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a b s t r a c t

The Nearest Neighbor rule is one of the most successful classifiers in machine learning. However, it is
very sensitive to noisy, redundant and irrelevant features, which may cause its performance to
deteriorate. Feature weighting methods try to overcome this problem by incorporating weights into
the similarity function to increase or reduce the importance of each feature, according to how they
behave in the classification task. This paper proposes a new feature weighting classifier, in which the
computation of the weights is based on a novel idea combining imputation methods – used to estimate a
new distribution of values for each feature based on the rest of the data – and the Kolmogorov–Smirnov
nonparametric statistical test to measure the changes between the original and imputed distribution of
values. This proposal is compared with classic and recent feature weighting methods. The experimental
results show that our feature weighting scheme is very resilient to the choice of imputation method and
is an effective way of improving the performance of the Nearest Neighbor classifier, outperforming the
rest of the classifiers considered in the comparisons.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Nearest Neighbor (NN) classifier [1] is one of the most
widely used methods in classification tasks due to its simplicity
and good behavior in many real-world domains [2]. It is a
nonparametric classifier which simply uses the full training data
set to establish a classification rule, based on the most similar or
nearest training instance to the query example.

The most frequently used similarity function for the NN
classifier in the instance-based learning area is Euclidean distance
[3]. However, redundant, irrelevant and highly correlated features
may lead to erroneous similarities between the examples obtained
and, therefore, to a deterioration in performance [4]. One way of
overcoming this problem lies in modifying the similarity function,
that is, the way in which the distances are computed. With this
objective, weighting schemes can be applied in order to improve
the similarity function, by introducing a weight for each of the
features. High weights are assigned to those features that are
helpful to classification and low weights are assigned to harmful
or redundant features.

Feature Weighting methods [5] are able to enhance the NN
classifier following the above procedure. By contrast to Feature
Selection [6–9], the usage of weighting schemes provides the
classifiers with a way of considering features partially, giving them
some degree of importance in the classification task. This is usually
preferred since weak, yet useful features may still be considered,
instead of forcing the methods to either accept or completely
ignore them. Many approaches using Feature Weighting have been
proposed in the literature, some of which have focused on the NN
classifier [10–12].

This paper proposes a novel approach for weighting features,
based on the usage of imputation methods [13,14]. These are
commonly employed to estimate those feature values in a data set
that are unknown, formally known as missing values (MV) [15],
using the rest of the data available. Therefore, imputation methods
enable us to estimate a new distribution of the original data set, in
which the distribution of each feature is conditioned to the rest of
the features or all the data. These conditioned distributions of each
feature can be compared with the original ones in order to detect
the relevance of each feature, depending on the accuracy of the
estimation for that feature performed by the imputation method.

The Kolmogorov–Smirnov statistic [16] may then be used to
evaluate the differences between the original distribution of the
features and that of the imputed ones. It is thus possible to
measure how well the values of each feature can be predicted
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using the rest of the data. This enables us to give more importance
to those features with high changes between their original and
estimated value distributions – these features keep most of the
structural information of the data and are not easily predictable
using the rest of the data, which reduces the effect of those
features that are easily predictable, and which are therefore likely
to be redundant.

The study is completed with an experimentation in which our
proposal is compared with several classic and recent proposals of
feature weighting, considering 25 supervised classification pro-
blems taken from the Keel-Dataset repository [17]. A web page
with material complementary to this paper is available at http://
sci2s.ugr.es/fw-imputation including the data sets used and the
performance results of each classifier.

The rest of this paper is organized as follows. Section 2
introduces imputation and feature weighting methods. In Section
3 we describe our proposal. In Section 4 we present the experi-
mental framework, and in Section 5 we analyze the results
obtained. Finally, in Section 6 we enumerate some concluding
remarks.

2. Preliminaries

This section introduces our proposal's main topics: imputation
in Section 2.1 and feature weighting in Section 2.2.

2.1. Imputation methods for the estimation of values

Many real-world problems contain missing values as a result of,
for example, manual data entry procedures or equipment errors.
This poses a severe problem for machine learning applications,
since most classifiers cannot work directly with incomplete data
sets. Furthermore, MVs may cause different problems in a classi-
fication task [13]: (i) loss of efficiency, (ii) complications in
handling and analyzing the data and (iii) bias resulting from
differences between missing and complete data. Therefore, a
preprocessing stage in which the data are prepared and cleaned
is usually required [18].

Imputation methods [14,19] aim to predict a value for each MV.
In most cases, the features of a data set are not independent of
each other. Thus, through the identification of relationships among
features, MVs can be determined. An advantage of this approach is
that the MV treatment is independent of the learning algorithm
used. Hence, the user is able to select the most appropriate
imputation depending on the learning approach considered [13].

One of the simplest imputation methods is based on the NN
rule: k-NN Imputation (KNNI). C4.5 or CN2 usually benefit from its
usage [19]. Other approaches try to improve or complement its
performance over various domains, for example, in [20] a Support
Vector Machine (SVM) was used to fill in MVs (SVMI).

Other works are mostly focused on studying the behavior of
several imputation methods in a specific scenario. For example, in
[21], the authors induced MVs in several data sets. The prediction
value – that is, the similarity of the imputed value to the originally
removed one – of several imputation methods, such as Regularized
Expectation-Maximization [22] or Concept Most Common (CMC)
[23], and the accuracy obtained by several classifiers were studied.
From the results, the authors stated that better prediction results
do not imply better classification results. A similar approach was
adopted in [14], in which the behavior of classifiers belonging to
different paradigms, such as decision trees or instance-based
learning methods, was studied over data sets with different levels
of MVs.

All the aforementioned works have shown that imputation
methods work properly when estimating missing values from the

rest of the available data. They are therefore also suitable for use in
our proposal.

2.2. Feature weighting in nearest neighbor classification

Data preparation [18,24] provides a number of ways to improve
the performance of the NN classifier, such as Prototype Selection
[25] or Feature Selection [6–9]. A different, yet powerful approach
is Feature Weighting [5].

Feature Weighting methods can be included as a part of
another type of more general methods: those based on adaptive
distance measures [26–29]. These techniques try to learn distance
metrics from the labeled examples of a problem in order to
improve the classification performance. A reference work within
this topic is, for example, that of Weinberger and Saul [26], in
which the Mahanalobis distance metric is learned for k-nearest
neighbor classification by semidefinite programming. The metric is
trained in order that the k-nearest neighbors always belong to the
same class while examples from different classes are separated by
a large margin. On the other hand, the approach of [29] proposes a
framework in which the metrics are parameterized by pairs of
identical convolutional neural nets. Other works [27,28] consider
schemes for locally adaptive distance metrics that change across
the input space to overcome the bias problem of NN when
working in high dimensions. In [27] a local linear discriminant
analysis is used to compute neighborhoods, whereas in [28] a
technique that computes a locally flexible metric by means of
support vector machines is proposed.

The main objective of Feature Weighting methods is to reduce
the sensitivity of the NN rule to redundant, irrelevant or noisy
features. This is achieved by modifying its similarity function [4]
with the inclusion of weights. These weights can be regarded as a
measure of how useful a feature is with respect to the final
classification task. The higher a weight is, the more influence the
associated feature will have in the decision rule used to compute
the classification of a given example. Therefore, an adequate
scheme of weights could be used to highlight the best features
of the domain of the problem, diminishing the impact of redun-
dant, irrelevant and noisy ones. Thus, the accuracy of the classifier
could be greatly improved if a proper selection of weights is made.

In the case of the NN classifier, most of the techniques
developed to include Feature Weighting schemes have been
focused on incorporating the weights in the distance measure,
mainly to Euclidean distance (see Eq. (1), where X and Y are two
instances and M is the number of features that describes them). In
spite of its simplicity, the usage of Euclidean distance has been
preferred in many research approaches, since it is easy to optimize
and shows a good discriminative power in most classification
tasks. In fact, it is the most commonly used similarity measure in
the instance based learning field [3].

dðX;YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
M

i ¼ 0
ðxi�yiÞ2

s
ð1Þ

Feature Weighting methods often extend this definition
through the inclusion of weights associated with each feature
(Wi, usually WiA ½0;1�). These modify the way in which the
distance measure is computed (Eq. (2)), increasing the relevance
(the squared difference between feature's values) of those features
with greater weights associated with them (near to 1.0).

dwðX;YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
M

i ¼ 0
Wi � ðxi�yiÞ2

s
ð2Þ

The application of this technique to the NN classifier has been
widely addressed. To the best of our knowledge, the most
complete study undertaken to this end can be found in [5], in
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which a review of several Feature Weighting methods for Lazy
Learning algorithms [30] is presented (with most of them applied
to improve the performance of the NN rule). In this review, Feature
Weighting techniques are categorized by several dimensions,
regarding the weight learning bias, the weight space (binary or
continuous), the representation of features employed, their gen-
erality and their degree of employment of domain specific
knowledge.

A wide range of classical Feature Weighting techniques are
available in the literature, both classical (see [5] for a complete
review) and recent [10,12]. The most well known compose the
family of Relief-based algorithms.

The Relief algorithm [31] (which was originally a Feature
Selection method [6]) has been widely studied and modified,
producing several interesting variations of the original approach.
Some of them [32,11] are based on ReliefF [33], which is the first
adaptation of Relief as a Feature Weighting approach.

In addition to these approaches, Feature Weighting methods
are also very useful when considered as a part of larger supervised
learning schemes. In these approaches, Feature Weighting can be
regarded as an improved version of Feature Selection (in fact,
Feature Selection is a binary version of Feature Weighting, defining
a weight of 1 if a feature is selected, or 0 if it is discarded). Again, if
the weights scheme is properly chosen, Feature Weighting can
play a decisive role in enhancing the performance of the NN
classifier in these techniques [34].

3. A weighting algorithm based on feature differences after
values imputation

This section describes the weighting method proposed, which
is based on three main steps (see Fig. 1):

1. Imputation of the data set (Section 3.1): In this phase, an
imputation method is used to build a new estimated data set
DS0 from the original one DS.

2. Computation of weights (Section 3.2): The distribution of the
values of each feature fi of DS and the corresponding estimated
feature f 0i of DS

0 are compared using the Kolmogorov–Smirnov

statistical test. This enables the extraction of the Di
n statistic for

each feature fi.
3. Construction of the classifier (Section 3.3): Once the Di

n statistic
is computed for each feature i, the NN classifier is used,
incorporating a modified version of Euclidean distance. This
version is based on a weighting scheme derived from the Di

n

statistics.

The following sections describe each of these steps in depth.
Section 3.1 is devoted to the imputation phase, whereas Section
3.2 describes the computation of the weights. Finally, Section 3.3
characterizes the classification model.

3.1. Imputation of the data set

The first step consists of creating a whole new estimated data
set DS0 from the original one DS. In order to do this, an imputation
method is used (in this paper we will consider KNNI [19], CMC [23]
and SVMI [20], although other imputation methods may be
chosen). If the original data set DS is composed of the features
f 1; f 2;…; f M , the imputed data set DS0 will be formed by the
features f 01; f

0
2;…; f 0M whose values are obtained by the imputation

method.
The procedure to obtain DS0 from DS is represented in

Algorithm 1. This is based on assuming iteratively that each
feature value of each example of the data set DS, that is, eðf iÞ, is
missing (lines 2–5). Then, the imputation method IM is used to
predict a new value for that feature value (line 6). The new data set
DS0 is obtained by repeating this process for each feature value,
until the whole data set has been processed. Carrying out this
process, it is possible to estimate a distribution of values for each
feature, which is conditioned to the rest of the features or the
totality of the data. The new data set DS0 will contain these
conditioned distributions for each feature. This will allow us to
check those features that are more difficult to predict with the rest
of the features/data and contain the structural information of the
data set, making them more important to the classification task.

Algorithm 1. Pseudocode of the first step of the method: imputa-
tion of the dataset.

Input: original dataset DS, imputation method IM.
Output: estimated dataset DS0.

1 Set DS0 ¼∅;
2 for each example eADS do
3
4
5
6
7
8

e0 ¼ null;

for each feature f i do���� Suppose eðf iÞ as missing;
e0ðf 0iÞ⟵Estimate the value for eðf iÞ using IM over DS;

end
DS0⟵DS0 [ fe0g

���������������
9 end

3.2. Computation of weights using the Kolmogorov–Smirnov test

The next step consists of measuring which features are most
changed after the application of the imputation method. Given the
nature of the imputation techniques, some features are expected
to remain unchanged (or to present only small changes in their
values’ distribution) whereas other features may present a higher
level of disruption when their imputed values are compared with
the original ones. The Kolmogorov–Smirnov test [16] provides a
way of measuring these changes. This test works by computing aFig. 1. Feature weighting method proposed.
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statistic Dn, which can be regarded as a measure of how different
two samples are.

The test is a nonparametric procedure for testing the equality of
two continuous, one-dimensional probability distributions. It
quantifies a distance between the empirical distribution functions
of two samples. The null distribution of its statistic, Dn, is
computed under the null hypothesis that the samples are drawn
from the same distribution.

The main advantage of using the Dn statistic (computed in the
Kolmogorov–Smirnov test) instead of other simpler statistics such
as the variance is that, for our purpose, which consists of measur-
ing the similarity of two given distributions, shape measures used
to compare the two distributions are more appropriate than other
types of measures (such as dispersion measures in the case of the
variance). Thus, when comparing two distributions, the changes in
the variance do not provide enough information on how similar
the two distributions are. Variances are only a measure of how the
values of an attribute are concentrated around the mean, and is
just one of the many factors that may be changed by distribution.
However, the Dn statistic contains the structural information that
describes how the distribution has changed. This can be done by
identifying where the higher or lower concentrations of values are
(in the lowest values of the distribution, in the highest values, if
there are several intervals with a higher concentration of values,
etc.). Thus, the Dn statistic is therefore much more representative
than a simple comparison between the variances of the two
distributions.

On the other hand, two samples of values with the same
variance do not necessarily imply that both follow the same
distribution (the same shape), or even that they have similar
distributions. A simple example in which the variance does not
work properly can be seen in regard to the property that makes
the variance invariant to changes in the origin. Suppose two
attributes: A (real distribution of values of an attribute) and A0

(the distribution with the estimated values of that attribute).
Assume that A0 ¼ AþC, where C is a constant. Then,
varianceðAÞ ¼ varianceðA0Þ. The two samples have the same var-
iance, even though they obviously come from two different
distributions and this fact is not detected using the variance. This
problem is avoided if the Dn statistic is employed.

Given two samples, X and Y, and their empirical distribution
functions FX and FY

FXðxÞ ¼
1
n

∑
n

i ¼ 1
IXi rx; FY ðxÞ ¼

1
n

∑
n

i ¼ 1
IYi rx ð3Þ

(where IXi rx is the indicator function, equal to 1 if Xirx and equal
to 0 otherwise) the Kolmogorov–Smirnov statistic is

Dn ¼ sup
x
jFX�FY j ð4Þ

Table 1 shows two toy samples (where two distributions of
values X ¼ fX1;…;Xng and Y ¼ fY1;…;Yng with n¼5 are given),
whereas Table 2 shows an example of the computation of the
Kolmogorov–Smirnov statistic from them.

In the approach of this paper, the Dn statistic provides a
valuable way of estimating the degree of change undergone by a
feature through the imputation process. By computing the Dn

statistic associated with the differences between both samples of
the feature (original and imputed), it is possible to measure the
greater degree of difference between the expected distribution of

both samples. Hence, the greater Dn value obtained, the more
different the imputed version of the feature distribution will be
(when compared with the original one).

The Dn statistic can be easily transformed into a weight. Since
DnA ½0;1�, features with a lower value of Dn (near to 0.0) it will
have little influence on the computation of the similarity function
of the NN rule, whereas features with a higher value of Dn (near to
1.0) will be the most influential when computing the distance
between two examples. Defining the statistical Di

n for the feature i
as

Di
n ¼ Kolmogorov–Smirnovðf i; f 0iÞ 8 i; f iAA; f 0iAA0 ð5Þ

(where A denotes the set of features of the original data set DS and
A0 denotes the set of features imputed in DS0), then the weights
WiA ½0;1� computed for a feature f iAA are

Wi ¼Di
n ∑

M

j ¼ 1
Dj
n

,
ð6Þ

3.3. Final classification model

The final classifier considers NN with the weighted Euclidean
distance (Eq. (2)) and the weights computed throughout the
Kolmogorov–Smirnov statistic (Eq. (6)).

Considering weights computed from the Dn statistic, we aim to
highlight the effect that changing features have on the computa-
tion of the distance. These features, with a larger associated Dn

value, will be those poorly estimated by the imputation method
(whose sample distribution differs greatly if the original and
imputed versions are compared). They are preferred since they
keep most of the structural information of the data, and are the
key features describing the data set (they cannot be properly
estimated using the rest of the data).

By contrast, features with a small Dn value will be those whose
sample distribution has not been changed after the application of
the imputation method. Since these features are easily estimated
when the rest of the data is available (the imputation method can
recover their values properly), they are not preferred in the final
computation of the distance, and thus a lower weight is assigned
to them.

4. Experimental framework

This section presents the framework of the experimental study
conducted. The imputation methods considered in the previous
section are presented in Section 4.1, whereas Section 4.2 is
devoted to the feature weighting methods used. Section 4.3

Table 1
Two toy samples of size n¼5.

X¼{X1¼0.01, X2¼0.11, X3¼0.12, X4¼0.22, X5¼0.85}
Y¼{Y1¼0.09, Y2¼0.41, Y3¼0.65, Y4¼0.73, Y5¼0.91}

Table 2
Example of the computation of the Kolmogorov–Smirnov statistic.

x FX FY jFX�FY j supx jFX�FY j

0 0 0 0 0
0.01 0.2 0 0.2 0.2
0.09 0.2 0.2 0 0.2
0.11 0.2 0.2 0.2 0.2
0.12 0.6 0.2 0.4 0.4
0.22 0.8 0.2 0.6 0.6
0.41 0.8 0.4 0.4 0.6
0.65 0.8 0.6 0.2 0.6
0.73 0.8 0.8 0 0.6
0.85 1.0 0.8 0.2 0.6
0.91 1.0 1.0 0 0.6

Dn 0.6
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describes the data sets employed. Finally, Section 4.4 describes the
methodology followed to analyze the results.

4.1. Imputation methods

The proposal described in this paper allows us to include any
standard imputation method. For the sake of generality, we have
chosen to test the behavior using three different imputation
techniques, well-known representatives of the field [13,19]:

1. KNNI [19]: Based on the k-NN algorithm, every time an MV is
found in a current example, KNNI computes the k nearest
neighbors and their average value is imputed. KNNI also uses
the Euclidean distance as a similarity function.

2. CMC [23]: This method replaces the MVs by the average of all
the values of the corresponding feature considering only the
examples with the same class as the example to be imputed.

3. SVMI [20]: This is an SVM regression-based algorithm devel-
oped to fill in MVs. It works by firstly selecting the examples in
which there are no missing feature values. In the next step, the
method sets one of the input features, some of the values of
which are missing, as the decision feature, and the decision
feature as the input feature. Finally, an SVM for regression is
used to predict the new decision feature.

The parameter setup used for their execution is presented in
Table 3. Each imputation method considered will lead to a
different feature weighting classifier. Throughout the study, we
will denote them as FW-KNNI, FW-CMC and FW-SVMI.

4.2. Feature weighting methods for NN

In order to check the performance of the approach proposed,
the following feature weighting algorithms for nearest neighbor
classification as comparison methods have been chosen:

1. NN [1]: The NN rule is used as a baseline limit of performance
which most of the methods should supersede.

2. CW [10]: A gradient descent based algorithm developed with
the aim of minimizing a performance index that is an approx-
imation of the leave one out error over the training set. In this
approach, weights are obtained for each combination of feature
and class, that is, the set of weights is different depending on
the class of each training example.

3. MI [5]: Mutual Information (MI) between features can be used
successfully as a weighting factor for NN based algorithms. This
method was marked as the best preset FW method in [5].

4. ReliefF [33]: The first Relief-based method adapted to perform
the FW process. By contrast to the original Relief method,
weights computed in ReliefF are not binarized to 0,1. Instead,
they are used as final weights for the NN classifier. This method
was noted as the best performance-based FW method in [5].

5. IRelief [11]: A multiclass, iterative extension of Relief. The
objective function of the iterative process aims at reducing
the distances between each example and its nearest hit
(nearest training example of the same class) and increasing

the distances between each example and its nearest enemy
(nearest training example of another class).

Table 4 summarizes the parameter setup used for the feature
weighting methods in the experimental study, which was used in
the reference in which the methods were originally described.

4.3. Data sets

The experimentation considers 25 data sets from the KEEL-
Dataset repository [17]. They are described in Table 5, where #EXA
refers to the number of examples, #FEA to the number of numeric
features and #CLA to the number of classes.

For data sets containing missing values (such as bands or
dermatology), the examples with missing values were removed
from the data sets before their usage and thus all the attribute
values of the data sets considered are known. In this way, the
percentage of missing values of each data set does not influence
the results or conclusions obtained and it does not harm the
methods that are not specially designed to deal with them.
Therefore, the only missing values considered in this paper are
those assumed during the execution of Algorithm 1 in order to
build the new estimated distribution of values.

4.4. Methodology of analysis

The performance estimation of each classifier on each data set
is obtained by means of 3 runs of a 10-fold distribution optimally
balanced stratified cross-validation (DOB-SCV) [35], averaging its
test accuracy results. The usage of this partitioning reduces the
negative effects of both prior probability and covariate shifts [36]
when classifier performance is estimated with cross-validation
schemes. The results with the standard cross-validation can be
found on the web page of this paper.

Statistical comparisons of the data sets considered will be also
performed. Wilcoxon's test [37] will be applied to study the
differences among the proposals of this paper and also between

Table 3
Parameter specification for the imputation methods.

Algorithm Ref. Parameters

KNNI [19] k value: 10
CMC [23] It has no parameters to be fixed
SVMI [20] Kernel type: RBF, C: 1.0, RBF-γ: 1.0

Table 4
Parameter specification for the classifiers of the study.

Algorithm Ref. Parameters

NN [1] It has no parameters to be fixed
CW [10] β: Best in ½0:125;128�, μ: Best in ½0:001;0:1�,

ϵ: 0.001, Iterations: 1000
MI [5] It has no parameters to be fixed
ReliefF [33] K value: Best in ½1;20�
IRelief [11] Maximum iterations: 100, ϵ: 0.00001, σ: Best in ½0:001;1000�

Table 5
Data sets employed in the experimentation.

Data set #EXA #FEA #CLA Data set #EXA #FEA #CLA

banana 5300 2 2 pima 768 8 2
bands 365 19 2 satimage 6435 36 7
bupa 345 6 2 sonar 208 60 2
dermatology 358 34 6 tae 151 5 3
ecoli 336 7 8 texture 5500 40 11
heart 270 13 2 vowel 990 13 11
hepatitis 80 19 2 wdbc 569 30 2
ionosphere 351 33 2 wine 178 13 3
iris 150 4 3 wq-red 1599 11 11
led7digit 500 7 10 wq-white 4898 11 11
mov-libras 360 90 15 wisconsin 683 9 2
newthyroid 215 5 3 yeast 1484 8 10
phoneme 5404 5 2

J.A. Sáez et al. / Pattern Recognition 47 (2014) 3941–3948 3945



each of these proposals and NN using the Euclidean distance.
Regarding the comparison among feature weighting methods, the
results of the Friedman Aligned test [38] and the Finner procedure
[39] will be computed. Comparisons with other tests, such as the
Holm test [40], may be found on the web page of this paper. More
information about these statistical procedures can be found at
http://sci2s.ugr.es/sicidm/.

5. Analysis of results

This section presents the analysis of the results obtained.
Table 6 shows the test accuracy obtained by each classifier on
each data set. The best results for each data set are highlighted in
bold. From this table, several remarks can be made:

� The method obtaining the best results in most single data sets
is FW-KNNI (in 6 of the 25 data sets). It is followed by IRelief (5
data sets), FW-CMC, FW-SVMI and CW (4 data sets), MI and
ReliefF (3 data sets) and NN (1 data set).

� Even though IReliefF or CW obtain the best results in a certain
number of data sets – 5 and 4 respectively –, they show a
variable performance for different problems. For instance, in
data sets such as banana and tae, CW's results are very far from
the results obtained by the best performing methods in these
data sets. The same occurs for IRelief – in bands, phoneme and
wq-white – whereas this issue is not very remarkable with
regard to any of the other proposals of this paper. This fact
shows that our methods are generally more robust than those
of the rest of the algorithms included in the comparison.

� Regardless of the imputation method selected, our approaches
usually obtain results close to those of the best performing
method in each data set. Moreover, all of them obtain better
accuracy on average than the comparison methods over the 25
problems.

To add depth to the analysis of the results, several statistical
comparisons are performed below, studying the differences
among the proposals of this paper, their comparison with NN
and also with the rest of the feature weighting methods.

Comparison among the feature weighting methods based on
imputation: The results of the three proposals of this paper (FW-
KNNI, FW-CMC and FW-SVMI) shown in Table 6 are quite similar.
In order to study whether there are statistical differences among
them, Wilcoxon's test has been performed – see Table 7. In this
table, the classifier of each row is established as the control
method for the statistical test and its ranks (Rþ), the ranks in
favor of the method of the column (R�) and the p-value
associated are shown. From the high p-values obtained in these
comparisons, one can conclude that statistical differences among
the three proposals do not exist. This fact shows the robustness of
the proposal independent of the imputation method chosen.
Therefore, the good behavior of the approach is due to the strategy
for obtaining the weights, which combines imputation methods
and the Kolmogorov–Smirnov test; the concrete imputation
method employed does not influence the results so much.

Comparison with NN: Table 8 shows the results of applying
Wilcoxon's test to each of the proposals performed and NN. As the
table shows, every proposal is statistically better than NN due to
the low p-values obtained – all are lower than 0.05. This shows

Table 6
Test accuracy results.

Data set CW MI ReliefF IRelief NN FW-KNNI FW-CMC FW-SVMI

banana 61.59 59.51 87.7 88.00 87.87 87.91 87.79 87.60
bands 72.31 45.27 65.99 36.97 72.04 72.04 69.02 69.85
bupa 62.36 42.02 59.09 55.35 62.36 64.11 64.09 63.50
dermatology 95.18 97.19 96.9 93.22 94.9 94.62 95.75 95.21
ecoli 80.09 78.88 70.69 76.88 80.09 79.77 80.09 80.67
heart 76.3 82.96 78.89 78.89 74.81 73.7 75.19 75.19
hepatitis 82.94 81.27 80.26 85.65 82.94 85.62 81.83 82.94
ionosphere 85.96 87.4 90.26 91.11 87.11 88.55 87.09 87.67
iris 96.00 83.33 95.33 94.67 95.33 95.33 96.00 94.00
led7digit 44.88 51.55 51.6 51.62 44.88 52.45 51.55 52.03
mov-libras 82.81 69.85 25.6 84.1 82.81 85.73 85.95 85.51
newthyroid 97.19 94.35 98.59 95.32 97.19 96.26 97.19 96.71
phoneme 90.43 76.85 68.24 72.63 90.41 91.04 91.06 91.08
pima 70.45 69.13 63.02 66.28 70.45 70.97 70.71 70.19
satimage 90.94 90.46 90.89 90.64 90.88 90.71 90.71 90.94
sonar 86.52 73.13 84.99 87.52 86.52 86.97 86.55 86.02
tae 42.07 31.81 28.63 69.42 42.07 65.55 65.55 65.55
texture 99.15 98 99.09 98.8 99.15 99.15 99.07 99.15
vowel 99.39 80.51 98.89 99.19 99.39 99.49 99.39 99.39
wdbc 95.97 96.14 93.46 95.26 95.96 94.91 95.8 95.97
wine 95.58 97.84 98.36 97.25 95.58 95.58 96.14 96.69
wq-red 53.72 48.96 66 63.76 53.66 66.19 65.74 65.55
wq-white 50.19 54.06 51.1 20.89 50.17 66.67 67.36 67.04
wisconsin 95.61 96.49 96.78 96.49 96.04 96.04 95.75 96.05
yeast 51.68 37.95 43.03 49.3 51.55 53.71 54.05 53.57

Average 78.37 73 75.34 77.57 79.37 82.12 81.98 81.92

Best result (out of 25) 4 3 3 5 1 6 4 4

Table 7
Wilcoxon's comparison of the proposed methods.

FW-KNNI FW-CMC FW-SVMI

Method Rþ R� p-value Rþ R� p-value Rþ R� p-value

FW-KNNI – – – 159 166 1.0000 191.5 133.5 0.4273
FW-CMC 166 159 0.9140 – – – 154 146 0.8970
FW-SVMI 133.5 191.5 1.0000 146 154 1.0000 – – –
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that the application of our approach to feature weighting improves
the performance of the NN classifier significantly, regardless of the
specific imputation method chosen.

Comparison among feature weighting methods: Table 9 presents
the statistical comparison performed for each proposal (FW-KNNI,
FW-CMC and FW-SVMI). Each proposal is independently com-
pared with the rest of the feature weighting methods since we
have already confirmed that there are no significant differences
among our three approaches (see Table 7). The ranks obtained by
the Friedman Aligned procedure (Rank column), which represent
the effectiveness associated with each algorithm, and the p-value
related to the significance of the differences found by this test (pFA
row) are shown. The pFinn column shows the adjusted p-value
computed by the Finner test.

Looking at Table 9, we can observe that:

� The average ranks obtained by our proposals are the best (the
lowest) and they are notably differentiated from the ranks of
the rest of the methods.

� These are followed by CW, IRelief and ReliefF with very close
ranks among them. MI obtains the highest rank.

� The p-values of the Friedman Aligned test are very low in every
case, meaning that the differences found among the methods
are very significant.

� The p-values obtained with the Finner procedure when com-
paring FW-KNNI, FW-CMC and FW-SVMI with the comparison
algorithms are very low. The differences found are always
significant (lower than 0.1), except in the case of FW-CMC
and FW-SVMI with CW, in which the p-value obtained is still
very low.

From the results of Tables 6– 9, it is possible to conclude that
the proposals presented in this paper perform better than the rest
of the feature weighting methods considered. They are also able to
improve the performance of the NN classifier. Even though they do
not obtain the best results in a large number of single data sets, the
statistical tests illustrate the improvement of performance
achieved by our approaches, showing a great robustness and a
good behavior in most of the data sets. The comparison among our
three proposals does not show statistical differences, suggesting
that the strategy for obtaining the weights performs accurately
independent of the concrete imputation method employed.

6. Conclusions

In this paper we have proposed a new scheme for feature
weighting developed to improve the performance of the NN
classifier, in which the weights are computed by combining
imputation methods and the Kolmogorov–Smirnov statistic. From
the experimental results it is possible to conclude that our feature
weighting scheme is not very sensitive to the selection of the
imputation method, since the results obtained in every case are
quite similar regardless of the specific imputation technique
chosen, and statistical differences among them have not
been found.

The results obtained show that all our approaches enhance the
performance of NN to a greater degree than the rest of the feature
weighting methods analyzed. They also show a robust behavior in
several domains, in contrast to the rest of the classifiers, which
demonstrate a variable performance when different data sets are
considered. The statistical analysis performed confirms our con-
clusions. The results with standard cross-validation provide simi-
lar conclusions to those shown here (see the results at http://sci2s.
ugr.es/fw-imputation).
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