
base classifiers is lower than in OVA, since the binaries problems
solved in OVO are simpler. In the same way, the rules generated
in OVA and OVO are simpler than those generated in the original
FARC-HD algorithm (at the same time the rules generated in
OVO are simpler than in OVA, for the reason explained before),
but obviously, we have more classifiers in the case of OVA and
OVO.

B. Studying the Usefulness of Decomposition Strategies for
Fuzzy Association Rule-Based Classification Model for
High-Dimensional Problems

In this section, we want to check whether our new model
improves the performance of the original FARC-HD algorithm
when addressing multiclass classification problems. We have
shown that the harmonic mean is the overlap function that ob-
tains the best results when using OVO and OVA. Thus, before
performing a comparison with FARC-HD, we analyze which
aggregation strategy for OVO obtains better performance using
the harmonic mean. As we can observe in the results provided
by the Aligned Friedman test in Table IX, there are no statistical
differences among ND, VOTE, and WinWV (as usually occurs
among OVO aggregations [9]). For this reason, we will con-
sider the aggregation strategy that obtains the highest accuracy
according to Tables III and IV and the lowest ranks according
to Table IX (VOTE).

In order to check whether there are statistical differences
among OVA, OVO, and the original FARC-HD, we show the
results of the Aligned Friedman test in Table X. It can be ob-
served that OVO model statistically outperforms the original
FARC-HD algorithm and obtains better results than the OVA
model, which is in accordance with the findings using other
classifiers [9].

C. Analyzing the Quality of FARC-HD_OVO Versus
State-of-the-Art Fuzzy Classifiers

This section analyzes the performance of our model against
three recognized state-of-the-art fuzzy classifiers, i.e., the
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TABLE X
ALIGNED FRIEDMAN AND HOLM TESTS TO COMPARE ONE-VERSUS-ALL,

ONE-VERSUS-ONE, AND FUZZY ASSOCIATION RULE-BASED CLASSIFICATION

MODEL FOR HIGH-DIMENSIONAL PROBLEMS

Algorithm Rank APV

OVOVOTE
HM 20.23

OVAHM 31.55 0.040
FARC-HD 39.73 0.001

TABLE XI
ACCURACY RATE OBTAINED IN TEST BY THE STATE-OF-THE-ART FUZZY

CLASSIFIERS AND THE MOST ACCURATE METHOD OF OUR MODEL BASED

ON FARC-HD FUZZY CLASSIFIER

Dataset PTTD FURIA IVTURSFARC-HD FARC-HD OVOVOTE
HM

aut 75.07±6.06 75.66±4.79 77.07±9.11 80.99±7.33
bal 89.28±1.36 83.14±2.17 85.75±1.92 85.69±3.07
cle 59.96±4.36 55.11±1.35 57.47±3.23 57.74±5.31
con 54.17±1.47 55.37±2.06 54.47±1.44 55.15±2.31
eco 82.31±5.93 82.96±5.01 81.34±7.33 83.20±5.60
gla 63.69±6.61 72.05±5.72 69.12±6.17 70.18±4.11
hay 84.12±4.00 79.65±5.70 75.46±8.63 81.19±5.98
iri 96.67±2.36 94.22±3.44 95.78±2.95 95.33±3.52
new 96.74±2.08 94.88±3.31 94.26±1.73 96.28±2.61
pag 95.26±0.75 96.50±1.77 94.96±2.10 96.43±1.49
pen 92.47±2.36 91.07±1.67 92.22±2.48 94.22±2.49
sat 86.48±2.80 83.09±4.47 75.40±3.03 84.05±3.26
seg 93.12±0.89 97.27±0.81 90.56±0.91 94.99±1.30
shu 98.48±0.48 99.68±0.24 91.88±1.48 99.59±0.22
tae 53.55±8.63 44.51±5.72 54.83±7.80 60.55±8.94
tyr 96.53±0.98 98.37±1.73 93.85±0.64 92.51±0.64
veh 71.27±3.05 71.91±1.73 67.34±2.24 71.90±3.05
vow 75.96±2.54 82.36±2.97 65.99±2.14 90.71±1.14
win 97.20±1.91 94.79±2.01 95.18±3.03 94.55±3.55
yea 58.43±3.43 58.36±2.51 56.43±2.41 59.99±3.33

AVG 81.04±3.10 80.55±2.96 78.47±3.54 82.26±3.46

IVTURSFARC-HD algorithm [25] by Sanz et al., the FURIA al-
gorithm [24] by Hühn and Hüllermeier, and the PTTD method
[26] by Senge and Hüllermeier. The results in testing of these
three algorithms along with those obtained by OVOVOTE

HM (de-
noted as FARC-HD_OVOVOTE

HM ) are shown in Table XI, where
the best of the results obtained in each dataset is highlighted in
bold-face.

From the results presented in Table XI, we must highlight the
notable performance improvement of our proposal respect to
IVTURSFARC-HD, FURIA, and PTTD, improving their average
performances by 3.79%, 1.71%, and 1.22%, respectively. How-
ever, we must contrast these results with the proper statistical
analysis.

In order to compare these methods, we have applied the
Aligned Friedman test. The rankings of the different methods
computed using this test are shown in Fig. 3. The p-value ob-
tained is 0.001, which implies the existence of significant dif-
ferences among the four methods.

We now apply the Holm post hoc test to compare the best
ranking method (FARC-HD OVOVOTE

HM ) with the remaining
methods. Table XII shows the results obtained by this test, in-
dicating whether the hypothesis of equivalence is rejected by
our proposal and the computed p-value (APV). According to

Fig. 3. Rankings of the state-of-the-art fuzzy classifiers along with our
proposal.

TABLE XII
ALIGNED FRIEDMAN AND HOLM TESTS TO COMPARE OUR PROPOSAL

(FARC-HD_OVOVOTE
HM ) WITH RESPECT TO IVTURSFARC-HD, FURIA,

AND PTTD

Algorithm Rank APV Hypothesis

FARC-HD_OVOVOTE
HM 27.85

PTTD 35.90 0.273 Not Rejected
FURIA 40.65 0.163 Not Rejected
IVTURSFARC-HD 57.60 0.001 Rej. FARC-HD_OVOV O T E

H M 95%

Table XII, the hypothesis of equivalence is rejected in the case
of IVTURSFARC-HD with a high level of confidence. Regarding
FURIA and PTTD, although the hypothesis is not rejected, the
APV values are low, which denotes that the behavior of our
proposal is very competitive against these state-of-the-art fuzzy
classifiers.

VI. CONCLUDING REMARKS

In this paper, we have combined the FARC-HD algorithm
and OVO and OVA decomposition strategies to improve its per-
formance in multiclass classification problems. We have shown
that the confidences returned by FARC-HD may adversely af-
fect the aggregation phase in these decomposition strategies and
thus, the final prediction.

In order to minimize this negative effect, we have defined
the concept of n-dimensional overlap functions and we have
replaced the product t-norm by these functions in the inference
system. Additionally, we have proposed a new aggregation strat-
egy for OVO called WinWV, which solves the problems of the
WV with the confidences of FARC-HD.

These adaptations have allowed us to show the importance of
the inference process when OVO and OVA models are consid-
ered, since the confidence values are used beyond the FARC-HD
classification. We have shown that the overlap functions that ob-
tain the best results are those which return values with a higher
variation and preserve the idempotence. Furthermore, we have
observed that there is a relationship between the used overlap
functions and the RB size, as well as the computational time
spent in its learning. In addition, we have found that the usage
of decomposition strategies is suitable for the FARC-HD clas-
sifier, but this synergy is better when the inference process is
adapted appropriately and the best results are obtained with OVO
scheme, which is in accordance with previous works. More-
over, the experimental study shows that our model obtains com-
petitive results in comparison with three state-of-the-art fuzzy
classifiers.
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In the future, several works remain to be addressed. Among
them, the problem of noncompetent classifiers [19] must be
taken into account when using the OVO model. On the other
hand, a more in-depth study of how these type of synergies
affect the interpretability of the model should be carried out.
Furthermore, our proposal might be adapted to different fuzzy
classifiers in order to generalize the effect of the usage of over-
lap functions in the inference process when combining fuzzy
classifiers and decomposition strategies. Finally, the compari-
son and combination between decomposition-based techniques
and preprocessing-based fuzzy ensembles such as bagging [44]
could be studied, but in this case, only focusing on improving
the classification performance using fuzzy techniques.
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[55] M. J. Gacto, R. Alcalá, and F. Herrera, “Interpretability of linguistic fuzzy
rule-based systems: An overview of interpretability measures,” Inform.
Sci., vol. 181, no. 20, pp. 4340–4360, 2011.

[56] Z. H. Deng, L. B. Cao, Y. Z. Jiang, and S. T. Wang, “Minimax probability
TSK fuzzy system classifier: A more transparent and highly interpretable
classification model,” IEEE Trans. Fuzzy Syst., to be published.

[57] D. Paternain, M. Pagola, J. Fernandez, R. Mesiar, G. Beliakov, and
H. Bustince, “Brain MRI thresholding using incomparability and over-
lap functions,” in Proc. 11th Int. Conf. Intell. Syst. Design Appl., 2011,
pp. 808–812.

[58] A. Jurio, H. Bustince, M. Pagola, A. Pradera, and R. R. Yager, “Some
properties of overlap and grouping functions and their application to image
thresholding,” Fuzzy Sets Syst., vol. 229, pp. 69–90, 2013.

[59] D. Paternain, J. Fernandez, H. Bustince, R. Mesiar, and G. Beliakov,
“Construction of image reduction operators using averaging aggregation
functions,” Fuzzy Sets Syst., to be published.

[60] H. Bustince, M. Pagola, R. Mesiar, E. Hullermeier, and F. Herrera,
“Grouping, overlap, and generalized bientropic functions for fuzzy mod-
eling of pairwise comparisons,” IEEE Trans. Fuzzy Syst., vol. 20, no. 3,
pp. 405–415, Jun. 2012.

[61] G. Beliakov, A. Pradera, and T. Calvo, Aggregation Functions: A Guide
for Practitioners (Studies in Fuzziness and Soft Computing). Berlin, Ger-
many: Springer, 2007, vol. 221.

[62] J. Moreno-Torres, T. Raeder, R. Alaiz-Rodrı́guez, N. Chawla, and F. Her-
rera, “A unifying view on dataset shift in classification,” Pattern Recog.,
vol. 45, no. 1, pp. 521–530, 2012.
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