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Abstract

The benchmark functions and some of the algorithms proposed for the special session
on real parameter optimization of the 2005 IEEE Congress on Evolutionary Computa-
tion (CEC’05) have played and still play an important role in the assessment of the state
of the art in continuous optimization. In this article, we show that if bound constraints
are not enforced for the final reported solutions, state-of-the-art algorithms produce
infeasible best candidate solutions for the majority of functions of the IEEE CEC’05
benchmark function suite. This occurs even though the optima of the CEC’05 functions
are within the specified bounds. This phenomenon has important implications on al-
gorithm comparisons, and therefore on algorithm designs. This article’s goal is to draw
the attention of the community to the fact that some authors might have drawn wrong
conclusions from experiments using the CEC’05 problems.
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1 Introduction

The special session on real parameter optimization of the 2005 IEEE Congress on Evo-
lutionary Computation (CEC’05) has played an important role in evolutionary com-
putation and other affine fields for two reasons. First, it provided a set of 25 scalable
benchmark functions that anyone can use to evaluate the performance of new algo-
rithms. Those 25 functions have become a standard benchmark set that researchers
use to compare algorithms. The central role that this benchmark function suite plays is
illustrated by the more than 800 citations (according to Google Scholar as of January
2014) to the original technical report that introduced it (Suganthan et al., 2005). Second,
it served to assess the state of the art in continuous optimization. In particular, the

*Supplementary material can be found at http://iridia.ulb.ac.be/supp/IridiaSupp2011-013.
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best performing algorithm of the special session, IPOP-CMA-ES (Auger and Hansen,
2005), is since then considered to be a representative of the state of the art in continuous
optimization. Consequently, it is nowadays standard practice to compare the results of
a new algorithm to the published results of IPOP-CMA-ES.

When evaluating algorithms, all should be run under the same conditions. Of
particular interest in this article is whether or not to consider bound constraints. If we
consider the definition of benchmark problems in continuous optimization, we may
distinguish the following three situations.

S1 Bound constraints are defined and are to be enforced at any stage of the search
process—solutions outside the bounds are invalid.

S2 Bound constraints are defined and are enforced for the final reported solutions;
however, solutions outside the bounds may be evaluated and used to drive the
search process.

S$3 No bound constraints are defined but bounds may be indicated to provide an
initialization range.

The definition of each CEC’05 benchmark function states that each component of
the solution vector x must be a value in an interval [Xmin, Xmax], X¥min < Xmax. Lhere
are two exceptions, which are functions f; and f,5, where the given interval specifies
only an initialization range, and not a bound constraint. For the other 23 functions,
their global optima are guaranteed to be within the specified bounds; on functions f3
and f, the global optima are known to be on the bounds. However, later in the re-
port it is mentioned that “All problems, except 7 and 25, have the global optimum within
the given bounds and there is no need to perform search outside of the given bounds for
these problems” (Suganthan et al., 2005, p. 40). This remark can be interpreted as al-
lowing the algorithms to search outside the given bounds. While together with the
definition of the CEC’05 benchmark functions this would indicate a type S2 situa-
tion, this remark may have led to misinterpretation. In this paper, we give evidence
that some claims of statistically significantly better performance than IPOP-CMA-ES
(e.g., Miller et al., 2009; Molina et al., 2010) may not be valid because the authors
may have interpreted the remark as a suggestion and reported results as when facing
situation S3.

We became aware of possible confusion between situations S2 and S3 while re-
porting results for the CEC’05 benchmark functions when running experiments with
the C implementation of CMA-ES available from Hansen’s website, http://www.Iri
fr/~hansen/cmaes_inmatlab.html, to implement IPOP-CMA-ES. This C version of
CMA-ES does not use an explicit bound constraint handling mechanism. When run-
ning this code (withoutbound constraint handling) on the CEC’05 benchmark functions,
we noticed that for a majority of the benchmark functions, the best solutions found do
violate the bound constraints even though their global optima are known to be inside
the bounds for 23 of the 25 functions. While it is known that this can happen on other
functions,! we were surprised by the high frequency with which this phenomenon
occurs on the CEC’05 benchmark function set.

1One example is Schwefel’s sine root function (Schwefel, 1981), which has its global optimum outside
the usual feasible search space defined by bound constraints.
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This observation raises the more general and critical issue of validity of published
results that rely on the CEC’05 benchmark set. In fact, the vast majority of published
articles do not explicitly report whether a bound constraint handling mechanism was
used and if they do, many do not describe it. Perhaps more importantly, claims that
an algorithm outperforms IPOP-CMA-ES in a statistically significant way (e.g., Miiller
et al., 2009; Molina et al., 2010) may not be valid because the comparison that supports
those claims may include algorithms that enforce bound constraints in some way (as in
S1 or S2) and algorithms that do not (as in S3).

To show how misleading such a comparison can be, we report experimental results
on the impact of handling bound constraints with IPOP-CMA-ES. We evaluate three
variants of the C version of IPOP-CMA-ES. In the first variant, bound constraints are
never enforced (we refer to this variant as IPOP-CMA-ES-ncb, where ncb stands for
“never clamp bounds”); it simulates situation S3. The second is a variant in which we
introduce a mechanism to enforce bound constraints (ach for “always clamp bounds”;
this variant is referred to as IPOP-CMA-ES-acbh). In particular, we clamp a variable’s
value that is outside the variable’s feasible domain dimension by dimension to the
closest boundary value; that is, if x; < Xmin We set X; = Xmin and if x; > xmax We set x; =
Xmax before evaluating these solutions and continuing with the algorithm execution.
Note that this variant can tackle both situations, S1 and S2: in the S2 case it can be
seen as a simple way to handle bound constraints and to ensure that final solutions are
feasible. Additionally, we have run experiments with a variant that directly addresses
situation S2; in this variant, we let IPOP-CMA-ES search outside the bounds without
restrictions but take care that the final solution reported is the best feasible solution
that has been identified during the search process. The results with this latter version
were very poor and we report them only in the supplementary material to this article.?
The same three variants are tested using a memetic algorithm, MA-LSch-CMA (Molina
etal., 2010), which is a recent memetic algorithm that uses CMA-ES as a local search and
which was reported to perform better than IPOP-CMA-ES at a statistically significant
level.

2 Experiments on Enforcing Bound Constraints

In the first experiment, we followed the protocol described by Suganthan et al. (2005),
that is, we ran IPOP-CMA-ES using its default parameter settings 25 times on each
function and recorded the evolution of the objective function value with respect to the
number of function evaluations used. The maximum number of function evaluations
was 10,000 - D, where D € {10, 30, 50} is the dimensionality of a function. The algorithm
stops when the maximum number of evaluations is reached or the error is lower than
1078, Error values lower than this optimum threshold are considered equal to 1075.

We compare IPOP-CMA-ES-nch and IPOP-CMA-ES-acb in Table 1.2 The two-sided
Wilcoxon matched-pairs signed-rank test at the .05 level of the error of first type was
used to check for statistical differences on each function. Depending on the dimen-
sionality, in 14 to 17 functions IPOP-CMA-ES-ncb obtains final solutions outside the
bounds. In most of the functions for which infeasible solutions are found, all the
25 runs return final solutions that are outside the bounds. We observed statistically

2This version is referred to as kbf for “known best feasible” in the supplementary material.

3The results in Tables 1, 2, and 3 are based on average errors. Additional tables are given in the
supplementary pages to this article; they show the median results and more detailed information such
as the best, 25th percentile, median, 75th percentile, and worst error values for each function.
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Table 1: The comparison between IPOP-CMA-ES-ncb and IPOP-CMA-ES-ach over 25
independent runs for each of the CEC’05 functions except f; and f»5 (these two functions
are excluded as for these only an initialization range is specified). © denotes that all 25
final solutions are outside the bounds. © denotes that some but not all of the 25 final so-
lutions are outside the bounds. Symbols <, &, and > denote whether the performance of
IPOP-CMA-ES-ncb is statistically better, indifferent, or worse than that of IPOP-CMA-
ES-acbh according to a two-sided Wilcoxon matched-pairs signed-rank test at the .05
a-level. The average errors that correspond to a statistically better result are high-
lighted. The numbers in parentheses at the bottom of the table represent the frequency
of <, &, and >, respectively.

fi1 6.44E—01° 1.00E-08 6.36E+00 © 717E—02 149E4+01% >  9.94E—02
fi2 6.77E401 @ 4.07E403  1.38E+03 © 1.19E4+04  7.38E+03° <  4.25E+404
fis 6.78E—01 6.49E—01  2.47E+00 2.63E+00  431E+00 ~  4.44E+00
fra 2.61E+00°© >  1.96E+00 1.28E+01?~  1.26E+01 2.34E+01°¢>  2.28E+401
fis 2.00E402?~  2.15E+02 2.01E+02? >  2.00E+02 2.01E+02° >  2.00E4+02
fi6 9.02E401 ~  9.04E+01 795E+01©>  148E+4+01 1.36E+02° >  1.10E+01
fiz 1.33E+02°®~  1.17E4+02  431E+02° >  252E+02 7.69E+02¢ >  1.91E+02
fis 748E+02° >  B16E+02 8.16E+02° <  9.04E4+02 836E+02° <  9.13E+02
fio 7.75E+02° >  B20E4+02 8.16E+02° <  9.04E4+02 836E+02° <  9.13E+02
f0 7.62E+02° >  B20E4+02 8.16E+02° <  9.04E4+02 836E+02° <  9.15E+02
fa1 1.06E+03% >  5.00E4+02 857E+02° >  5.00E4+02 7.15E4+02¢~  6.64E+02
S 6.38E+02©? <  7.28E+02 598E+02° <  8.10E402  5.00E+02% <  8.19E+402
fo3 1.09E+03? >  B5.86E+02 8.69E4+02? >  5.34E+02 7.27E402°~  6.97E4+02

foa 4.05E+02° >  233E+02 210E402?¢ >  2.00E+02 214E+02? >  2.00E+02

10 dimensions 30 dimensions 50 dimensions

feee nch ach nch acb nch ach
fi 1.00E-08 =~ 1.00E—-08 1.00E—-08 =~ 1.00E—08 1.00E—-08 =~ 1.00E—08
f 1.00E—-08 ~ 1.00E—08 1.00E—-08 =~ 1.00E—08 1.00E—-08 =~ 1.00E—08
15 1.00E-08 ~ 1.00E—08 1.00E-08 ~ 1.00E—08 1.00E-08 ~ 1.00E—08
fa 1.00E-08 =~ 1.00E—08 2.44E+03° ~ 6.58E+02 1.32E+05© > 1.43E+404
f5 1.00E—-08 @ ~ 1.00E—08  2.30E+01 9 > 1.00E—08 791E+402 @ > 7.41E—02
fo 1.00E—-08 =~ 1.00E—08 1.00E—-08 =~ 1.00E—-08 1.00E—-08 =~ 1.00E—08
fs 2.01E4+01 9~  2.00E+01 2.07E+01 @ > 2.04E+01 2.11E+01 @ > 2.09E+01
fo 1.59E-01 =~ 1.59E—-01 1.01E+00 < 1.87E+4-00 1.12E+00 © < 4.36E+00
S0 1.19E-01 =~ 3.18E-01 1.37E4+00 ~ 1.44E400 2.36E4+00 =~ 2.89E+00

> >

< <

(<,~,>):(2,13,8) (<,~,>):(6,8,9) (<,~,>):(6,8,9)
< or >:10/23 (43%) < or > :15/23 (65%) < or > :15/23 (65%)
functions @ or ®: 14/23 functions @ or ©: 16/23 functions @ or ©: 17/23
(61%) (70%) (74%)

significant differences between IPOP-CMA-ES-ncb and IPOP-CMA-ES-ach when the fi-
nal solutions of IPOP-CMA-ES-ncb are outside the bounds. While a priori we expected
that IPOP-CMA-ES-ncb would give worse results than IPOP-CMA-ES-acb because, for
these functions, the optima are known to be inside the bounds, IPOP-CMA-ES-ncb out-
performs IPOP-CMA-ES-acb in six functions (fo, fi2, f1s, f19, f20, and f»; in dimensions 30
and 50). In all these functions except for fy, all solutions obtained by IPOP-CMA-ES-ncb
are outside the bounds.
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Table 2: The comparison between MA-LSch-CMA-ncbh and MA-LSch-CMA-ach over 25
independent runs for each of the CEC’05 functions except f; and f»5 (these two functions
are excluded as for these only an initialization range is specified). For an explanation of
the symbols and their interpretation we refer to the caption of Table 1.

10 dimensions 30 dimensions 50 dimensions

feee nch ach nch ach nch ach

fi 1.00E—08 1.00E—-08 1.00E-08 ~ 1.00E—-08 1.00E-08 =~ 1.00E—08
f 1.00E—-08 1.00E-08 251E-08 =~ 1.00E—-08 8.99E—01 =~ 3.06E—02
f3 3.68E+02 1.00E-08 4.41E+03°®~  2.75E+04 8.11E+04° > 3.21E+04
fa 1.00E—08 5.54E—03 1.28E+02 < 3.02E4+02  5.38E+03 © > 3.23E+03
f5 7.78E6401 @ 6.75E—07  6.12E+02 ¢ < 1.26E+03  2.08E+03 ? < 2.69E+03
fo 1.00E—08 3.19E-01 2.31E+02 © > 1.12E+00 5.58E+02° > 4.10E4-00
fs 2.00E+01 @ 2.00E+01 2.00E+01 2~  2.00E+01 2.00E+01 ¢ ~ 2.00E+01
fo 1.00E—08 1.00E—08 1.00E—-08 =~ 1.00E—08 1.00E—-08 =~ 1.00E—08

fo  3.14E400

fa 453E400°2
fo  295E402°
fis  5.03E—01

fis  2.87E400°
fis  227B402°
fie  9.45E401°
fir  1.04E402

fis  B20B402°
fio  8.17E4+02°
fo  7.69E4+02°©
fu B57E402°

2.67E400  2.00E4+01°®~  225E+01 4.80E4+01°~  5.01E+01
243E4+00 220E+01°~  215E+01 B3.95E+01° <  4.13E+01
1.14E+02  7.52E+02% <  1.67E+03  456E+03° <  1.39E404
545E—-01  2.04E4+00 =~  2.03E4+00 3.67E4+00 > 3.15E+4-00
2.25E4+00 1.32E4+01¢ >  1.25E+01 230E4+01¢>  2.22E+01
224E+02  2.59E+02° <  3.00E+02 2.29E+02° <  3.72E+02
9.18E+01  1.06E+02°~  1.26E+02 591E+01°>  6.90E+01
1.01E+02  1.66E+02°~  1.83E+02 141E+029=~  1.47E+402
8.84E4+02  8.22E+02? <  8.98E402 847E4+02% <  9.41E+02
8.78E+02  8.22E+02° <  9.01E+02 848E+02° <  9.38E+02
8.63E+02  8.28E4+02° <  896E+02 848E+02° <  9.28E+02
794E+02  8.47E4+02¢ >  B5.12E+02 7.23E+4+02°>  5.00E402
f 7.63E4+02 © 753E+02 534E4+02° <  8.80E+02 5.00E+02° <  9.14E+02
fo3 8.74E+402 8.88E+02  8.40E4+02¢ >  5.34E+02 7.26E4+02? >  5.39E+02
foa 3.94E+02° >  228E+02 2.14E+02¢ >  2.00E4+02 221E4+02¢ >  2.00E+02

YV R RXAXALZRRAV IRV ZR2RXV IV R

(<,~,>):(1,16,6) (<,~,>):(8,10,5) (<,~,>):(8,6,9)
< or >:7/23(30%) < or >:13/23 (57%) < or >:17/23 (74%)
functions @ or ©: 13/23 functions @ or ©: 18/23 functions @ or ©: 19/23
(57%) (79%) (83%)

Table 2 shows the performance of ncb and acb versions for MA-LSch-CMA
(MA-LSch-CMA is run using default parameter settings). Again, version ncb obtains
many final solutions outside the bounds: this is the case on 18 and 19 functions for 30
and 50 dimensions, respectively. Taking the 50-dimensional benchmark functions as an
example, all functions for which MA-LSch-CMA-ncb outperforms MA-LSch-CMA-ach
are cases in which all solutions obtained by MA-LSch-CMA-ncb are outside the bounds

(fs, f11, f12, fi5, fis, f19, foo, and foo).

3 The Impact of Bound Handling on Algorithm Comparisons

We now focus on the comparison of the average errors between PS-CMA-ES (Miiller
et al., 2009), MA-LSch-CMA (Molina et al., 2010), IPOP-CMA-ES-ncb, and IPOP-CMA-
ES-05. IPOP-CMA-ES-05 uses the MATLAB version of CMA-ES and was used

Evolutionary Computation =~ Volume 22, Number 2 355



T. Liao, D. Molina, M. A. Montes de Oca, and T. Sttitzle

to generate the results for the CEC’05 benchmark functions presented in Auger and
Hansen (2005); it handles bound constraints by an approach based on penalty func-
tions, which is described in Hansen et al. (2009b). PS-CMA-ES and MA-LSch-CMA are
examples of algorithms that have been reported to outperform IPOP-CMA-ES-05; they
use CMA-ES as a local search operator inside a particle swarm optimization algorithm
and a real-coded steady-state genetic algorithm, respectively.

Table 3 shows that PS-CMA-ES, MA-LSch-CMA, but also IPOP-CMA-ES-ncb, are
superior to IPOP-CMA-ES-05 in 30 and 50 dimensions in the sense that they find more
often better average errors than IPOP-CMA-ES-05. However, there is an interesting pat-
tern, whether IPOP-CMA-ES-ncb has the final solutions outside the bounds or not. Let
us focus on the cases where IPOP-CMA-ES-ncb obtains all solutions outside the bounds
and statistically significantly improves over IPOP-CMA-ES-05 (as indicated by the “<”
symbol in Table 3). In many such cases, PS-CMA-ES does obtain the same average errors
(see, e.g., functions fig—f>0 and fo4 for both 30 and 50 dimensions, and function f», for 50
dimensions), or very similar values (see, e.g., functions f,; and f»3 for 50 dimensions);
such cases are underlined in Table 3. A similar pattern arises for the published results of
the MA-LSch-CMA algorithm. Interestingly, MA-LSch-CMA checks bound constraints
only for the solutions generated by the steady-state GA part, but not for solutions re-
turned by the CMA-ES local search. After rerunning the publicly available version of
MA-LSch-CMA, we found that it returns, for several functions, infeasible final solutions
(as indicated by the symbols © and © in Table 3). This knowledge, together with the
similar pattern of the average errors, puts at least serious doubts on the fact of whether
the average errors reported in Miiller et al. (2009) correspond all to solutions that are
inside the bounds. This analysis shows that claims of superiority of one algorithm over
another may in fact not be valid if the algorithms confound situations S2 and S3.

4 Conclusions

In this note, we first show that IPOP-CMA-ES and MA-LSch-CMA surprisingly often
return infeasible solutions for the CEC’05 benchmark functions if the situations S2
and S3 are confounded. In many cases, these infeasible solutions are better than the
best feasible solutions found even though it is known that the optimal solutions are
within the bounds. This issue points toward a significant impact on CEC’05 benchmark
functions for what concerns algorithm comparisons. In particular, claims about superior
performance of one algorithm over another might be erroneous as infeasible solutions
with respect to bound constraints may have been reported.

It is interesting to examine whether misunderstandings may potentially arise in
other benchmark sets such as those proposed by Tang et al. (2007); Hansen et al. (2009a);
and Herrera et al. (2010). For the CEC’08 benchmark set (Tang et al., 2007), formulations
analogous to the description in the CEC’05 benchmark set are used, thus giving a chance
of misinterpretations analogous to those indicated in the introduction. In the BBOB
benchmark definition, it is stated that all functions are defined and can be evaluated at
any point, but that the search domain is [-5, 5], where D is the dimension of the search
space. Since the notion of search domain leaves room for interpretation, it may remain
unclear whether situation S2 or S3 is intended. We were confirmed that for BBOB the
setting S3 is intended (Hansen, 2013). In the SOCO benchmark set (Herrera et al., 2010),
each function definition restricts the feasible interval. This clearly excludes situation S3
but leaves some doubt as to whether situation S1 or S2 is intended (the latter is actually
the case).
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To avoid possible doubts about the feasibility of the solutions, we strongly rec-
ommend that in the future every paper that reports results using the IEEE CEC’05
benchmark function suite, or any other benchmark suite, should (1) explicitly describe
the bound handling mechanism used (if any), (2) explicitly check the feasibility of the
final solutions,* and (3) present the final solutions at least in supplementary material
for the article to avoid misinterpretation. Regarding benchmarking, we recommend
that the designers of benchmark sets clearly state for which of the situations S1, S2, or
S3 the benchmark set is designed to be used. In addition, if code is provided, it should
support proper evaluation by returning null or infinity as values if generated solutions
violate bound constraints in situation S1 or by providing tools for checking solution
feasibility, and computing statistics in the case of situation S2.

All the solutions generated by the algorithms discussed in this article are available
at http://iridia.ulb.ac.be/supp/IridiaSupp2011-013.
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