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In a general scenario of classification, one of the main drawbacks for the achievement of accurate models
is the presence of high overlapping among the concepts to be learnt. This drawback becomes more severe
when we are addressing problems with an imbalanced class distribution. In such cases, the minority class
usually represents the most important target of the classification. The failure to correctly identify the
minority class instances is often related to those boundary areas in which they are outnumbered by
the majority class examples.

Throughout the learning stage of the most common rule learning methodologies, the process is often
biased to obtain rules that cover the largest areas of the problem. The reason for this behavior is that
these types of algorithms aim to maximize the confidence, measured as a ratio of positive and negative
covered examples. Rules that identify small areas, in which minority class examples are poorly repre-
sented and overlap with majority class examples, will be discarded in favor of more general rules whose
consequent will be unequivocally associated with the majority class.

Among all types of rule systems, linguistic Fuzzy Rule Based Systems have shown good behavior in the
context of classification with imbalanced datasets. Accordingly, we propose a feature weighting approach
which aims at analyzing the significance of the problem’s variables by weighting the membership degree
within the inference process. This is done by applying a different degree of significance to the variables
that represent the dataset, enabling to smooth the problem boundaries. These parameters are learnt by
means of an optimization process in the framework of evolutionary fuzzy systems. Experimental results
using a large number of benchmark problems with different degrees of imbalance and overlapping, show
the goodness of our proposal.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The significance of classification with imbalanced data arises
when researchers realize that the datasets they are analyzing hold
more instances or examples from one class than that of the
remainder, and that they therefore obtain classification models
below a desired accuracy threshold for that class. This scenario,
known as the problem of classification with imbalanced datasets
[41,28], is commonly addressed in a binary context where there
is a single minority (positive) class, and a majority (negative) class.
The bias of standard classification algorithms towards the
majority class examples [52,27], is the most straightforward conse-
quence derived from the uneven class distribution. Those algo-
rithms which obtain a good behavior in the framework of
standard classification do not necessarily achieve the best perfor-
mance for imbalanced datasets [20]. The imbalanced problem usu-
ally appears in combination with several additional data intrinsic
characteristics [41]. This imposes further restrictions on the learn-
ing stage in terms of it being able to develop a classifier with a high
accuracy for the positive and negative classes of the problem.

One of the main drawbacks for the correct identification of the
positive class of the problem is related to overlapping between the
classes [36,24,13]. Rules with a low confidence and/or coverage,
because they are associated with an overlapped boundary area,
will be discarded. Therefore, positive class examples belonging to
this area are more likely to be misclassified.
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The representation of a classification problem by means of its
variables or features, will determine the way in which the classifier
will discriminate between the examples of both classes. It is well
known that a large number of features can degrade the discovery
of the borderline areas of the problem [39], either because some
of these variables might be redundant or because they do not show
a good synergy among them. For this reason, some works on the
topic have proposed the use of feature selection for imbalanced
datasets in order to overcome this problem [54], and to diminish
the effect of overlapping [13]. However, the application of feature
selection might be too aggressive and therefore some potential fea-
tures could be discarded. In most cases, every variable of the prob-
lem should make at least a small contribution in the learning stage,
and the combination of all of them may help to achieve a better
separability of the classes.

Linguistic FRBCSs have the advantage of achieving a good per-
formance in the context of classification with imbalanced datasets
[19,47]. The use of linguistic fuzzy sets allows the smoothing of the
borderline areas in the inference process, which is also a desirable
behavior in the scenario of overlapping.

In this paper, we propose the use of a feature weighting
approach in the context of Linguistic Fuzzy Rule Based Classifica-
tion Systems (FRBCSs) [34]. Basically, we propose the consideration
of the feature weights as a part of the reasoning model. We modify
the computation of the membership functions associated with the
fuzzy labels in the antecedents of the rules, in order to take into
account the significance of the problem’s variables throughout
the inference process.

The computation of the optimal parameters for setting the
weight of each variable, will be carried out by means of Evolution-
ary Algorithms [15]. The hybridization of this approach with the
previously introduced FRBCSs will lead to the development of an
Evolutionary Fuzzy System (EFS) [11,17]. One of the main reasons
for the success of this type of techniques is their ability to exploit
the information accumulated about and initially unknown search
space in order to bias subsequent searches into useful subspaces,
i.e. their robustness [11]. For the fuzzy learning classifier, we have
considered the use of a robust FRBCS, i.e. the Fuzzy Association
Rule-based Classification for High-Dimensional problems (FARC-
HD) [1]. The proposed algorithm using feature weighting will
receive the acronym FARC-HD-FW, based on the previous name
(FARC-HD) and the use of feature weighting.

In order to evaluate the goodness of the feature weighting pro-
posal, we will contrast our results with the standard FARC-HD
algorithm and FARC-HD with feature selection. Additionally, we
will complement our comparison with the C4.5 decision tree [49]
as a standard baseline algorithm, and several EFS approaches
developed for both classical and imbalanced classification such as
2-tuples lateral tuning [18], the Hierarchical Genetic Program-
ming-based learning of COmpact and ACcurate fuzzy rule-based
classification systems for High-dimensional problems (GP-
COACH-H) [40], and the Interval-Valued Fuzzy Decision Tree
(IIVFDT) [50]. The validity of our approach in the scenario of imbal-
anced and overlapping datasets will be tested using a wide bench-
mark of 66 different problems commonly used in the topic of
classification with imbalanced datasets [41].

This paper is organized as follows. Section 2 briefly introduces
the problem of imbalanced data, its relationship with class over-
lapping and how to address and evaluate this problem. Then, Sec-
tion 3 contains the central part of the manuscript, in which the
proposed methodology for dealing with overlapping in imbalanced
data with FRBCSs is described. Next, the details about the experi-
mental framework selected for the validation of our approach are
introduced in Section 4. The analysis and discussion of the experi-
mental results is carried out in Section 5. Finally, Section 6 summa-
rizes and concludes the work.
2. Imbalanced datasets in classification

In this section, we present some preliminary concepts regarding
classification with imbalanced datasets. This section is divided into
the following four parts:

� We will first introduce the problem of imbalanced datasets,
describing its features and why is so difficult to learn in this
classification scenario (Section 2.1).

� Then, we will focus on the presence of overlapping between
the classes, which further complicates the correct identifica-
tion of the positive instances (Section 2.2).

� In the next section, we will present how to address this prob-
lem, focusing on the preprocessing of instances for rebalanc-
ing the distribution between the positive and negative
classes (Section 2.3).

� Finally, we will discuss how to evaluate the performance of
the results in this situation (Section 2.4).

2.1. Basic concepts on classification with imbalanced datasets

The main property of this type of classification problem is that
the examples of one class outnumber the examples of the other
one [52]. The minority classes are usually the most important con-
cepts to be learnt, since they might be associated with exceptional
and significant cases [55] or because the data acquisition of these
examples is costly [57]. Since most of the standard learning algo-
rithms consider a balanced training set, this situation may cause
suboptimal classification models to be obtained, i.e. a good cover-
age of the majority examples but a more frequent misclassification
of the minority ones [27]. Traditionally, the Imbalance Ratio (IR),
i.e. the ratio between the majority and minority class examples
[45], is the main clue to identify a set of problems which need to
be addressed in a special way.

We must stress the following reasons for this behavior [41]: the
use of global performance measures for guiding the search process,
such as standard accuracy rate, which may benefit the covering of
the majority class examples, and the low coverage of the classifica-
tion rules for the positive class, which are discarded in favor of
more general rules, especially in the case of overlapping [36,13];
small clusters of minority class examples that can be treated as
noise and wrongly ignored by the classifier [46,56]; few real noisy
examples which may degrade the identification of the minority
class, as it has fewer examples to begin with [51]; and dataset shift,
i.e. different data distribution between training and test partitions
[44]. For an in depth coverage of those data intrinsic characteristics
which hinder the classification of imbalanced datasets, the reader
may refer to a recent survey carried out in [41].

Finally, regarding the way to overcome the class imbalance
problem, we may find a large number of proposed approaches,
which can be categorized in three groups [42]:

1. Data level solutions: the objective consists of rebalancing the
class distribution by sampling the data space to diminish the
effect caused by class imbalance, acting as an external
approach [21,25,38].

2. Algorithmic level solutions: these solutions try to adapt sev-
eral classification algorithms to reinforce the learning
towards the positive class. Therefore, they can be defined
as internal approaches that create new algorithms or modify
existing ones to take the class imbalance problem into con-
sideration [4,58,61].

3. Cost-sensitive solutions: these types of solutions incorporate
approaches at the data level, at the algorithmic level, or at
both levels jointly. They consider higher costs for the mis-



Fig. 1. F1 ¼ 12:5683.
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classification of examples of the positive class with respect to
the negative class, and therefore, trying to minimize higher
cost errors [14,53,59].

2.2. The problem of overlapping or class separability

In this paper, we focus on the overlapping between classes. The
issue of class separability occurs when a ‘‘small’’ region of the data
space is represented by a similar number of training data from
both classes; then, the inference mechanism will result from the
same a priori probabilities in this area, and the discrimination
between the classes will become harder. It is straightforward to
observe that any ‘‘linearly separable’’ problem can be solved by a
naïve classifier, regardless the class distribution [48].

In one of the latest examples of research into the topic [43],
authors have empirically extracted some interesting findings from
real world datasets. Specifically, they depicted the performance of
the different datasets ordered in accordance with different data
complexity measures in order to search for some regions of inter-
esting good or bad behavior. The findings in this work stress that
the metrics which measure the overlap between the classes can
better characterize the degree of final precision obtained, in con-
trast to the IR.

The degree of overlap for individual feature values is measured
by the so called metric F1 or maximum Fisher’s discriminant ratio
[31]. This metric for one feature dimension is defined as:

f ¼ ðl1 � l2Þ
2

r2
1 þ r2

2

where l1; l2; r2
1; r2

2 are the means and variances of the two clas-
ses respectively, in that feature dimension. We compute f for each
feature and take the maximum as measure F1. For a multidimen-
sional problem, not all features have to contribute to class discrim-
ination. The problem is simple as long as there is one discriminating
feature. Therefore, we can just take the maximum f over all feature
dimensions when discussing class separability.
Datasets with a small value for the F1 metric will have a high
degree of overlapping. Figs. 1–4 show an illustrative example of
this behavior, which have been built with synthetic data, using
two variables within the range ½0:0; 1:0� and two classes.
2.3. Addressing the imbalanced problem: SMOTE preprocessing

Above, we have introduced several approaches to addressing
classification with imbalanced datasets. Among them, the advan-
tage of the data level solutions is that they are more versatile, since
their use is independent of the classifier selected. Furthermore, we
may preprocess all datasets beforehand in order to use them to
train different classifiers. In this way, we only need to prepare
the data once. Furthermore, previous analysis of preprocessing
methods with several classifiers has shown the goodness of the
oversampling techniques [5].

The simplest approach, random oversampling, makes exact cop-
ies of existing instances, and therefore several authors agree that this
method can increase the likelihood of overfitting occurring [5].
Accordingly, more sophisticated methods have been proposed based
on the generation of synthetic samples. Among them, the ‘‘Synthetic
Minority Over-sampling TEchnique’’ (SMOTE) [9] algorithm, the
main idea of which is to form new positive class examples by inter-
polating between several positive class examples that lie together,
has become one of the most significant approaches in this area.

The positive class is over-sampled by taking each minority class
sample and introducing synthetic examples along the line seg-
ments joining any/all of the k minority class nearest neighbors.
Depending upon the amount of over-sampling required, neighbors
from the k nearest neighbors are randomly chosen. This process is
illustrated in Fig. 5, where xi is the selected point, xi1 to xi4 are some
selected nearest neighbors and r1 to r4 the synthetic data points
created by the randomized interpolation.

Synthetic samples are generated in the following way: take the
difference between the feature vector (sample) under consider-
ation and its nearest neighbor. Multiply this difference by a



Fig. 2. F1 ¼ 5:7263.

Fig. 3. F1 ¼ 3:3443.
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random number between 0 and 1, and add it to the feature vector
under consideration. This causes the selection of a random point
along the line segment between two specific features. This
approach effectively forces the decision region of the positive class
to become more general.
2.4. Evaluation in imbalanced domains

The evaluation criterion is a key factor in both assessing the
classification performance and guiding the classifier modeling. In
a two-class problem, the confusion matrix (shown in Table 1)



Fig. 4. F1 ¼ 0:6094.
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records the results of correctly and incorrectly recognized exam-
ples of each class.

Traditionally, the accuracy rate (Eq. (1)) has been the most com-
monly used empirical measure. However, in the framework of
imbalanced datasets, accuracy is no longer a proper measure, as
it does not distinguish between the numbers of correctly classified
examples of different classes. Therefore, it may lead to erroneous
conclusions, i.e., a classifier achieving an accuracy of 90% in a data-
set with an IR value of 9, is not accurate if it classifies all examples
as negatives.

Acc ¼ TP þ TN
TP þ FN þ FP þ TN

ð1Þ

In imbalanced domains, the evaluation of the classifiers’ perfor-
mance must be carried out using specific metrics to take into
account the class distribution. Specifically, a well-known approach
to producing an evaluation criteria in an imbalanced scenario is to
use the Receiver Operating Characteristic (ROC) graphic [7]. This
graphic allows the trade-off between the benefits (TPrate) and costs
(FPrate) to be visualized, and it thus evidences that any classifier is
unable to increase the number of true positives without also
increasing the false positives.

The Area Under the ROC Curve (AUC) [33] corresponds to the
probability of correctly identifying which of the two stimuli is
noise and which is signal plus noise. AUC provides a single measure
of a classifier’s performance for evaluating which model is better
on average. Fig. 6 shows how to build the ROC space plotting on
a two-dimensional chart the TPrate (Y-axis) against the FPrate (X-
axis). Points in ð0;0Þ and ð1;1Þ are trivial classifiers in which the
predicted class is always the negative and positive respectively.
By contrast, ð0;1Þ point represents the perfect classification. The
AUC measure is computed by obtaining the area of the graphic:

AUC ¼ 1þ TPrate � FPrate

2
ð2Þ
3. Addressing overlapping by feature weighting with fuzzy rule
based classification systems

In this paper, our main contribution is the development of a
model for using feature weighting in combination with FRBCS.
This synergy is expected to improve the classification ability in
those imbalanced datasets which also suffer from overlapping
between their classes. The final aim of this approach is to opti-
mize the feature weights, so that each variable of the problem
has a different significance for the final inference in the classifica-
tion step. Hence, we consider limiting the influence of those fea-
tures that may hinder the discrimination process between the
classes in an imbalanced classification scenario. This process will
be carried out by means of a genetic process, leading to an EFS
[11,17].

In order to describe our proposal, we will first recall some basic
concepts of FRBCS, focusing on the fuzzy inference mechanism,
from which we will implement our feature weighting approach
(Section 3.1). Then, we will introduce the working procedure of
our approach, in which the weights for each variable are optimized
to achieve the best results in each context (Section 3.2). We will
present the details of the selected FRBCS we will use to test our
methodology, namely the FARC-HD algorithm [1] (Section 3.3).
Finally, for the sake of showing the goodness of our approach, we
will show a graphical example of the working procedure of the fea-
ture weighting (Section 3.4).

3.1. Preliminary concepts for FRBCS

Any classification problem consists of m training patterns
xp ¼ ðxp1; . . . ; xpn;CpÞ; p ¼ 1;2; . . . ;m from M classes where xpi is
the ith attribute value (i ¼ 1;2; . . . ;n) of the pth training pattern.

In this work we use fuzzy rules of the following form for our
FRBCSs:



Fig. 5. An illustration of how to create the synthetic data points in the SMOTE
algorithm.

Table 1
Confusion matrix for a two-class problem.

Positive prediction Negative prediction

Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

Fig. 6. Example of an ROC plot. Two classifiers’ curves are depicted: the dashed line
represents a random classifier, whereas the solid line is a classifier which is better
than the random classifier.
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Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class ¼ Cj with RWj
ð3Þ

where Rj is the label of the jth rule, x ¼ ðx1; . . . ; xnÞ is an n-dimen-
sional pattern vector, Aji is an antecedent fuzzy set, Cj is a class label,
and RWj is the rule weight [35]. We use triangular MFs as anteced-
ent fuzzy sets.

When a new pattern xp is selected for classification, then the
steps of the fuzzy reasoning method are as follows:

1. Matching degree, that is, the strength of activation of the if-
part for all rules in the Rule Base with the pattern xp. In order
to carry out this computation, a conjunction operator c shall
be applied. This operator is used to combine the membership
degrees for every variable of the example, which were
obtained by means of the l function. Traditionally, a T-norm
is selected for this purpose, although any aggregation opera-
tor can be employed:
lAj
ðxpÞ ¼ cðlAj1

ðxp1Þ; . . . ;lAjn
ðxpnÞÞ; j ¼ 1; . . . ; L ð4Þ
2. Association degree. To compute the association degree of
the pattern xp with the M classes according to each rule in
the Rule Base. To this end, a combination operator h is
applied in order to combine the matching degree with
the rule weight (RW). In our case, this association degree
only refers to the consequent class of the rule (i.e.
k ¼ ClassðRjÞÞ.

bk
j ¼ h lAj

ðxpÞ;RWk
j

� �
; k ¼ 1; . . . ;M; j ¼ 1; . . . ; L ð5Þ

3. Pattern classification soundness degree for all classes.
We use an aggregation function f, which combines the
positive degrees of association calculated in the previous
step.

Yk ¼ f bk
j ; j ¼ 1; . . . ; L and bk

j > 0
� �

; k ¼ 1; . . . ;M ð6Þ

4. Classification. We apply a decision function F over the
soundness degree of the system for the pattern classifica-
tion for all classes. This function will determine the class
label l corresponding to the maximum value.

FðY1; . . . ;YMÞ ¼ arg maxðYkÞ; ½k ¼ 1; . . . ;M� ð7Þ

Where L denotes the number of rules in the Rule Base and M the
number of classes of the problem (M = 2 in our current case).

3.2. Learning the optimal weights for the problem’s variables

Our approach is based on a mechanism which modifies the bias
for each variable during the fuzzy inference process, which was
previously introduced in Section 3.1.

We will modify Step (1), which was devoted to the computation
of the matching degree. In order to take into account the different
significance associated with each variable, we will perform an
adjustment of function c. Specifically, we will include a power
weighting function X so that:

X ¼ ðlAj
ðxpÞÞw with w ¼ ½0;1� ð8Þ

so that Eq. (4) will have the following expression:

lX
Aj
ðxpÞ ¼ cðlw1

Aj1
ðxp1Þ; . . . ;lwn

Ajn
ðxpnÞÞ; j ¼ 1; . . . ; L; ð9Þ

Fig. 7 depicts the influence of the value of w for the different
variables in the X function, comparing this value with the initial
membership function computed with l. Notice that when wj ¼ 1
the original value obtained by the membership function is not
modified at all.

The contrary case occurs when wj ¼ 0, i.e. the current feature
will have no influence throughout the fuzzy reasoning method,
since x0 ¼ 1 8x. Intermediate values will make the membership
degree of the example for that variable to be increased or
decreased depending on its closeness to the maximum value 1.
In summary, a high value for wj should be set for those significant
variables that truly contribute to the classification, whereas those
redundant or noisy features might consider a lower value of wj.

The estimation of these parameters is not trivial since, as
pointed out above, their values directly affect the prediction of
the final class. For a proper definition of these weights, an optimi-
zation process must be carried out.

Among the different techniques that can be used for this search
procedure, genetic algorithms excel due to their ability to perform
a good exploration and exploitation of the solution space [15]. Of
all the available evolutionary procedures, the CHC technique [16]
is recommended as it presents a good trade-off between diversity
and convergence, making it a good choice for problems with



Fig. 7. Graphical representation of the X function. Different values of w will alter
the final computation of the membership function. When w is closer to 1, the
membership function will have a closer value to its original. The membership
degree will tend to 1 when w is closer to 0.
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complex search spaces. It has also shown good results in the sce-
nario of imbalanced datasets [18]. The features of this evolutionary
model are presented below:

� Coding scheme: We have a set of real parameters to be opti-
mized (wj, with j ¼ 1; . . . ;nÞ, where the range in which each
one varies is [0, 1], and n stands for the number of attributes.
Thus, the chromosome will be an array with the following
structure: Wj ¼ ðw1; . . . ;wnÞ

� Initial Gene Pool: In the first place, we include an individual
with all genes with value 1, so that it represents the standard
case. Additionally, we have generated ‘‘ad-hoc’’ as many
chromosomes as the problem has variables. Each of these
individuals will have a value wV ¼ 1 for its corresponding
variable V, with the rest of genes wj ¼ 0. In this way, we hope
to include information within the population to reduce the
global weight of the variables throughout the crossover
operations between the individuals. The remaining chromo-
somes of the population will be initialized with random val-
ues between 0 and 1.

� Chromosome Evaluation: First, a fuzzy knowledge base is
extracted according to the current values of the weights for
the X function for each individual. It is expected to obtain
a different set of rules for different values of wj. Then, this
knowledge base is used to classify the training set, and the
obtained AUC value is selected as fitness for the chromo-
some. We must point out that the bias of the search towards
the sole coverage of the majority class examples is avoided
by the use of this metric.

� Crossover Operator. The crossover operator is based on the
concept of environments (the offspring are generated around
their parents). These kinds of operators present a good coop-
eration when they are introduced within evolutionary mod-
els, forcing the convergence by pressure on the offspring (as
the case of CHC). Specifically, we consider the PC-BLX-a
operator [29], which allows the offspring genes to be around
the genes of one parent.

� Restarting Approach. To get away from local optima, this
algorithm uses a restarting approach since it does not apply
mutation during the recombination phase. Therefore, when
the threshold value is lower than zero, all the chromosomes
are regenerated randomly to introduce new diversity to the
search. Furthermore, the best global solution found is
included in the population to increase the convergence of
the algorithm as in the elitist scheme
3.3. Integration of the feature weighting process into FARC-HD
algorithm

In this paper we have made use of a robust FRBCS known as
Fuzzy Association Rule-based Classification for High-Dimensional
problems (FARC-HD) [1]. This algorithm is based on association
discovery, a commonly used technique in data mining for extract-
ing interesting knowledge from large datasets [26] by means of
finding relationships between the different items in a database
[60]. The integration between association discovery and classifica-
tion leads to precise and interpretable models.

FARC-HD is aimed at obtaining an accurate and compact fuzzy
rule-based classifier with a low computational cost. In short, this
method is based on the following three stages:

Stage 1 Fuzzy association rule extraction for classification: A
search tree is employed to list all possible frequent fuzzy
item sets and to generate fuzzy association rules for
classification, limiting the depth of the branches in order
to find a small number of short (i.e., simple) fuzzy rules.

Stage 2 Candidate rule pre-screening: After the rule generation,
the size of the rule set may be too large to be interpret-
able by the end user. Therefore, a pre-selection of the
most interesting rules is carried out by means of a ‘‘sub-
group discovery’’ mechanism based on an improved
weighted relative accuracy measure (wWRAcc’) [37].

Stage 3 Genetic rule selection and lateral tuning: Finally, in order
to obtain a compact and accurate set of rules within
the context of each problem, an evolutionary process
will be carried out in a combination for the selection
of the rules with a tuning of the membership function.

In order to integrate the genetic optimization process for fea-
ture weighting with the FARC-HD algorithm, we proceed in the fol-
lowing way: once we have set up the values for each chromosome,
i.e. the weights for the variables of the problem, a complete rule set
will be learnt by means of the association fuzzy rule mining, which
corresponds to Stage 1 and Stage 2 (rule extraction and pre-screen-
ing) of the FARC-HD approach, similar to a wrapper methodology.

We acknowledge that, by merging the fuzzy rule discovery into
the fitness computation of the feature weighting approach, we
might lose some efficiency in the whole process with respect to
just combining our proposal with the genetic algorithm of Stage
3 of the FARC-HD technique. However, our intention is twofold:
in the first place, if we proceed in the latter way the size of the
chromosome will become too large to converge into an optimal
solution, even if more evaluations are performed. Moreover, there
is a clear dependency between the weights of the variables and the
learning of the rule set. Hence, obtaining in the first place the
weights of the variables, and then discovering the fuzzy rules, we
make sure that this constraint is maintained. Furthermore, since
we omit the last genetic stage within the evaluation part of our
methodology, the number of total evaluations remains admissible
for this type of approach.

As a summary, Fig. 8 depicts the complete learning scheme of
the EFS developed by the combination of feature weighting and
FARC-HD.



Fig. 8. Scheme of the feature weighting approach with FARC-HD.

Fig. 9. Borderline areas obtained by the FRBCSs (F1 ¼ 12:5683).

Fig. 10. Borderline areas obtained by the FRBCSs (F1 ¼ 5:7263).

Fig. 11. Borderline areas obtained by the FRBCSs (F1 ¼ 3:3443).
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3.4. Graphical analysis of the feature weighting process on a dataset
with overlapping

The goodness of our approach in the scenario of overlapping
data will be shown by means of a simple graphical example. We
have created a 2-variable synthetic dataset, which corresponds to
that shown in Section 2.2, setting up different degrees of overlap-
ping according to the F1 measure.

Then, we have run the standard FARC-HD algorithm, and FARC-
HD with Feature Weighting (FARC-HD-FW) with the aim of con-
trasting the differences both at the performance level (AUC values),
and the borderline areas learnt by the classifier. Figs. 9–12 depict
the obtained results, whereas Table 2 shows the quality of the
methodologies in terms of AUC.

In accordance with the results previously shown, we may
observe that our current approach has two main advantages in this
classification scenario:

1. It achieves a higher average value for the AUC metric,
especially when the degree of overlapping increases.

2. The borderline areas generated by the FRBCSs’ rules are sim-
pler and more compact, which favors a better generalization
ability.

4. Experimental framework

In this section we first provide details of the real-world binary-
class imbalanced problems chosen for the experiments (subSec-
tion 4.1). Then, we will describe the learning algorithms selected
for this study and their configuration parameters (4.2). Finally,
we present the statistical tests applied to compare the results
obtained with the different classifiers (subSection 4.3).

4.1. Benchmark data

Table 3 shows the benchmark problems selected for our study,
in which the name, number of examples, number of attributes, IR



Fig. 12. Borderline areas obtained by the FRBCSs (F1 ¼ 0:6094).

Table 2
AUC values for the synthetic problems in FARC-HD and FARC-HD-FW. In boldface the
best result in AUC is stressed.

F1-value FARC-HD FARC-HD-FW

12.5683 1.0000 1.0000
5.7263 .9234 .9321
3.3443 .8594 .8838
0.6094 .7342 .7942

Avg .8792 ± .0974 .9025 ± .0749
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and F1 metric (overlapping) is shown. Datasets are ordered with
respect to their degree of overlap, from which we can divide them
into two disjoint groups with a similar size: datasets with a low
degree of overlapping (left column), with their F1 metric higher
than 1.5, and high overlapping datasets (right column), identified
by having a value below 1.5 for their F1 metric. Additionally, we
Table 3
Summary of imbalanced datasets used.

Name #Ex. #Atts. IR F1

iris0 150 4 2.00 16.8200
shuttle0vs4 1829 9 13.87 12.9700
shuttle2vs4 129 9 20.50 12.1300
ecoli0vs1 220 7 1.86 9.7520
yeast5 1484 8 32.78 4.1980
new-thyroid2 215 5 4.92 3.5790
new-thyroid1 215 5 5.14 3.5790
wisconsin 683 9 1.86 3.5680
glass0123vs456 214 9 3.19 3.3240
ecoli4 336 7 13.84 3.2470
yeast3 1484 8 8.11 2.7510
ecoli1 336 7 3.36 2.6500
vowel0 988 13 10.10 2.4580
glass6 214 9 6.38 2.3910
ecoli0137vs26 281 7 39.15 2.3020
yeast6 1484 8 39.15 1.9670
led7digit02456789vs1 443 7 10.97 1.9570
glass016vs5 184 9 19.44 1.8510
ecoli2 336 7 5.46 1.8260
segment0 2308 19 6.01 1.7980
ecoli067vs5 220 6 10.00 1.6920
yeast02579vs368 1004 8 9.14 1.6350
ecoli034vs5 200 7 9.00 1.6320
ecoli0234vs5 202 7 9.10 1.6180
ecoli046vs5 203 6 9.15 1.6030
ecoli0346vs5 205 7 9.25 1.5950
ecoli3 336 7 8.19 1.5790
yeast2vs4 514 8 9.08 1.5790
page-blocks13vs4 472 10 15.85 1.5470
glass04vs5 92 9 9.22 1.5420
glass4 214 9 15.47 1.4690
ecoli01vs5 240 6 11.00 1.3900
cleveland0vs4 177 113 12.62 1.3500
must draw attention to a subset of 26 problems that share both a
high degree of imbalance and overlapping, as these can be defined
as the most difficult problems to overcome.

As highlighted throughout this paper, the estimates of the AUC
measure are obtained by means of a standard Stratified Cross-Val-
idation. The number of folds selected in both cases is 5. This value
is set up with the aim of having enough positive class instances in
the different folds, hence avoiding additional problems in the data
distribution, especially for highly imbalanced datasets.

We must point out that the original dataset partitions with 5-
fold-cross-validation employed in this paper are available for
download at the KEEL dataset repository [2] so that any interested
researcher can use the same data for comparison. In this case,
multi-class problems were modified to obtain two-class imbal-
anced problems, defining the joint of one or more classes as posi-
tive and the joint of one or more classes as negative, as defined
in the name of the dataset.

4.2. Algorithms and parameters

In order to validate the robustness of the feature weighting
strategy with FRBCS, we will check our experimental results versus
the FARC-HD algorithm and FARC-HD with feature selection. In
this way, we expect to show the goodness of our approach by
enhancing the performance of the baseline classifier. We may also
make clear the differences between the use of feature selection and
feature weighting in the scenario of overlapping for imbalanced
data. We must point out that the components of the feature selec-
tion procedure are exactly the same as in the case of the feature
weighting, but the chromosome has a binary representation
instead of a real one.

Additionally, as a state-of-the-art classifier we have made use of
C4.5 [49]. The C4.5 learning algorithm constructs a top-down
Name #Ex. #Atts. IR F1

ecoli0146vs5 280 6 13.00 1.3400
yeast2vs8 482 8 23.10 1.1420
ecoli0347vs56 257 7 9.28 1.1300
vehicle0 846 18 3.23 1.1240
ecoli01vs235 244 7 9.17 1.1030
yeast05679vs4 528 8 9.35 1.0510
glass06vs5 108 9 11.00 1.0490
glass5 214 9 22.81 1.0190
ecoli067vs35 222 7 9.09 0.9205
ecoli0267vs35 244 7 9.18 0.9129
ecoli0147vs56 332 6 12.28 0.9124
yeast4 1484 8 28.41 0.7412
yeast0256vs3789 1004 8 9.14 0.6939
glass0 214 9 2.06 0.6492
abalone918 731 8 16.68 0.6320
pima 768 8 1.90 0.5760
abalone19 4174 8 128.87 0.5295
ecoli0147vs2356 336 7 10.59 0.5275
page-blocks0 5472 10 8.77 0.5087
glass2 214 9 10.39 0.3952
vehicle2 846 18 2.52 0.3805
yeast1289vs7 947 8 30.56 0.3660
yeast1vs7 459 8 13.87 0.3534
glass0146vs2 205 9 11.06 0.3487
yeast0359vs78 506 8 9.12 0.3113
glass016vs2 192 9 10.29 0.2692
yeast1 1484 8 2.46 0.2422
glass1 214 9 1.82 0.1897
vehicle3 846 18 2.52 0.1855
haberman 306 3 2.68 0.1850
yeast1458vs7 693 8 22.10 0.1757
vehicle1 846 18 2.52 0.1691
glass015vs2 172 9 9.12 0.1375
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decision tree by using the normalized information gain (difference
in entropy) that results from choosing an attribute to split the data.
The attribute with the highest normalized information gain is the
one used to make the decision.

Finally, we will complement our study by using several EFS
approaches developed for both classical and imbalanced classifica-
tion. Next we detail the features of these approaches:

� The use of the linguistic 2-tuples representation [30], which
allows the lateral displacement of the labels considering only
one parameter (slight displacements to the left/right of the
original MFs). Specifically, we will consider the Global Tun-
ing of the Semantics (GTS) approach, in which the tuning is
applied to the level of linguistic partition. The pair (Xi, label)
takes the same tuning value in all the rules where it is con-
sidered. As FRBCS we will use Chi et al.’s learning procedure
[10] as it has shown a good behavior in the scenario of highly
imbalanced datasets [18].

� The GP-COACH-H algorithm [40] is an FRBCS with different
granulation levels that integrates rule selection and the 2-
tuples tuning approach to improve the performance in
imbalanced data-sets. It is based on the standard GP-COACH
algorithm [6], a genetic programming scheme for the learn-
ing of the fuzzy rules, specifically a genetic cooperative-com-
petitive learning approach in which the whole population
represents the Rule Base obtained.

� IIVFDT [50] is composed of the baseline fuzzy ID3 algorithm,
from which linguistic labels are modeled with Interval-Val-
ued Fuzzy Sets [8]. To do this, a parametrized construction
method of Interval-Valued Fuzzy Sets is defined, whose
length represents the ignorance degree. Finally, an evolu-
tionary tuning step is applied to compute the optimal igno-
rance degree for each Interval-Valued Fuzzy Set.

Next, we detail the parameter values for the different learning
algorithms selected in this study, which have been set considering
the recommendation of the corresponding authors:

1. C4.5
For C4.5 we have set a confidence level of 0:25, the minimum
number of item-sets per leaf was set to 2 and the application
of pruning was used to obtain the final tree.

2. FARC-HD
First, we have selected 5 labels per variables for the fuzzy
sets, product t-norm as conjunction operator and additive
combination for the inference procedure. As specific param-
eters of the learning stage, we have set up the minimum sup-
port to 0.05 and the minimum confidence to 0.8. Finally, we
have fixed the maximum depth of the tree to a value of 3,
and the k parameter for the pre-screening to 2. For more
details about these parameters, please refer to [1].

3. Chi et. al’s algorithm
The configuration of this FRBCS consists of 3 labels per vari-
able, product T-norm as conjunction operator, together with
the penalized certainty factor approach [35] for the rule
weight and fuzzy reasoning method of the winning rule.

4. GP-COACH-H
We use a minimum t-norm and a maximum t-conorm. The
rule weight is the standard certainty factor, and as the fuzzy
reasoning method we employ the additive combination. The
number of fuzzy labels has been set to 5 for low granularity
rules and 9 for high granularity rules.

5. IIVFDT
In this case, the number of labels per variable has been set to
3, and the conjunction operator will be the IV product t-
norm [50]. Specific parameters of the fuzzy decision tree
are the evidence significance level (0.4) and the truth level
threshold (0.95).
The ignorance weighting function for interval-valued fuzzy
sets has been defined as gðxÞ ¼ 2 �minðx;1� xÞ, whereas
the optimization parameters d and c have been initialized
to 0.5. For more details about these parameters, please refer
to [50].

6. CHC optimization process
Every EFS algorithm used in the experimental study contains
a CHC optimization process. In all cases, the number of indi-
viduals has been set to 50 chromosomes. The crossover
mechanism is the PC-BLX-a with a equal to 1.0, and 30 bits
will be used to translate the real numbers into a binary string
for computing the hamming distance in the incest preven-
tion mechanism. However, the number of evaluations vary
depending on the algorithm that is being considered:
� For FARC-HD-FW, a total of 16,000 evaluations will be

carried out throughout the genetic process, i.e. 1000 for
the weight adjustment of the variables, and another
15,000 for the lateral tuning and rule selection of the final
Rule Base (Stage 3 of FARC-HD). The original FARC-HD
approach has been set up with exactly the same parame-
ters for Stage 3.

� GP-COACH-H uses 10,000 evaluations.
� IIVFDT and GTS consider 5000 � n evaluations, with n the

number of input variables.

Regarding the SMOTE preprocessing technique, we will con-
sider the 5-nearest neighbors of the positive class to generate the
synthetic samples, and balancing both classes to the 50% distribution.

We must also point out that most of these algorithms are avail-
able within the KEEL software tool [3], whereas a beta implemen-
tation (also in KEEL format) of the FARC-HD-FW is available for
download at http://www.keel.es/beta/farchd-fw.zip.

4.3. Statistical tests for performance comparison

In this paper we use the hypothesis testing techniques to pro-
vide statistical support for the analysis of the results [22]. Specifi-
cally, we will use non-parametric tests, due to the fact that the
initial conditions that guarantee the reliability of the parametric
tests may not be satisfied, causing the statistical analysis to lose
credibility with these types of tests [23,12]. Any interested reader
can find additional information on the Website http://sci2s.ugr.es/
sicidm/.

First of all, we consider the method of aligned ranks of the algo-
rithms in order to show graphically how good a method is with
respect to its partners. In order to compute this ranking, the first step
is to obtain the average performance of the algorithms in each data-
set. Next, we compute the subtractions between the accuracy of each
algorithm minus the average value for each dataset. Then, we rank all
these differences in a descending way and, finally, we average the
rankings obtained by each algorithm. In this manner, the algorithm
which achieves the lowest average ranking is the best one.

The Friedman aligned test [22] will be used to check whether
there are significant differences among the results, and the Holm
post hoc test [32] in order to find which algorithms reject the
hypothesis of equality with respect to a selected control method
in a 1 � n comparison. We will compute the adjusted p-value
(APV) associated with each comparison, which represents the low-
est level of significance of a hypothesis that results in a rejection.
This value differs from the standard p-value in the sense that it
determines univocally whether the null hypothesis of equality is
rejected at a significance level a. This fact eases the comparison
of the algorithms, as it is no longer necessary to contrast it with
the alpha=i value of a standard statistical results table.

http://www.keel.es/beta/farchd-fw.zip
http://sci2s.ugr.es/sicidm/
http://sci2s.ugr.es/sicidm/
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5. Experimental study

In this section we will show the goodness of our proposal under
three different cases of study:

1. First, we will make a global analysis for all benchmark data-
sets, in order to determine the goodness of our approach in a
general case (Section 5.1).

2. Then, we will focus on the main issue of our study, which is
related to those cases where datasets have a high degree of
overlap between their classes (Section 5.2).

3. Finally, we propose to investigate the most difficult case, i.e.
when the classification problem includes an extremely
skewed distribution together with a high degree of overlap-
ping (Section 5.3).

As a complementary study, we will contrast the results of FARC-
HD-FW versus several EFSs in order to provide greater support to
the findings extracted throughout this analysis (Section 5.4).

The complete experimental results for every dataset introduced
in the experimental framework, are shown in Table 4. In this table,
FARC-HD-FW stands for our proposed methodology, FARC-HD is
the standard FARC-HD algorithm, and FARC-HD-FS is the method-
ology with feature selection. The reader must recall that every sin-
gle algorithm uses SMOTE preprocessing prior to its application.
5.1. On the behavior of feature weighting for imbalanced classification

By observing Table 4 we note that our feature weighting
approach obtains the highest AUC test result in almost half of the
problems (29 out of the 66 datasets), and that it only achieves
the worst value in 10% of the problems (6 out of 66 datasets) with
respect to the algorithms of comparison.

This good behavior is emphasized if we take a closer look at the
average values of the performance (Table 5), in which both the AUC
results for the test partitions and the APV of the Holm test are
included. We might observe that the differences in AUC in favor
of our approach are clear in all cases, especially versus the C4.5
algorithm, which presents a higher degree of overfitting. Further-
more, when contrasting the results for the FARC-HD and FARC-
HD-FS algorithms, it also shows the highest value for the training
partitions, thus stressing the correctness of the learning stage that
has been implemented.

In order to obtain well founded conclusions of these results, we
will thoroughly analyze these four scenarios by means of a statis-
tical study. This study will allow us to determine whether our pro-
posal outperforms the remaining approaches, and therefore to
support the quality of this methodology under the different cases
of study proposed.

In first place, Fig. 13 shows the average ranks for our feature
weighting approach and the three algorithms for comparison.
Within these pictures, the relative differences among the algo-
rithms are depicted, and interesting conclusions can be extracted
from them. On the one hand, we can highlight the robustness of
feature weighting with respect to the other methodologies, as
there is a clear gap for the average ranking in each of the four cases.
On the other hand, we must also stress that the distance between
FARC-HD-FW and FARC-HD-FS is higher than that between FARC-
HD-FS and FARC-HD. This latter fact indicates the strength of our
initial premise with regard to the significance of the use of feature
weighting rather than just feature selection.

In the last part of our analysis, we will carry out some non-para-
metric tests that will conclude our study, aiming to find statistical
differences between our proposal and the remaining methodolo-
gies. The first step is to compute whether significant differences
are found among the results. For this purpose, we obtain the p-
value for the Friedman aligned test and, if it is below 0.05, then
it will confirm the presence of significant differences among the
results. In this current case, i.e. when considering all datasets as
a whole, this p-value is near zero (4:3E�12). Since FARC-HD-FW is
the algorithm with the best ranking, it will be used as the control
method in the statistical test.

A post hoc test is then carried out to establish which approaches
are outperformed by FARC-HD-FW. The APVs obtained by a Holm
test were previously shown in Table 5.

We can observe that, in all cases, the null hypothesis of equality
is rejected. This implies that our proposal statistically outperforms
all the algorithms of comparison and is an appropriate tool for
solving classification with imbalanced datasets in a general sce-
nario. We must also stress that the APVs associated with the com-
parisons support our conclusions with a high degree of confidence.
5.2. Analysis of the performance with a high degree of overlapping

We focus now on the central part of our work, which is the case
study for those datasets with high overlapping (F1 < 1:5). For this
purpose, Table 6 shows the average results (together with the stan-
dard deviation values) in the test partitions for the four algorithms
considered in this study. We must point out that a number of 36
problems has been selected for this case study. Please refer to
Table 3 to check the specific datasets that fulfill this condition.

Table 6 shows the goodness of the feature weighting approach,
as it achieves the highest AUC value in test when we are dealing
with high overlapping. Additionally, we can observe that the stan-
dard deviation is small, so that the quality of our proposal is related
to a high performance for this group of datasets on average, and
not just simply for a few outlier problems.

As was carried out in the previous section, we also depict the
average ranking of the algorithms to enable a visual comparison
among them. Fig. 14 shows the values of the Friedman aligned test
for every algorithm, so that the one with the lowest ranking is the
one that obtains the best result on average for most of the datasets.
The behavior in this case is identical to the one shown when all
datasets were considered. FARC-HD-FW is the best-ranked method
with a significant difference with respect to the other methods.
Absolute values of this ranking allow us to extract some interesting
conclusions: the gap between FARC-FW and FARC-FS is much
higher than for FARC-FS versus the standard FARC algorithm. This
fact demonstrates our initial hypothesis in favor of the weighting
approach rather than a simple selection/removal of the variables.

The p-value associated with the Friedman aligned test indicates
the presence of significant differences among the results, as its
value is again near to zero (2:1965E�7). The results from this test
were included in Table 6, and also supports our previous conclu-
sions. First, our feature weighting approach has shown to be statis-
tically better when compared with both FARC-HD and C4.5
algorithms. When we analyze the results of FARC-HD-FW and
FARC-HD-FS, we must state that we achieve a ‘‘low’’ APV associ-
ated with this comparison, very near to the degree of confidence
of the 95% we have set in our experimental framework. This fact,
in conjunction with the performance and average ranking indica-
tors, stress the good behavior for our proposal in contraposition
to the simple feature selection approach.
5.3. Classification in the hardest scenario: high imbalance and
overlapping

Finally, we aim to investigate a very interesting case study, i.e.
classification in the presence of both high imbalance and high
overlapping. This scenario represents the most difficult case for



Table 4
Complete training and test results (AUC metric). FARC-HD-FW is the proposed methodology (Feature Weighting), FARC-HD is the baseline FARC-HD algorithm, FARC-HD-FS includes Feature Selection, C4.5 is the C4.5 decision tree. GP-
COACH-H stands for the GP hierarchical approach, GTS is the Chi et al.’s algorithm with 2-tuples tuning, and IIVFDT is the interval-valued fuzzy decision tree. All datasets are preprocessed using SMOTE. In boldface the best result in AUC
is stressed.

Dataset IR F1 FARC-HD-FW FARC-HD FARC-HD-FS C4.5 GP-COACH-H GTS IIVFDT

Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst Tr Tst

iris0 2.00 16.8200 1.000 1.000 1.000 1.000 1.000 .9950 1.000 .9900 1.000 1.000 1.000 1.000 1.000 1.000
shuttle0vs4 13.87 12.9700 1.000 1.000 1.000 1.000 .9999 .9994 .9999 .9997 1.000 1.000 1.000 .9912 1.000 .9996
shuttle2vs4 20.50 12.1300 1.000 1.000 1.000 1.000 .9980 .9960 1.000 .9958 1.000 .9920 1.000 .9838 1.000 .8841
ecoli0vs1 1.86 9.7520 .9919 .9691 .9919 .9702 .9886 .9730 .9927 .9761 .9870 .9867 .9910 .9524 .9860 .9667
yeast5 32.78 4.1980 .9872 .9149 .9872 .9354 .9666 .9177 .9777 .9337 .9724 .9448 .9803 .9590 .9818 .9458
newthyroid2 4.92 3.5790 .9993 .9718 .9986 .9488 .9986 .9603 .9957 .9631 .9993 .9774 .9993 .9917 .9979 .9802
newthyroid1 5.14 3.5790 .9993 .9659 .9993 .9373 .9965 .9373 .9922 .9802 .9986 .9774 .9986 .9718 .9965 .9917
wisconsin 1.86 3.5680 .9852 .9577 .9864 .9578 .9782 .9530 .9832 .9545 .9831 .9768 .9913 .9313 .9851 .9676
glass0123vs456 3.19 3.3240 .9865 .9254 .9741 .8710 .9684 .9023 .9916 .8832 .9682 .9001 .9803 .9002 .9762 .9184
ecoli4 13.84 3.2470 .9952 .9358 .9937 .9029 .9869 .9060 .9773 .8044 .9937 .9389 .9917 .9262 .9683 .9076
yeast3 8.11 2.7510 .9491 .9270 .9481 .9212 .9420 .9240 .9565 .8869 .9421 .9224 .9487 .9163 .9359 .9085
ecoli1 3.36 2.6500 .9443 .8523 .9461 .9060 .9277 .8724 .9517 .9162 .9304 .8630 .9463 .8529 .9257 .8715
vowel0 10.10 2.4580 1.000 .9706 1.000 .9600 .9997 .9706 .9967 .9433 .9947 .9489 .9994 .9805 .9976 .9844
glass6 6.38 2.3910 .9863 .9225 .9709 .9365 .9678 .9009 .9966 .8450 .9739 .8857 .9821 .8577 .9642 .9036
ecoli0137vs26 39.15 2.3020 .9959 .8299 .9845 .8191 .9795 .8118 .9669 .8136 .9322 .8295 .9909 .8190 .9147 .8930
yeast6 39.15 1.9670 .9258 .8681 .9158 .8184 .8855 .8737 .9242 .8280 .9845 .8116 .9361 .8480 .9117 .8683
led7digit02456789vs1 10.97 1.9570 .9326 .8872 .8989 .8957 .8989 .8957 .9300 .8832 .9162 .9056 .9514 .8240 .9618 .8891
glass016vs5 19.44 1.8510 .9950 .8743 .9879 .8686 .9857 .8157 .9914 .9714 .9921 .8686 .9929 .8571 .9586 .7800
ecoli2 5.46 1.8260 .9646 .9147 .9672 .9120 .9433 .8745 .9815 .8921 .9681 .9134 .9374 .8753 .9489 .9369
segment0 6.01 1.7980 .9994 .9937 .9973 .9909 .9937 .9871 .9987 .9927 .9984 .9884 .9978 .9883 .9935 .9851
ecoli067vs5 10.00 1.6920 .9900 .8350 .9663 .7950 .9663 .7950 .9900 .8250 .9850 .8700 .9688 .8550 .9506 .8550
yeast02579vs368 9.14 1.6350 .9340 .8927 .9180 .8916 .9180 .8916 .9800 .9171 .9304 .9121 .9332 .8957 .9257 .8985
ecoli034vs5 9.00 1.6320 .9965 .9194 .9910 .9306 .9910 .9306 .9882 .8583 .9833 .8750 .9875 .8611 .9785 .9167
ecoli0234vs5 9.10 1.6180 .9938 .9254 .9876 .9030 .9876 .9030 .9918 .8974 .9966 .8613 .9863 .8975 .9725 .9114
ecoli046vs5 9.15 1.6030 .9932 .8811 .9925 .8727 .9925 .8727 .9877 .8729 .9952 .8921 .9904 .9255 .9816 .9338
ecoli0346vs5 9.25 1.5950 .9980 .8757 .9932 .9257 .9932 .9257 .9899 .8703 .9993 .8899 .9939 .8784 .9743 .9088
ecoli3 8.19 1.5790 .9579 .8761 .9464 .8452 .9377 .8655 .9631 .7755 .9615 .8854 .9638 .9150 .9398 .8595
yeast2vs4 9.08 1.5790 .9559 .9058 .9505 .9144 .9525 .9181 .9778 .8620 .9652 .9313 .9551 .8788 .9120 .8942
pageblocks13vs4 15.85 1.5470 .9983 .9755 .9972 .9710 .9941 .9532 .9975 .9955 .9994 .9498 .9992 .9476 .9645 .9518
glass04vs5 9.22 1.5420 .9970 .9702 .9894 .9882 .9894 .9882 .9910 .9816 .9910 .9452 .9894 .8518 .9638 .8757

glass4 15.47 1.4690 .9994 .8325 .9963 .7825 .9907 .8342 .9844 .8508 .9907 .8342 .9963 .8992 .9714 .8776
ecoli01vs5 11.00 1.3900 .9983 .9068 .9869 .8455 .9869 .8455 .9937 .9147 .9977 .8977 .9932 .8932 .9869 .9045
cleveland0vs4 12.62 1.3500 .9938 .8437 .9899 .8573 .9852 .8573 .9953 .7210 .9728 .8844 .9937 .5992 .9821 .8299
ecoli0146vs5 13.00 1.3400 .9933 .9462 .9755 .9462 .9755 .9462 .9813 .8981 .9952 .9231 .9923 .8981 .9889 .8750
yeast2vs8 23.10 1.1420 .8511 .8098 .8824 .7859 .8647 .7848 .9125 .8066 .9938 .7784 .8560 .7609 .8474 .7978
ecoli0347vs56 9.28 1.1300 .9780 .9119 .9817 .8984 .9817 .8984 .9772 .8368 .9881 .8812 .9692 .8768 .9510 .8920
vehicle0 3.23 1.1240 .9791 .9456 .9663 .9262 .9645 .9515 .9897 .9143 .9582 .9044 .9638 .8745 .9654 .9478
ecoli01vs235 9.17 1.1030 .9780 .8691 .9680 .8450 .9680 .8450 .9685 .8041 .9847 .8518 .9744 .8405 .9574 .8918
yeast05679vs4 9.35 1.0510 .8722 .8103 .8725 .7891 .8565 .8023 .9504 .7682 .8970 .7163 .8793 .7865 .8467 .8064
glass06vs5 11.00 1.0490 .9987 .9700 .9937 .8547 .9937 .8547 .9830 .8227 .9975 .9197 1.000 .9147 .9849 .8300
glass5 22.81 1.0190 .9957 .7878 .9957 .7329 .9933 .7329 .9976 .8829 .9957 .8854 .9933 .8256 .9921 .7402
ecoli067vs35 9.09 0.9205 .9775 .8325 .9626 .7925 .9626 .7925 .9672 .8125 .9710 .8250 .9643 .8375 .9400 .8725
ecoli0267vs35 9.18 0.9129 .9802 .8505 .9524 .7932 .9524 .7932 .9876 .7704 .9709 .9054 .9654 .8152 .9530 .8677
ecoli0147vs56 12.28 0.9124 .9915 .8707 .9767 .8624 .9767 .8624 .9802 .8641 .9853 .8424 .9678 .8907 .9662 .9123
yeast4 28.41 0.7412 .8930 .7912 .9011 .7953 .8547 .8067 .9101 .7004 .9012 .8196 .9053 .8242 .8746 .8149
yeast0256vs3789 9.14 0.6939 .8398 .7831 .8271 .8109 .8271 .8109 .9441 .7543 .8396 .8084 .8231 .7895 .8209 .8076
glass0 2.06 0.6492 .9361 .8558 .9128 .8023 .8902 .7814 .9451 .7856 .9009 .7881 .8845 .8148 .8446 .7717
abalone918 16.68 0.6320 .8658 .7632 .8451 .7934 .8248 .7944 .9529 .6201 .8596 .7588 .8335 .7310 .7948 .6858
pima 1.90 0.5760 .8141 .7364 .8125 .7476 .7996 .7486 .8154 .7145 .8106 .7047 .8177 .7282 .8061 .7267
abalone19 128.87 0.5295 .8729 .7124 .8605 .7129 .8028 .6802 .8544 .5203 .8577 .6054 .8399 .6632 .7578 .5192
ecoli0147vs2356 10.59 0.5275 .9706 .8475 .9600 .8842 .9600 .8842 .9742 .8461 .9596 .8329 .9459 .8657 .9463 .8889
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any learning methodology, as two of the properties which could
hinder the performance conflux in the same problem.

Our objective is to analyze whether our feature weighting
approach for FRBCS is also able to excel under these conditions.
Table 7 shows the average performance for the FARC-HD-FW and
the three algorithms for comparison in 26 selected problems. We
can observe that the trend is similar to the previous case studies,
in which the feature weighting methodology achieves the highest
value for the AUC metric in the test partitions.

Fig. 15 depicts a graphical comparison of the ranks (computed
with the Friedman aligned test). This allows us to better under-
stand the superior quality of our approach, as the differences
between the former and the remaining methods stand out. The
scheme is identical to the one shown in the two previous case
studies, thus indicating a very robust behavior for our proposed
methodology.

The p-value associated with the Friedman aligned test is equal
to 1:0482E�5, so that statistical differences are found among the
results. Accordingly, Table 7 presents the Holm test in which the
null hypothesis of equality is rejected for both the standard
FARC-HD algorithm and C4.5.

Regarding the comparison with the feature selection mecha-
nism, we observe that a low APV is also obtained, very close to
0.1. Since this value may be considered as a high threshold for
determining that a given approach is statistically superior, we
observe that the statistical differences are significant. Therefore,
we may state that the higher performance of the feature weighting
approach, supported by the average ranking result, make it a better
suited methodology for this classification scenario in contrast with
the simple feature selection.

In accordance with the above, we must also affirm in this case
the good properties of the feature weighting approach, since it
has been shown to be the most robust one even with the most dif-
ficult intrinsic data characteristics.

5.4. Analysis of the feature weighting approach versus EFS

In this last section of the experimental study, we analyze the
performance of our feature weighting approach versus several
selected EFSs. This is done to provide additional support to the
good behavior shown for this proposal with respect to other
related approaches that have been used in classification with
imbalanced datasets. With this consideration in mind, we have
selected the global 2-tuples tuning (GTS) [18], the GP-COACH-H
algorithm [40], and IIVDFT [50], as a recent EFS decision tree.

As a summary, we show in Table 8 both the AUC test results and
the APVs obtained by a Holm test in all three case studies, since the
Friedman aligned p-values were lower than 1E�7. This table is
divided into all datasets, datasets with high overlapping, and data-
sets with high overlapping and imbalance.

Observing these experimental results, we can draw similar con-
clusions to those in the previous part of our study. Specifically, our
approach achieves the highest performance in all three scenarios,
and is shown to be statistically superior for all datasets and for those
problems with high overlapping. In the last analysis, i.e. high over-
lapping and imbalance, it outperforms IIVFDT but no differences
are found with respect to GP-COACH-H and GTS, in spite of the fact
the AUC value and the ranking are clearly higher for FARC-HD-FW.

5.5. On the time efficiency of FARC-HD-FW

For the sake of studying the efficiency of the algorithms, we
show in Table 9 the elapsed time for all the approaches considered
in the experimental study. These experiments were performed on a
cluster-based computer with Intel(R) Core(TM) i7 CPU 930 micro-
processors (4 cores/8 threads, 2.8 GHz, 8 MB Cache), 24 GB DDR2



Table 5
Average results and adjusted p-values (Holm test) for all imbalanced datasets (AUC
metric). FARC-HD-FW is the proposed methodology (Feature Weighting), FARC-HD is
the baseline FARC-HD algorithm, FARC-HD-FS includes Feature Selection, and C4.5 is
simply the C4.5 decision tree. All datasets are preprocessed using SMOTE.

Algorithm AUC test Adjusted p-Value (Holm test)

FARC-HD-FW .8572 ± .0981 ⁄⁄⁄⁄⁄⁄⁄⁄
FARC-HD .8452 ± .1037 0.004510
FARC-HD-FS .8463 ± .1007 0.007973
C4.5 .8288 ± .1192 0.000000

Fig. 13. Average ranking (computed by Friedman aligned test) for all datasets.

Table 6
Average results and adjusted p-values (Holm test) for imbalanced datasets with high
overlapping (F1 < 1:5): 36 problems are selected.

Algorithm AUC test Adjusted p-value (Holm test)

FARC-HD-FW .8010 ± .0929 ⁄⁄⁄⁄⁄⁄⁄⁄
FARC-HD .7832 ± .0932 0.00763
FARC-HD-FS .7873 ± .0919 0.033857
C4.5 .7608 ± .1108 0.000009

Fig. 14. Average ranking (computed by Friedman aligned test) for datasets with a
high degree of overlap ðF1 < 1:5Þ: 36 problems.

Table 7
Average results and adjusted p-values (Holm test) classification datasets with high
imbalanced and high overlapping (IR > 9 and F1 < 1:5): 26 problems are selected.

Algorithm AUC test Adjusted p-value (Holm test)

FARC-HD-FW .8009 ± .0887 ⁄⁄⁄⁄⁄⁄⁄⁄
FARC-HD .7815 ± .08722 0.054687
FARC-HD-FS .7867 ± .0865 0.107625
C4.5 .7512 ± .1110 0.000086

Fig. 15. Average ranking (computed by Friedman aligned test) for datasets with
both high imbalance and high overlapping (IR > 9 and F1 < 1:5): 26 problems.

Table 8
Average results, ranks for the Friedman aligned test, and adjusted p-values (Holm
test) for FARC-HD-FW and EFSs. All three case studies are shown.

Case study Algorithm AUC test Rank Adjusted p-value
(Holm test)

All data FARC-HD-FW .8556 ± .0998 109.4545 ⁄⁄⁄⁄⁄⁄⁄⁄
GP-COACH-H .8456 ± .1089 133.9242 0.067966
GTS .8373 ± .1058 148.9848 0.008816
IIVFDT .8348 ± .1254 137.6364 0.067966

F1 < 1:5 FARC-HD-FW .7992 ± .0946 55.7778 ⁄⁄⁄⁄⁄⁄⁄⁄
GP-COACH-H .7825 ± .1037 75.4722 0.06724
GTS .7758 ± .0985 76.6667 0.06724
IIVFDT .7641 ± .1254 82.0833 0.022384

F1 < 1:5 and IR > 9 FARC-HD-FW .8004 ± .0906 41.6923 ⁄⁄⁄⁄⁄⁄⁄⁄
GP-COACH-H .7879 ± .0960 53.0000 0.353053
GTS .7793 ± .0974 52.8077 0.353053
IIVFDT .7599 ± .1317 62.5000 0.038648
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memory and SATA 1TB 3Gb/s hard-drives, running on CentOS 6.4.
We implemented all algorithms with Java(TM) programming lan-
guage. From these results we can extract the following conclusions:

1. The baseline FARC-HD algorithm is the fastest method among
the EFS (not comparable with C4.5). Therefore, this made it very
suitable for its inclusion within the global feature weighting
methodology.

2. Regarding the comparison between FARC-HD-FW and FARC-
HD-FS, we observe that both of them are practically identical
in efficiency when the number of variables is low, such as in
ecoli, glass, and some yeast problems. However, when the num-
ber of attributes increases, the elapsed time of the feature
weighting approach grows in a high rate. This is due to the
way the membership function is computed, i.e. by means of
the ‘‘power function’’, which implies a considerable delay in a
part of the approach that is called often.

3. Finally, we must stress that with respect to the selected EFSs,
FARC-HD-FW is the second fastest algorithm, only behind
GTS. GP-COACH-H and IIVFDT have a lower efficiency and also
worse results than our proposal.

In summary, we may highlight the good properties of our fea-
ture weighting methodology as it has achieved the best perfor-
mance results while maintaining an acceptable execution time.
The hitch here is only related to the ‘‘power function’’ which is
known to be time restrictive. Nevertheless, we must stress that
the number of required evaluations for convergence is only set to
1000, which is a low number for these types of approaches.
6. Concluding remarks

In the scenario of classification with imbalanced datasets,
researchers must adapt the classification procedure in order to



Table 9
Average running time for all algorithms in the experimental study. FARC-HD-FW is the proposed methodology (Feature Weighting), FARC-HD is the baseline FARC-HD algorithm,
FARC-HD-FS includes Feature Selection, C4.5 is the C4.5 decision tree. GP-COACH-H stands for the GP hierarchical approach, GTS is the Chi et al.’s algorithm with 2-tuples tuning,
and IIVFDT is the interval-valued fuzzy decision tree. All datasets are preprocessed using SMOTE.

Dataset IR F1 FARC-HD-FW FARC-HD FARC-HD-FS C4.5 GP-COACH-H GTS IIVFDT

iris0 2.00 16.8200 0:02:21.0 0:00:03.0 0:04:41.0 0:00:02.0 0:07:11.1 0:01:18.0 0:02:01.0
shuttle0vs4 13.87 12.9700 2:04:18.0 0:00:14.0 0:53:50.0 0:00:08.0 1:30:24.0 0:01:22.0 1:42:25.0
shuttle2vs4 20.50 12.1300 0:57:46.0 0:00:02.0 0:48:37.0 0:00:02.0 0:03:50.0 0:00:10.0 0:07:11.0
ecoli0vs1 1.86 9.7520 1:14:08.0 0:00:05.0 0:27:33.0 0:00:02.0 0:12:37.2 0:00:42.0 0:05:53.0
yeast5 32.78 4.1980 1:16:57.0 0:00:32.0 0:38:53.0 0:00:07.0 11:01:11.5 4:30:36.0 1:03:23.0
newthyroid2 4.92 3.5790 0:13:09.0 0:00:02.0 0:15:14.0 0:00:04.0 0:06:56.0 0:01:47.0 0:04:29.0
newthyroid1 5.14 3.5790 0:10:47.0 0:00:05.0 0:10:30.0 0:00:05.0 0:07:04.6 0:01:25.0 0:04:21.0
wisconsin 1.86 3.5680 0:21:53.0 0:00:10.0 0:19:12.0 0:00:06.0 5:04:43.8 0:08:20.0 0:54:22.0
glass0123vs456 3.19 3.3240 2:05:17.0 0:00:05.0 0:49:03.0 0:00:02.0 0:22:18.1 0:04:04.0 0:12:00.0
ecoli4 13.84 3.2470 0:29:20.0 0:00:08.0 0:25:37.0 0:00:02.0 0:34:33.8 0:17:47.0 0:11:20.0
yeast3 8.11 2.7510 3:17:53.0 0:00:34.0 2:01:17.0 0:00:10.0 9:52:16.5 2:47:02.0 0:59:04.0
ecoli1 3.36 2.6500 0:26:23.0 0:00:07.0 0:23:42.0 0:00:02.0 0:39:43.4 0:09:40.0 0:10:42.0
vowel0 10.10 2.4580 13:44:59.0 0:00:38.0 4:32:27.0 0:00:09.0 17:26:04.2 0:14:43.0 14:12:13.0
glass6 6.38 2.3910 0:44:57.0 0:00:05.0 0:31:25.0 0:00:04.0 0:23:09.6 0:02:33.0 0:14:52.0
ecoli0137vs26 39.15 2.3020 0:29:21.0 0:00:03.0 0:20:44.0 0:00:02.0 7:42:32.7 0:09:24.0 0:55:10.0
yeast6 39.15 1.9670 1:32:13.0 0:00:44.0 0:33:56.0 0:00:06.0 0:45:57.9 4:14:37.0 6:20:53.0
led7digit02456789vs1 10.97 1.9570 0:19:02.0 0:00:05.0 0:20:10.0 0:00:12.0 1:16:31.8 0:06:49.0 0:13:59.0
glass016vs5 19.44 1.8510 1:04:21.0 0:00:06.0 0:42:25.0 0:00:02.0 0:19:32.4 0:02:43.0 0:39:35.0
ecoli2 5.46 1.8260 0:29:19.0 0:00:15.0 0:26:36.0 0:00:02.0 0:43:09.8 0:09:23.0 0:10:23.0
segment0 6.01 1.7980 51:11:49.0 0:01:14.0 8:22:20.0 0:00:07.0 76:20:01.4 0:05:27.0 83:10:53.0
ecoli067vs5 10.00 1.6920 0:33:18.0 0:00:02.0 0:20:23.0 0:00:08.0 0:29:31.0 0:02:43.0 7:29:29.0
yeast02579vs368 9.14 1.6350 1:32:49.0 0:00:08.0 0:55:10.0 0:00:17.0 3:57:29.2 1:44:33.0 2:18:04.0
ecoli034vs5 9.00 1.6320 0:22:58.0 0:00:04.0 0:21:07.0 0:00:10.0 0:23:25.6 0:01:59.0 0:07:58.0
ecoli0234vs5 9.10 1.6180 0:18:18.0 0:00:02.0 0:28:51.0 0:00:09.0 0:19:17.1 0:01:33.0 0:08:01.0
ecoli046vs5 9.15 1.6030 0:20:34.0 0:00:02.0 0:19:17.0 0:00:08.0 0:27:11.1 0:01:43.0 1:54:22.0
ecoli0346vs5 9.25 1.5950 0:50:50.0 0:00:04.0 0:37:31.0 0:00:14.0 0:20:48.2 0:04:00.0 0:08:10.0
ecoli3 8.19 1.5790 0:28:59.0 0:00:12.0 0:27:09.0 0:00:02.0 0:42:48.8 0:08:27.0 0:13:08.0
yeast2vs4 9.08 1.5790 1:23:42.0 0:00:08.0 1:09:31.0 0:00:08.0 0:58:15.2 0:04:46.0 2:08:20.0
pageblocks13vs4 15.85 1.5470 16:36:05.0 0:02:17.0 2:52:53.0 0:00:10.0 1:08:58.9 0:11:26.0 0:49:15.0
glass04vs5 9.22 1.5420 1:11:28.0 0:00:04.0 1:09:31.0 0:00:08.0 0:05:04.0 0:00:55.0 3:13:43.0

glass4 15.47 1.4690 1:09:22.0 0:00:05.0 0:42:02.0 0:00:04.0 0:23:29.0 0:01:48.0 0:16:46.0
ecoli01vs5 11.00 1.3900 0:55:11.0 0:00:04.0 0:51:57.0 0:00:06.0 0:07:31.2 0:03:39.0 2:27:15.0
cleveland0vs4 12.62 1.3500 2:52:16.0 0:00:04.0 1:22:33.0 0:00:04.0 1:13:08.8 0:01:26.0 1:02:06.0
ecoli0146vs5 13.00 1.3400 0:43:36.0 0:00:04.0 0:29:15.0 0:00:08.0 0:34:52.9 0:03:58.0 0:07:51.0
yeast2vs8 23.10 1.1420 3:44:28.0 0:00:56.0 1:32:22.0 0:00:15.0 0:35:07.1 2:02:54.0 0:19:49.0
ecoli0347vs56 9.28 1.1300 0:25:57.0 0:00:03.0 0:28:14.0 0:00:10.0 0:35:43.7 0:04:40.0 2:48:15.0
vehicle0 3.23 1.1240 34:19:42.0 0:01:04.0 7:08:39.0 0:00:07.0 25:38:00.2 0:58:11.0 35:32:21.0
ecoli01vs235 9.17 1.1030 0:24:39.0 0:00:02.0 0:28:18.0 0:00:07.0 0:45:49.9 0:01:56.0 0:10:03.0
yeast05679vs4 9.35 1.0510 1:22:09.0 0:00:18.0 0:47:05.0 0:00:08.0 1:20:05.1 0:00:37.0 1:57:01.0
glass06vs5 11.00 1.0490 0:58:14.0 0:00:02.0 0:40:19.0 0:00:07.0 0:24:59.0 0:00:35.0 0:07:40.0
glass5 22.81 1.0190 0:56:45.0 0:00:05.0 0:31:41.0 0:00:04.0 0:18:31.0 0:03:04.0 0:11:14.0
ecoli067vs35 9.09 0.9205 0:22:14.0 0:00:02.0 0:23:20.0 0:00:08.0 0:26:02.8 0:01:33.0 0:07:47.0
ecoli0267vs35 9.18 0.9129 0:37:36.0 0:00:02.0 0:40:41.0 0:00:07.0 0:27:34.8 0:02:13.0 5:36:08.0
ecoli0147vs56 12.28 0.9124 0:23:08.0 0:00:03.0 0:13:02.0 0:00:05.0 0:48:27.6 0:03:40.0 2:27:47.0
yeast4 28.41 0.7412 3:19:31.0 0:01:06.0 1:00:06.0 0:00:07.0 11:02:13.5 2:45:25.0 1:07:19.0
yeast0256vs3789 9.14 0.6939 1:52:53.0 0:00:11.0 0:54:20.0 0:00:14.0 5:00:13.0 1:39:48.0 2:16:48.0
glass0 2.06 0.6492 1:14:58.0 0:00:05.0 0:29:46.0 0:00:02.0 0:13:06.6 0:06:17.0 0:14:17.0
abalone918 16.68 0.6320 2:45:38.0 0:00:34.0 1:07:38.0 0:00:02.0 1:23:10.6 1:07:26.0 0:27:16.0
pima 1.90 0.5760 3:01:08.0 0:00:44.0 1:26:17.0 0:00:05.0 6:34:51.3 0:48:15.0 7:03:43.0
abalone19 128.87 0.5295 8:31:17.0 0:03:03.0 2:32:13.0 0:00:03.0 24:09:49.6 10:28:12.0 2:25:16.0
ecoli0147vs2356 10.59 0.5275 0:58:06.0 0:00:07.0 0:50:19.0 0:00:10.0 1:11:20.5 0:04:08.0 0:13:35.0
pageblocks0 8.77 0.5087 1:32:53.0 0:00:10.0 0:42:35.0 0:00:07.0 49:05:29.4 0:52:02.0 28:01:21.0
glass2 10.39 0.3952 1:40:41.0 0:00:07.0 1:06:03.0 0:00:02.0 0:08:33.9 0:10:03.0 0:11:31.0
vehicle2 2.52 0.3805 39:10:50.0 0:00:48.0 8:16:47.0 0:00:08.0 38:02:17.9 4:08:40.0 41:00:32.0
yeast1289vs7 30.56 0.3660 1:24:01.0 0:00:14.0 0:50:03.0 0:00:10.0 4:00:03.8 0:31:32.0 11:18:20.0
yeast1vs7 13.87 0.3534 1:58:16.0 0:00:26.0 1:09:09.0 0:00:08.0 2:01:31.8 0:47:24.0 0:18:29.0
glass0146vs2 11.06 0.3487 1:39:43.0 0:00:04.0 0:47:18.0 0:00:04.0 0:06:02.5 0:05:23.0 2:08:00.0
yeast0359vs78 9.12 0.3113 2:11:38.0 0:00:10.0 1:10:16.0 0:00:15.0 0:10:17.9 0:19:49.0 5:51:37.0
glass016vs2 10.29 0.2692 0:58:13.0 0:00:05.0 0:39:10.0 0:00:02.0 0:08:48.3 0:05:05.0 1:11:36.0
yeast1 2.46 0.2422 1:58:43.0 0:00:42.0 1:08:27.0 0:00:07.0 9:39:02.6 1:22:15.0 0:51:27.0
glass1 1.82 0.1897 1:32:14.0 0:00:06.0 1:03:30.0 0:00:02.0 0:20:53.0 0:03:34.0 0:12:09.0
vehicle3 2.52 0.1855 75:30:32.0 0:02:08.0 11:17:21.0 0:00:09.0 30:26:55.2 2:38:54.0 108:33:57.0
haberman 2.68 0.1850 0:11:38.0 0:00:07.0 0:21:12.0 0:00:07.0 0:24:58.1 0:02:32.0 0:03:05.0
yeast1458vs7 22.10 0.1757 0:45:56.0 0:00:09.0 0:47:03.0 0:00:07.0 2:05:36.6 0:34:01.0 4:26:20.0
vehicle1 2.52 0.1691 66:57:29.0 0:01:35.0 11:35:40.0 0:00:09.0 31:24:58.1 2:18:21.0 121:38:32.0
glass015vs2 9.12 0.1375 1:37:55.0 0:00:04.0 1:12:06.0 0:00:05.0 1:17:35.8 0:04:07.0 0:11:46.0
Average - - 5:41:53.4 0:00:21.8 1:29:38.5 0:00:06.6 6:00:09.0 0:45:32.2 7:55:31.5
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avoid the bias towards the majority class examples, and therefore
to achieve a similar accuracy for both concepts of the problem.
However, for those problems where the skewed class distribution
occurs in combination with overlapping in the borderline areas
of the dataset, standard solutions for imbalanced classification no
longer obtain the expected performance.
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In this work we have focused on these data intrinsic character-
istics, and we have proposed a simple but effective feature weight-
ing approach in synergy with FRBCS. Our intention was to
minimize the contribution of those variables of the problem for
which the examples of both classes are the most ‘‘entwined’’. We
rejected the simple removal of these variables, as in the feature
selection scheme, as we are aware that these variables might have
a small but positive support in the final decision of the fuzzy mod-
els for classification purposes. In order to show the behavior of our
proposal, we have made use of the FARC-HD algorithm to develop a
complete EFS, defining the whole approach as FARC-HD-FW.

From our analysis, we must emphasize that feature weighting
in FRBCSs has been shown to be robust in those problems which
share a high degree of imbalance and overlapping, achieving a
higher performance and average ranking than all algorithms used
for comparison, and showing statistical differences with respect
to the baseline FARC-HD approach and the C4.5 decision tree. We
must stress the significance of these results as this type of prob-
lems might be identified as the most difficult from the point of
view of the optimal identification of the two classes, and therefore
we have proposed an appropriate solution to overcome it.
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