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Abstract— Big data has become one of the emergent topics
when learning from data is involved. The notorious increment
in the data generation has directed the attention towards the
obtaining of effective models that are able to analyze and extract
knowledge from these colossal data sources. However, the vast
amount of data, the variety of the sources and the need for
an immediate intelligent response pose a critical challenge to
traditional learning algorithms.

To be able to deal with big data, we propose the usage of a
linguistic fuzzy rule based classification system, which we have
called Chi-FRBCS-BigData. As a fuzzy method, it is able deal
with the uncertainty that is inherent to the variety and veracity
of big data and because of the usage of linguistic fuzzy rules
it is able to provide an interpretable and effective classification
model. This method is based on the MapReduce framework,
one of the most popular approaches for big data nowadays,
and has been developed in two different versions: Chi-FRBCS-
BigData-Max and Chi-FRBCS-BigData-Ave.

The good performance of the Chi-FRBCS-BigData approach
is supported by means of an experimental study over six big
data problems. The results show that the proposal is able to
provide competitive results, obtaining more precise but slower
models in the Chi-FRBCS-BigData-Ave alternative and faster
but less accurate classification results for Chi-FRBCS-BigData-
Max.

I. INTRODUCTION

ONE of the most highlighted trends in the recent years
by the information technology industry is what is

known as Big Data. The term “Big Data” symbolizes the
analysis and treatment of data repositories of a colossal size,
which traditional data management systems and analytics
are unable to deal with [1]. This trend can be observed in
multiple environments like webpages, multimedia data, social
networks, mobile devices, sensor networks and so on [2].

With more data available, the analysis and knowledge
extraction process should be benefited, and more accurate
and precise information should be obtained. However, the
standard techniques and approaches that are commonly used
in data mining are not able to manage datasets this size [3].
Therefore, the standard learning methods need to be modified
following the guidelines of the existing solutions that are
able to effectively deal with big data while maintaining their
predictive capacity.
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Fuzzy Rule Based Classification Systems (FRBCSs) [4]
are potent and popular tools for pattern recognition and
classification. They are able to provide good precision results
while they are able to supply an interpretable model for the
end user by the usage of some linguistic labels. One of the
complications that difficult the extraction of potential useful
information in big data is the uncertainty that is associated to
the variety and veracity inherent to big data. FRBCSs are able
to effectively deal with uncertainty, ambiguity or vagueness
making them a very interesting approach to deal with big
data as they are able to manage its inherent incertitude.

In a scenario with big data, usually a high number of
instances and/or attributes is provided. FRBCSs decrement
their performance in these cases as the search space grows
exponentially. This growth difficults the learning process
leading to scalability or complexity problems that may end
up with non-interpretable models [5]. To overcome this
situation, several approaches that try to build parallel fuzzy
systems have been presented [6][7]; however, they are fo-
cused on reducing the processing time while preserving the
accuracy and they are not able to manage colossal collections
of data.

The frameworks that are typically used to handle big
data somehow involve some kind of parallelization so that
they can easily process and analyze the data that is ready
to be used. One of the most popular platforms nowadays,
MapReduce [8], suggests a computational scheme where all
the processing is distributed along two key operations: a map
function that will act over a subset of the data, and a reduce
function that will integrate the results obtained in the map
function.

In this work, we present a FRBCS that is able to pro-
vide an interpretable model while maintaining a competitive
predictive accuracy in the big data scenario, which has been
denoted as Chi-FRBCS-BigData. This method is based on the
Chi et al.’s approach [9], a classical FRBCS learning method,
which has been modified to deal with big data following a
MapReduce procedure. The Chi-FRBCS-BigData proposal
has been developed under two different versions, Chi-
FRBCS-BigData-Max and Chi-FRBCS-BigData-Ave, which
precisely differ in the “Reduce” operation and which are
compared to analyze how they deal with big data.

Moreover, the Chi et al’s method is especially suitable
to be used in a parallel approach instead of using a more
complex FRBCS method as it provides fuzzy rules that have
the same structure and which can be independently created
from a subset of examples. Furthermore, the usage of a
FRBCS in big data is also quite interesting as it provides
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a mechanism to manage the uncertainty that is inherent in
this scenario because of the variety and veracity of data.

To support the suitability of the Chi-FRBCS-BigData
approach we have selected six big data problems for our
experimental study that will help to understand how the pro-
posal works, which are its strong points and its limitations.
This experimental study will measure the performance of
the classifiers according to the accuracy obtained and the
runtime spent by the models. In addition, and to detect the
differences between the versions of the proposal, we study
the significance of the results by means of statistical tests
[10][11].

The rest of this paper is organized as follows. Section II
briefly introduces the problem of big data. Next, Section III
contains the approaches developed in this work, the versions
of the Chi-FRBCS-BigData method, together with some pre-
vious concepts about FRBCSs. Then, the experimental study
is shown along Section IV. Finally, Section V summarizes
and concludes the work.

II. BIG DATA IN CLASSIFICATION

In the late years, the term “Big Data” has emerged as one
of the most hot topics related to the information technology
industry. This concept is related to the impressive growth
in data generation that has taken place recently and that
has highlighted the interest in obtaining useful information
from these immense data sources. Specifically, the concept
of “Big Data” is is applied to all the information that cannot
be processed or analyzed using traditional techniques or tools
[12]. One of the early and well-known definitions of big data
[13], describes the concept as a 3Vs model (volume, velocity
and variety):
• Volume: This feature is related to the enormous size

of the data that needs to be treated to extract useful
information.

• Velocity: When analyzing big data it is of the utmost
importance to provide an informed response within a
reasonable time limit.

• Variety: This characteristic refers to the diverse type of
data that will compose the data corpus. For instance, in
big data it is typical to merge structured and unstruc-
tured data like tabular data from databases, hierarchical
data, documents, graph data and so on.

Later on, additional Vs have been proposed by some
organizations to describe the big data model [14]: validity,
volatility, value, variability and veracity.

Big data can be seen in numerous real-world environments,
it can be presented in any format and can be attained from
diverse origins. For instance, financial data like the tradings
of the day in the New York Stock Exchange can add up
to one new TB per day. Multimedia data, leads to occupy
one PB in Facebook servers with approximately 10 billion
photos. Even more simple data like the one stored by the
Internet Archive can accumulate 2 PB of data per day [12].

To effectively deal with big data, Google presented a
parallel programming model, MapReduce, which is a frame-
work for processing large volumes of data over a cluster of

machines [8][15] and which has become one of the most
popular approaches nowadays. The MapReduce paradigm
revolves around two key operations: a map function and a
reduce function. In a first phase, the input data is processed
by the map function which produces some intermediate
results; these intermediate results will be then fed in a second
phase to a reduce function, which somehow combines the
intermediate results to present a final output.

The MapReduce model is based on a essential data struc-
ture that is traditionally known as a key-value pair. All the
data processed, the intermediate results and the final output
are expressed in this key-value form. In this manner, the
map and reduce functions that can be seen in a MapReduce
procedure are:
• Map function: In the map function the master node per-

forms an automatic division of the data into independent
data blocks which are then distributed and transferred
to the worker nodes. Each worker node processes in-
dependently its data chunk and produces a result that
is transmitted back to the master node. In terms of
the key-value pairs, it is said that the map function
receives a key-value pair as input and produces a list
of intermediate key-value pairs. These intermediate key-
value pairs are then automatically shuffled and ordered
according to the intermediate key to speed up the reduce
step.

• Reduce function: In the reduce function, the master
node collects the output results produced in the previous
phase and then, uses them in some manner to conform
the final result of the algoritm. Again, in terms of the
key-value pairs, the reduce function obtains the interme-
diate key-value pairs computed previously aggregated
by the key values and creates an output value that will
be the output of the method.

Figure 1 depicts a standard MapReduce program with its
map step and its reduce step. The terms k and v refer to the
original key and value pair respectively; k′ and v′ are the
intermediate key-value pair that is generated after the use of
the map function; and v′′ is the final value given as a result
of the algorithm.

Hadoop is the most popular implementation of the MapRe-
duce programming model [12]. It is an open-source project
written in Java and supported by the Apache software foun-
dation that tries to facilitate the processing and management
of large datasets in a distributed manner. It provides aux-
iliary services analogous to the ones available in Google’s
MapReduce implementation.

Machine learning methods have also started to be inte-
grated using the MapReduce paradigm to deal with big data.
The Mahout project [16], also supported by the Apache soft-
ware foundation, is a machine learning library that features
scalable machine learning applications over Hadoop or other
scalable systems.

Nevertheless, a MapReduce design is not always suitable
for all kind of computations [17]. Some examples of that
are iterative algorithms or graph-based algorithms. In order
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Fig. 1. The MapReduce programming model

to overcome these problems, several approaches have been
proposed to deal with big data as substitutes for MapReduce
and Hadoop. These approaches include projects like Spark,
Apache Drill, Twister or Impala, just to mention some of
them.

III. CHI-FRBCS-BIGDATA: A LINGUISTIC FUZZY RULE
BASED CLASSIFICATION SYSTEM FOR BIG DATA

In this section, we will introduce two versions of a
linguistic FRBCS that manage big data. To do so, first, we
present some definitions related to FRBCSs and the fuzzy
learning algorithm that has been adapted in this work, Chi-
FRBCS. Then, we will describe how this method is adapted
for big data using a MapReduce scheme that is modified to
produce two variants that will provide different classification
results.

A. Fuzzy Rule Based Classification Systems

A FRBCS is composed by two elements: the Inference
System and the Knowledge Base (KB). In a linguistic FR-
BCS, the KB is formed from the Data Base (DB), which
contains the membership functions of the fuzzy partitions
associated to the input attributes, and the Rule Base (RB),
which comprises the fuzzy rules that describe the problem.
Traditionally, expert information to build the KB is not
available and therefore, a machine learning procedure is
needed to construct the KB from the available examples.

A classification problem is usually defined by m training
samples xp = (xp1, . . . , xpn), p = 1, 2, . . . ,m from M
classes where xpi is the value of attribute i (i = 1, 2, . . . , n)
of the p-th training sample. In this work, we use fuzzy rules
of the following form to build our FRBCS:

Rule Rj : If x1 is A1
j and . . . and xn is An

j

then Class = Cj with RWj
(1)

where Rj is the label of the j-th rule, x = (x1, . . . , xn) is a
n-dimensional pattern vector, Ai

j is an antecedent fuzzy set,
Cj is a class label, and RWj is the rule weight [18]. We use
triangular membership functions as linguistic labels.

There are many alternatives that have been proposed to
compute the rule weight [18]. Among them, a good choice is
to use the heuristic method known as the Penalized Certainty
Factor (PCF) [19]:

RWj = PCFj =

∑
xp∈Cj

µAj
(xp)−

∑
xp /∈Cj

µAj
(xp)∑m

p=1 µAj (xp)
(2)

where µAj
(xp) is the membership degree of the xp p-th

example of the training set with the antecedents of the rule
and Cj is the consequent class of rule j. We use the fuzzy
reasoning method of the wining rule [20] when predicting a
class using the built KB for a given example.

B. The Chi et al.’s algorithm for Classification

To build the KB of a linguistic FRBCS, we need to use
a learning procedure that specifies how the DB and RB are
created. In this work, we use the method proposed in [9],
an extension of the well-known Wang and Mendel method
for classification [21], which we have called the Chi et al’s
method, Chi-FRBCS.

To generate the fuzzy KB, this generation method tries
to find the relationship between the input attributes and the
classes space following the next steps:

1) Building the linguistic fuzzy partitions: This step builds
the fuzzy DB from the domain associated to each
attribute Ai using equally distributed triangular mem-
bership functions.

2) Generating a new fuzzy rule associated to each exam-
ple xp = (xp1, . . . , xpn, Cp):

a) Compute the matching degree µ(xp) of the ex-
ample with respect to the fuzzy labels of each
attribute using a conjunction operator.

b) Select the fuzzy region that obtains the maximum
membership degree in relation with the example.

c) Build a new fuzzy rule whose antecedent is
calculated according to the previous fuzzy region
and whose consequent is the class label of the
example Cp.

d) Compute the rule weight.
When following the previous procedure, several rules with

the same antecedent can be built. If they have the same
class in the consequent, then, duplicated rules are deleted.
However, if the class in the consequent is different, only the
rule with the highest weight is maintained in the RB.

C. The Chi-FRBCS-BigData algorithm: A MapReduce De-
sign

At this point, we present the Chi-FRBCS-BigData algo-
rithm which is a FRBCS that is able to effectively clas-
sify big data. To do so, this method uses two different
MapReduce processes to deal with two different parts of the
algorithm: one MapReduce process is devoted to the building
of the fuzzy KB from a big data training set and the other
MapReduce process is used to estimate the class of samples
belonging to big data sample sets. Both processes follow the
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R3: IF A1 = L2 AND A2 = L1 THEN C1; RW3 = 0.4215

...

RB1

R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.9654

R2: IF A1 = L1 AND A2 = L2 THEN C2; RW2 = 0.8842

R3: IF A1 = L2 AND A2 = L1 THEN C2; RW3 = 0.6534

…

RB2

R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.7415

R2: IF A1 = L1 AND A2 = L2 THEN C1; RW2 = 0.2419

R3: IF A1 = L2 AND A2 = L1 THEN C2; RW3 = 0.4715

…
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…

Mappers RB generation

Original train set

DB generation

R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.9875
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…
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Final RB generation
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R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.9875

R2: IF A1 = L1 AND A2 = L2 THEN C2; RW2 = 0.9142
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…
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Fig. 2. A flowchart of how the building of the KB is organized in Chi-FRBCS-BigData

MapReduce structure distributing all the computations along
several processing units that manage different chunks of in-
formation, aggregating the results obtained in an appropriate
manner.

Furthermore, we have produced two versions of the Chi-
FRBCS-BigData algorithm, which we have named Chi-
FRBCS-BigData-Max and Chi-FRBCS-BigData-Ave. These
versions share most of their operations, however, they behave
differently in the “Reduce” step of the approach, when the
different rule bases generated by each mapper are combined.
These versions obtain different rule bases and thus, different
KBs, providing different results when estimating the class of
new examples.

The procedure to build the fuzzy KB following a MapRe-
duce scheme in Chi-FRBCS-BigData is depicted in Figure
2. This procedure is divided into the following phases:

1) Initial: In this first phase, the method computes the
domain associated to each attribute Ai using the whole
training set. With that information, the fuzzy DB is
created using equally distributed triangular member-
ship functions as in Chi-FRBCS. Then, the system
automatically segments the original training dataset
into independent data blocks which are automatically
transferred to the different processing units together
with the created fuzzy DB.

2) Map: In this second phase, each processing unit works
independently over its available data to build its asso-
ciated fuzzy RB (called RBi in Figure 2) following
the original Chi-FRBCS method.
Specifically, for each example in the data partition, an
associated fuzzy rule is created: first, the membership
degree of the fuzzy labels is computed according to
the example values; then, the fuzzy region that obtains
the greatest value is selected to become the antecedent
of the rule; next, the class of the example is assigned
to the rule as consequent; and finally, the rule weight
is computed using the set of examples that belong to
the current map process.
After the rules have been created and before finishing
the map step, each map process searches for rules
with the same antecedent. If the rules share the same
consequent, only one rule is preserved; if the rules have
different consequents, only the rule with the highest
weight is kept in the mappers RB.

3) Reduce: In this third phase, a processing unit re-
ceives the results obtained by each map process (RBi)
and combines them to form the final RB (called
RBR in Figure 2). The combination of the rules is
straight-forward: the rules created by each mapper
RB1, RB2, . . . , RBn are all integrated in one RB,
RBR. However, contradictory rules (rules with the
same antecedent, with or without the same consequent
and with different rule weight) may be created. There-
fore, specific procedures to deal with these contra-
dictory rules are needed. Precisely, these procedures
define the two variants of the Chi-FRBCS-BigData
algorithm:

a) Chi-FRBCS-BigData-Max: In this approach, the
method searches for the rules with the same
antecedent. Among these rules, only the rule with
the highest weight is maintained in the final RB,
RBR. In this case it is not necessary to check
if the consequent is the same or not, as we
are only maintaining the most powerful rules.
Equivalent rules (rules with the same antecedent
and consequent) can present different weights as
they are computed in different mapper processes
over different training sets.
For instance, if we have five rules with the same
antecedent and the following consequents and
rule weights: R1: Class 1, RW1 = 0.8743; R2:
Class 2, RW2 = 0.9254; R3: Class 1, RW3

= 0.7142; R4: Class 2, RW4 = 0.2143 and
R5: Class 1, RW5 = 0.8215, then, Chi-FRBCS-
BigData-Max will keep in RBR the rule R2:
Class 2, RW2 = 0.9254 because it is the rule
with the maximum weight.

b) Chi-FRBCS-BigData-Ave: In this approach, the
method also searches for the rules with the
same antecedent. Then, the average weight of the
rules that have the same consequent is computed
(this step is needed because rules with the same
antecedent and consequent may have different
weights as they are built over different training
sets). Finally, the rule with the greatest average
weight is kept in the final RB, RBR.
For instance, if we have five rules with the
same antecedent and the following consequents
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...

Fig. 3. A flowchart of how the classification of a big data classification set is organized in Chi-FRBCS-BigData

and rule weights: R1: Class 1, RW1 = 0.8743;
R2: Class 2, RW2 = 0.9254; R3: Class 1,
RW3 = 0.7142; R4: Class 2, RW4 = 0.2143
and R5: Class 1, RW5 = 0.8215, then, Chi-
FRBCS-BigData-Ave will first compute the av-
erage weight for the rules with the same conse-
quent, namely, RC1: Class 1, RWC1 = 0.8033
and RC2: Class 2, RWC2 = 0.5699, and it will
keep in RBR the rule RC1: Class 1, RWC1 =
0.8033 because it is the rule with the maximum
average weight.

Please note that it is not needed for any Chi-FRBCS-
BigData version to recompute the rule weights in the
“Reduce” stage, as we are calculating the new rule
weights from the previously rule weights provided by
each mapper.

4) Final: In this last phase, the results computed in the
previous phases are provided as the output of the
computation process. Precisely, the generated fuzzy
KB is composed by the fuzzy DB built in the “Initial”
phase and the fuzzy RB, RBR, is finally obtained in
the “Reduce” phase. This KB will be the model that
will be used to predict the class for new examples.

As it was previously said, Chi-FRBCS-BigData uses an-
other MapReduce mechanism to estimate the class of exam-
ples that belong to big data classification sets using the fuzzy
KB built within the previous step. This approach follows a
similar scheme to the previous step where the initial dataset
is distributed along several processing units that provide a
result that will be part of the final result. Specifically, this
class estimation process is depicted in Figure 3 and follows
the coming phases:

1) Initial: In this first phase, the method does not need to
perform a specific operation. The system automatically
segments the original big data dataset that needs to
be classified into independent data blocks which are
automatically transferred to the different processing
units together with the previously created fuzzy KB.

2) Map: In this second phase, each map task estimates
the class for the examples that are included in its
data partition. To do so, each processing unit goes
through all the examples in its data chunk and predicts
its output class according to the given fuzzy KB and
using the fuzzy reasoning method of the wining rule.

Please note that Chi-FRBCS-BigData-Max and Chi-
FRBCS-BigData-Ave will produce different classifi-
cation estimations because the input fuzzy RBs are
also different, however, the class estimation process
followed is exactly the same for both approaches.

3) Final: In this last phase, the results computed in the
previous phase are provided as the output of the com-
putation process. Precisely, the estimated classes for
the different examples of the big data classification set
are aggregated just concatenating the results provided
by each map task.

It is important to note that this mechanism does not
include a “Reduce” step as it is not necessary to perform
a computation to combine the results obtained in the “Map”
phase.

IV. EXPERIMENTAL STUDY

In this section, we first provide some details of the
problems selected for the experiments, the configuration
parameters for the methods analyzed and the statistical tests
applied to compare the results (Section IV-A). Then, we
provide in Section IV-B the accuracy performance of the
approaches tested in the study with respect to the number
of mappers considered. Finally, the runtime spent by the
algorithms over the selected data is shown in Section IV-C.

A. Experimental Framework

In this study, our aim is to analyze the behavior of the
Chi-FRBCS-BigData algorithm in the scenario of big data.
To do so, we will consider six problems from the UCI dataset
repository [22], shown in Table I, where we denote the
number of examples (#Ex.), number of attributes (#Atts.),
selected classes and the number of examples per class. This
table is in descending order according to the number of
examples.

TABLE I
SUMMARY OF DATASETS

Datasets #Ex. #Atts. Selected classes #Samples per class
RLCP 5749132 2 (FALSE; TRUE) (5728201; 20931)
Kddcup DOS vs normal 4856151 41 (DOS; normal) (3883370; 972781)
Poker 0 vs 1 946799 10 (0; 1) (513702; 433097)
Covtype 2 vs 1 495141 54 (2; 1) (283301; 211840)
Census 141544 41 (- 50000.; 50000+.) (133430; 8114)
Fars Fatal Inj vs No Inj 62123 29 (Fatal Inj; No Inj) (42116; 20007)
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The selected datasets only feature two classes even when
some of them are multi-class problem. In this work, we
have decided to limit the number of classes despite of the
ability of the Chi-FRBCS-BigData algorithm to deal with
multiple classes to avoid the imbalance in the data that arises
in many real-world problems [23], as the division approach
of the MapReduce scheme presented aggravates the small
sample size problem, which decrements the performance in
the imbalanced scenario.

In order to develop our study we use a 10-fold stratified
cross validation partitioning scheme, that is, nine random
partitions of data with a 10% of the samples where the
combination of 9 of them (90%) is considered as training
set and the remaining one is treated as test set. For each
dataset we consider the average results of the ten partitions.

To verify the performance of the proposed model, we
compare the results obtained by Chi-FRBCS-BigData-Max
with Chi-FRBCS-BigData-Ave so that we can understand
how they behave over the selected big data problems.

The configuration parameters used for these algorithms
are the following: three fuzzy labels for each attribute, the
product T-norm is used to compute the matching degree of
the antecedent of the rule with the example, the PCF is used
to compute the rule weight and the winning rule is used as
fuzzy reasoning method. Additionally, another parameter is
used in the MapReduce procedure, which is the number of
mappers associated to the computation. This value has been
set to 16, 32 and 64 mappers.

To perform the experiments we have used the Atlas
research group’s cluster with 16 nodes, connected with a
1Gb/s ethernet. Each node is composed by two Intel E5-
2620 microprocessors (at 2 GHz, 15MB cache) and 64GB
of memory running under Linux CentOS 6.3. Furthermore,
the cluster works with Hadoop 2.0.0 (Cloudera CDH4.5.0),
where one node is configured as name-node and job-tracker,
and the rest are data-nodes and task-trackers.

Moreover, when an experimental study is carried out, it
is highly advised that the extracted conclusions are validated
through the use of statistical tests [10][11]. Standard paramet-
ric tests, like the t–test, need to meet some initial conditions
in data that are not always met in classification experiments
and, therefore, non-parametric tests need to be used in their
place.

In this work, we compare the performance of the ap-
proaches using a Wilcoxon signed-rank test [24], a non-
parametric statistical set suitable for pairwise comparisons.
This test calculates the differences between two classifiers
and then, ranks them in ascending order with respect to their
absolute value. With these ranks, we compute the R+ and
R− values: R+ is the addition of the ranks where the first
algorithm outperforms the second, and R− sums the contrary
case. With this information, the p–value associated to the
statistical distribution is calculated and if that value is below
a pre-specified significance level α, then the null hypothesis
of equality of means can be rejected.

B. Analysis of the Chi-FRBCS-BigData precision

In this section, we will try to identify the feasi-
ble differences between the two versions of the Chi-
FRBCS-BigData proposal: Chi-FRBCS-BigData-Max and
Chi-FRBCS-BigData-Ave (for the sake of space, these al-
gorithms are called Chi-BigData-Max and Chi-BigData-Ave
in the Tables).

With this aim, Table II shows the average accuracy classifi-
cation values obtained by the Chi-FRBCS-BigData versions.
This table shows the average training and test results of
each approach and is divided in three horizontal parts that
correspond to the performance results achieved with the
different number of mappers. Moreover, the bold values
indicate which algorithm is more effective to classify the test
examples for a given number of mappers, and the underlined
values highlight which is the best performing method in test
in all the experiments considered.

TABLE II
AVERAGE ACCURACY RESULTS FOR THE CHI-FRBCS-BIGDATA

VERSIONS USING 16, 32 AND 64 MAPPERS

Datasets 16 mappers
Chi-BigData-Max Chi-BigData-Ave
Acctr Acctst Acctr Acctst

RLCP 99.63 99.63 99.63 99.63
Kddcup DOS vs normal 99.93 99.93 99.93 99.93
Poker 0 vs 1 62.18 59.88 62.58 60.35
Covtype 2 vs 1 74.77 74.72 74.77 74.69
Census 97.14 93.75 97.15 93.52
Fars Fatal Inj vs No Inj 96.69 94.75 97.06 95.01
Average 88.39 87.11 88.52 87.19

32 mappers
Chi-BigData-Max Chi-BigData-Ave
Acctr Acctst Acctr Acctst

RLCP 99.63 99.63 99.63 99.63
Kddcup DOS vs normal 99.92 99.92 99.92 99.92
Poker 0 vs 1 61.27 58.93 61.82 59.30
Covtype 2 vs 1 74.69 74.62 74.88 74.85
Census 97.11 93.48 97.12 93.32
Fars Fatal Inj vs No Inj 96.49 94.26 96.87 94.63
Average 88.19 86.81 88.37 86.94

64 mappers
Chi-BigData-Max Chi-BigData-Ave
Acctr Acctst Acctr Acctst

RLCP 99.63 99.63 99.63 99.63
Kddcup DOS vs normal 99.92 99.92 99.93 99.93
Poker 0 vs 1 60.45 57.95 60.88 58.12
Covtype 2 vs 1 74.67 74.52 75.05 74.96
Census 97.07 93.30 97.13 93.11
Fars Fatal Inj vs No Inj 96.27 93.98 96.76 94.56
Average 88.00 86.55 88.23 86.72

From this table we can observe that, in average, the Chi-
FRBCS-BigData-Ave method is able to provide better clas-
sification results both in training and test than Chi-FRBCS-
BigData-Max for any number of mappers considered. There-
fore, obtaining the average rule weight of all the partial rule
bases obtained show a positive influence in classification as
we are trying to make the rules as general as possible. The
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only clear exception to this tendency can be observed in
the “Census” dataset that obtains slightly better results for
the Chi-FRBCS-BigData-Max variant. This behavior may be
explained in relation with the training results, as it seems
that this specific dataset is the one that presents a greater
gap between the training and testing results.

Moreover, the performance results improve when a smaller
number of mappers is used for both Chi-FRBCS-BigData
versions and for both training and test sets. This behavior
is also expected from the MapReduce design followed, as
the rule weights are originally estimated from smaller data
subsets if the number of mappers is high, and therefore, the
estimation performed is even further in theses cases from
the rule weight value what would be computed if the whole
dataset was available. However, there are also cases like the
“Covtype 2 vs 1” dataset where this trend is not observed.

In order to give statistical support to the findings previ-
ously extracted, in Table III we carry out a Wilcoxon test
to compare how both Chi-FRBCS-BigData variants behave
when different number of mappers are used. From this test,
we may conclude that there are no clear differences between
the approaches as the obtained p–values are not lower than
a given significance level α = 0.05 or 0.1.

TABLE III
WILCOXON TEST TO COMPARE THE ACCURACY ON THE

CHI-FRBCS-BIGDATA VERSIONS. R+ CORRESPONDS TO THE SUM OF

THE RANKS FOR CHI-BIGDATA-MAX AND R− TO CHI-BIGDATA-AVE

Comparison #Mappers R+ R− p-Value
Chi-BigData-Max vs Chi-BigData-Ave 16 5.0 10.0 0.4185
Chi-BigData-Max vs Chi-BigData-Ave 32 3.0 12.0 0.1775
Chi-BigData-Max vs Chi-BigData-Ave 64 3.0 12.0 0.1775

Even when we cannot find statistical differences, we can
observe that there is a tendency to consider the Chi-FRBCS-
BigData-Ave approach as the best performing one, as the
sum of ranks is always directed to its side. Furthermore,
we can also see that the difference between the approaches
is smaller (higher p–value) when the number of mappers is
also smaller, which is precisely when both approaches obtain
a better classification performance.

C. Analysis of the Chi-FRBCS-BigData runtime
In this section, we will focus on understanding the differ-

ent behavior of the two versions of the Chi-FRBCS-BigData
proposal with respect to the runtime of the model.

Table IV shows the runtime in seconds spent by the Chi-
FRBCS-BigData-Max and Chi-FRBCS-BigData-Ave meth-
ods. As in the previous case, this table is divided in three
parts, which show the results for each dataset with respect
to the different number of mappers. There are two types of
highlighting in the table: the bold values correspond to the
fastest method within the same number of mappers while
the underlined values refer to the quickest execution for a
dataset.

In average, we can see that the runtime results show a
better behavior for the Chi-FRBCS-BigData-Max algorithm

TABLE IV
AVERAGE RUNTIME ELAPSED IN SECONDS FOR THE

CHI-FRBCS-BIGDATA VERSIONS USING 16, 32 AND 64 MAPPERS

Datasets Chi-BigData-Max Chi-BigData-Ave
16 mappers – Runtime (s)

RLCP 9023.82 8868.84
Kddcup DOS vs normal 30120.03 29820.01
Poker 0 vs 1 3075.50 6582.32
Covtype 2 vs 1 1477.67 924.65
Census 939.32 884.30
Fars Fatal Inj vs No Inj 363.05 236.40
Average 7499.90 7886.09

32 mappers – Runtime (s)
RLCP 2460.89 2303.02
Kddcup DOS vs normal 7890.87 7708.96
Poker 0 vs 1 2210.13 6331.09
Covtype 2 vs 1 391.40 493.00
Census 388.64 771.04
Fars Fatal Inj vs No Inj 141.92 228.96
Average 2247.31 2972.68

64 mappers – Runtime (s)
RLCP 701.31 714.41
Kddcup DOS vs normal 2079.93 2096.34
Poker 0 vs 1 1635.98 8373.40
Covtype 2 vs 1 252.19 348.86
Census 325.24 764.94
Fars Fatal Inj vs No Inj 136.24 241.75
Average 855.15 2089.95
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Fig. 4. Average runtimes for the Chi-FRBCS-BigData versions

for all the values of the number of mappers considered.
This behavior is expected as this version of the algorithm
performs less operations than the alternative and the oper-
ations performed are simpler. For the smallest number of
mappers considered, it seems that there is a greater number of
cases that benefit the Chi-FRBCS-BigData-Ave alternative,
however, this improvement per dataset is not very high and
it is not able to compensate how much slower this alternative
is in the “Poker 0 vs 1” dataset. In Figure 4, we can see the
difference between the runtime of the Chi-FRBCS-BigData
alternatives in average, where the Chi-FRBCS-BigData-Ave
version consumes more of time.

Furthermore, both versions also notably decrement their
runtimes when larger values of mappers are used. This
diminution in the runtime does not follow a lineal proportion
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(as it can be seen from Figure 4). For instance, the speed gain
when we double the number of processing units is much
greater than reducing the processing time by half.

We can also see that this runtime improvement is not
proportional over the different datasets: the biggest datasets
are the ones that are able to further improve their perfor-
mance while the smaller datasets are not able to do so in the
same proportion. Moreover, the Chi-FRBCS-BigData-Max
algorithm is able to scale up better than the Chi-FRBCS-
BigData-Ave alternative, as the second approach seems to
halt its progression when 64 mappers are used.

To sum up, our experimental study shows that the Chi-
FRBCS-BigData-Ave alternative allows us to obtain better
classification results for the Chi-FRBCS-BigData algorithm.
We have also encountered that greater values for the number
of mappers decrement the accuracy of the model as the model
is less general when it is built over the smaller data subsets.

As a counterpart, the Chi-FRBCS-BigData-Max version
does not have a significant drop in the accuracy performance
with respect to the Chi-FRBCS-BigData-Ave alternative and
it provides better response times than it. Furthermore, its
speed gain is notable when higher number of mappers are
used. In this manner, it is necessary to establish a trade-off in
each occasion so that the most suitable Chi-FRBCS-BigData
approach is selected according to our needs.

V. CONCLUDING REMARKS

In this work, we have introduced a linguistic fuzzy rule-
based classification method for big data named Chi-FRBCS-
BigData. This model obtains an interpretable model that
manages colossal collections of data without damaging the
classification accuracy and with fast response times.

Moreover, this approach has been designed using one of
the most popular approaches for big data nowadays: the
MapReduce framework. In this manner, this algorithm dis-
tributes its computing using a map function and combines the
output via a reduce function. Specifically, the Chi-FRBCS-
BigData proposal has been developed under two versions
which have been called Chi-FRBCS-BigData-Max and Chi-
FRBCS-BigData-Ave. Although these alternatives follow the
same structure and share numerous operations, its differences
in the reduce function finally produce diverse classification
models with divergent classification results.

The performance of the Chi-FRBCS-BigData alternatives
has been contrasted in an experimental study including six
different big data problems. These results corroborate the
goodness of the approaches; however, it is not possible to
identify a clear winner and it is needed to select one of
them according to our needs. If we aim to obtain the best
precision results, then, using the Chi-FRBCS-BigData-Ave
method with a lower value for the number of mappers seems
to be choice in spite of worse runtime results. On the contrary
case, if we are interested in obtaining the fastest results
without greatly damaging the performance, then, using the
Chi-FRBCS-BigData-Max with a high number of mappers
seems to be the sensible choice.
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