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Abstract—Most of the algorithms for mining quantitative
association rules focus on positive dependencies without paying
particular attention to negative dependencies. The latter may be
worth taking into account, however, as they relate the presence
of certain items to the absence of others. The algorithms used to
extract such rules usually consider only one evaluation criterion
in measuring the quality of generated rules. Recently, some
researchers have framed the process of extracting association
rules as a multiobjective problem, allowing us to jointly optimize
several measures that can present different degrees of trade-
off depending on the dataset used. In this paper, we propose
MOPNAR, a new multiobjective evolutionary algorithm, in order
to mine a reduced set of positive and negative quantitative associ-
ation rules with low computational cost. To accomplish this, our
proposal extends a recent multiobjective evolutionary algorithm
based on decomposition to perform an evolutionary learning of
the intervals of the attributes and a condition selection for each
rule, while introducing an external population and a restarting
process to store all the nondominated rules found and to improve
the diversity of the rule set obtained. Moreover, this proposal
maximizes three objectives—comprehensibility, interestingness,
and performance—in order to obtain rules that are interesting,
easy to understand, and provide good coverage of the dataset. The
effectiveness of the proposed approach is validated over several
real-world datasets.

Index Terms—Data mining, MOEA/D-DE, multiobjective evo-
lutionary algorithms, negative association rules, quantitative
association rules.

1. INTRODUCTION

N THE LAST decade, the digital revolution has provided
relatively inexpensive and accessible means of collecting
and storing data. This unlimited growth of data has led to a
situation in which the knowledge extraction process is more

Manuscript received November 13, 2012; revised April 8, 2013 and July 26,
2013; accepted October 2, 2013. Date of publication October 9, 2013; date
of current version January 27, 2014. This work was supported in part by the
Spanish Ministry of Education and Science under Grant TIN2011-28488, in
part by the CEI program of the Spanish Ministry of Science and Innovation
under Grant PYR-2012-13 CEI BioTIC GENIL (CEB09-0010), and in part
by the Andalusian Government under Grant P10-TIC-6858. This paper was
recommended by Associate Editor C. A. Coello Coello.

D. Martin and A. Rosete are with the Department of Artificial Intelligence
and Infrastructure of Informatics Systems, Higher Polytechnic Institute J.A
Echeverria, La Habana 19390, Cuba (e-mail: dmartin@ceis.cujae.edu.cu;
rosete @ceis.cujae.edu.cu).

J. Alcala-Fdez and F. Herrera are with the Department of Computer Science
and Artificial Intelligence, CITIC-UGR, University of Granada, Granada
18071, Spain. F. Herrera is also with the Faculty of Computing and Informa-
tion Technology - North Jeddah, King Abdulaziz University, 21589, Jeddah,
Saudi Arabia (e-mail: jalcala@decsai.ugr.es; herrera@decsai.ugr.es).

Digital Object Identifier 10.1109/TEVC.2013.2285016

difficult and, in most cases, leads to problems of scalability
and/or complexity [1]. Association discovery is one of the
most common data mining (DM) techniques used to extract
interesting knowledge from large datasets [2]. Association
rules are used to identify and represent dependencies between
items in a dataset [3]. These are representations of the type
X — Y, in which X and Y are item sets and X NY = @.
Therefore, if the items in X exist in an example then it is
highly probable that the items in Y are also in the example,
and X and Y should not have items in common [4], [5]. A high
number of previous studies on mining association rules have
focused on datasets with discrete or binary values; however,
in real-world applications, data usually consists of quantitative
values. Because of this, different studies have been presented
for mining quantitative association rules (QARs) from datasets
with quantitative values [6], [7].

Most of these algorithms usually extract positive QARs
without paying particular attention to negative QARs. Nev-
ertheless, rules such as X — —Y may be worth taking into
account, as they relate the presence of X to the absence of
Y [8]. Negative association rules consider the same sets of
items as positive association rules but, in addition, may also
include negated items within the antecedent (—X — Y) or the
consequent (X — —Y) or both of them (=X — —Y). In recent
years, some researchers have proposed methods for mining
positive and negative association rules from quantitative data
[9]-[12]. The researchers deal with two key problems in
negative association rule mining: how to effectively search for
interesting itemsets and how to effectively identify interesting
negative association rules.

Many evolutionary algorithms (EAs) [13], have been pro-
posed in the literature for extracting a set of QARs from
datasets [14]-[16]. EAs, particularly genetic algorithms (GAs)
[17], are considered to be one of the most successful search
techniques for complex problems and have proved to be
an important technique for learning and knowledge extrac-
tion. These algorithms usually consider only one evalua-
tion criterion in measuring the quality of the generated
rules. Recently, some researchers have framed the extrac-
tion of association rules as a multiobjective (rather than a
single objective) problem, taking into account several ob-
jectives in the process of extracting association rules [18],
[19]. This approach removes some of the limitations of the
mono-objective algorithms and allows us to jointly optimize
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several measures in order to mine a set of rules that are
interesting, easy to understand, and with good coverage of
the dataset.

Multiobjective evolutionary algorithms (MOEAs) [20], [21]
provide an interesting method with which to approach prob-
lems of a multiobjective nature, as they generate a family
of equally valid solutions, in which each solution tends to
satisfy a criterion to a greater extent than another. For this
reason, some MOEAs have been applied to mine QARs (by
considering several measures as objectives) [22], [23] where
each solution in the Pareto front represents a QAR with
different degree of tradeoff between the different measures.

Recent MOEAs are based on decomposition (MOEA/D [24]
and MOEA/D-DE [25]), which explicitly decomposes the mul-
tiobjective optimization problem into N scalar optimization
subproblems, and also optimizes them simultaneously. These
approaches have shown some advantages over other MOEAs,
presenting lower computational complexity and a better per-
formance in three-objective continuous test instances. Note
MOEA/D [24] won the CEC2009 competition. These reasons
have given rise to a growing interest in these approaches within
the MOEA research community.

In this paper, we propose MOPNAR, a new MOEA, in
order to mine with a low computational cost a reduced set
of positive and negative QARs (PNQARSs) that are interesting,
easy to understand, and with a good trade-off between the
number of rules, support, and coverage of the dataset. To
accomplish this, our proposal extends the recent MOEA based
on decomposition MOEA/D-DE [25] in order to perform
a condition selection and an evolutionary learning of the
intervals of the attributes for each rule, maximizing three ob-
jectives: comprehensibility, interestingness, and performance.
Moreover, this proposal introduces a restarting process and an
external population (EP) to the evolutionary model in order to
promote diversity in the population, store all the nondominated
rules found, and improve the coverage of the datasets.

In order to assess the performance of the proposed approach,
we have presented an experimental study using nine real-world
datasets, with a number of variables ranging from 4 to 91
and a number of examples ranging from 40 to 22784. We
have developed the following studies. First, we have analyzed
the performance of our method with another evolutionary
approach for mining PNQARSs proposed by Alatas et al. [9]
(which will be called Alatasetal in this paper). Second, we
have compared the performance of our approach with three
mono-objective evolutionary approaches (GENAR [14], EAR-
MGA [15] and GAR [26]) and three MOEAs (MODENAR
[18], MOEA Ghosh [19], and ARMMGA [23]) for mining
QARs. Third, we have compared the results obtained from
the comparison with two other classical approaches for mining
association rules (Apriori [6], [27], and Eclat [28]) and another
classical MOEA (NSGA-II [29]). Fourth, we have studied the
scalability of the proposed approach. Finally, we analyze some
of the rules obtained by our proposal.

This paper is arranged as follows. Section II introduces
some basic definitions of PNQARs and some quality mea-
sures. Section III details the evolutionary learning components
proposed to mine a reduced set of high quality PNQARs.
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Fig. 1. Example of a positive and negative item.

Section IV shows and discusses the results that are obtained
with nine real-world datasets. Finally, in Section V, some
concluding remarks are made.

II. PRELIMINARY: POSITIVE AND NEGATIVE
QUANTITATIVE ASSOCIATION RULES

Many previous studies for mining association rules have
focused on datasets with binary or discrete values; however,
the data in real-world applications usually consists of quantita-
tive values. The association rules obtained from datasets with
quantitative values are known as QARs [6], where each item
is a pair attribute-interval. For instance, a positive QAR could
be Age € [30, 52] and Salary € [3000, 3500] — NumCars €
[3,4]. The use of QARs to solver real-world problems is
a widespread practice in a wide range of sciences, such as
biology [30], health [31], etc. The classical algorithms can
only be used directly in the discovery of positive QARs with
difficulty, because the numerical attributes typically contain
many distinct values. A commonly used method is to partition
the domains, introducing new attributes with intervals. Thus,
the support for a crisp value is likely to be low, while the
support for intervals is much higher. However, the given
intervals may have a critical influence on the final mining
results and the task partition is a critical problem in the
extraction of QARs because the information is not classified.
For this reason, some approaches have also introduced a
learning of the intervals to handle continuous domains in the
extraction of QARs [9], [14], [15], [18], [19], [23], [26].

Most of these algorithms have only focused on positive
rules, i.e., only those itemsets appearing frequently together
will be discovered. However, the negative association rules
may also be interesting as they offer information that could be
used to support decisions for applications. Negative association
rules [8] consider the same sets of items as positive association
rules but may also include negated items within the antecedent
(=X — Y) or the consequent (X — —Y) or both (=X — —Y).
For instance, a simple example of a negative QAR is Weight
€ — [10,25] and Height € [90, 150] — Age € — [5, 25].

Notice that, positive association rules only include positive
items whereas negative association rules include at least one
negative item. Fig. 1 shows the domain of the positive item
Height € [90, 150] and the negative item Age € —[5, 25].

Support and confidence are the most common measures
used to assess QARs, both of them based on the support of

an itemset. The support of the itemset [ is defined as
|{ee D| I €e}|

SUP(I) = D 1
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where the numerator is the number of examples in the dataset
D covered by the itemset I, and | D | is the number of
examples in the dataset. Thus, the support and confidence for
arule X — Y are defined as

support(X — Y) = SUP(XY) 2)

SUP(XY)
SUP(X)

The classic techniques for mining association rules attempt
to discover rules whose support and confidence are greater
than the user-defined threshold’s minimum support (minSup)
and minimum confidence (minConf). However, several authors
have noted some drawbacks of this framework that lead it to
find many misleading rules [8], [32], [33]. On one hand, the
confidence measure does not detect statistical independence
or negative dependence between items, because it does not
take into account the consequent support. On the other hand,
itemsets with very high support are a source of misleading
rules because they exist in most of the examples and therefore
any itemset may seem to be a good predictor of the presence
of the high-support itemset.

In recent years, several researchers have proposed other
measures for the selection and ranking of examples according
to their potential interest to the user [34], [35]. We briefly
describe some of those that have been used in this paper.

The conviction [33] measure analyzes the dependence be-
tween X and —Y, where —Y means the absence of Y. Its
domain is [0,00), where values less than one represent negative
dependence, a value of one represents independence, and
values higher than one represent positive dependence. The
main drawbacks of this measure are that it is difficult to
define a conviction threshold because its range is not bounded,
and this measure does not decrease when the support of the
antecedent increases and the rest of the parameters remain the
same. Conviction for a rule X — Y is defined as

SUP(X)SUP(—Y)

conviction(X — Y) = SUP(X=T) (@)

confidence(X — Y) = 3)

Notice that this measure obtains an undefined value (NAN)
when SUP(Y)=1. In this case, we will consider the conviction
value to be one, because it denotes independence. The lift [36]
measure represents the ratio between the confidence of the rule
and the expected confidence of the rule. As with conviction,
its domain is [0,00), where values less than one imply negative
dependence, one implies independence, and values higher than
one imply positive dependence. The main drawback of this
measure is that it is difficult to define a lift threshold because
its range is not bounded. Lift for a rule X — Y is defined as

SUP(XY)

WX = ¥) = o ) SUPY)”

&)

The certainty factor (CF) [37] is interpreted as a measure
of variation of the probability that Y is in a transaction when
we consider only those transactions where X is present. Its
domain is [-1,1], where values less than zero represent negative
dependence, zero represents independence, and values higher
than zero represent positive dependence. This measure for a

rule X — Y is defined in three ways depending on whether
the confidence is less than, greater or equal to SUP(Y)
if confidence(X — Y) > SUP(Y)

confidence(X — Y) — SUP(Y)

1—SUPY) ©
if confidence(X — Y) < SUP(Y)
confidence(X — Y) — SUP(Y) 7

SUP(Y)
Otherwise is 0.

The netconf [38] measure evaluates the rule based on the
support of the rule and its antecedent and consequent support.
Netconf obtains values in [-1,1], where positive values repre-
sent positive dependence, negative values represent negative
dependence, and zero represents independence. Netconf for a
rule X — Y is defined as

netconf(X — Y) = SUP(XY) — SUP(X)SUP(Y)' @)
SUP(X)(1 — SUP(X))

Notice that if this measure obtains NAN we will consider the
nefconf value to be zero, because it denotes independence.
Finally, the yule’sQ [39] measure represents the correlation
between two possibly related dichotomous events. This mea-
sure takes on values in [-1,1] where one implies a perfect
positive correlation, —1 implies a perfect negative correlation,
and zero implies that there is no correlation. This measure
satisfies almost all the properties for interesting measures [34],
[35] that have been proposed in the literature. Notice that as
netconf if this measure obtains NAN we will consider there
to be no correlation. Yule’s Q for a rule X — Y is defined as

SUP(XY)SUP(=X=Y) — SUP(X—Y)SUP(=XY)
SUP(XY)SUP(=X—Y) + SUP(X=Y)SUP(—=XY)

€))

III. NEW MULTIOBJECTIVE EVOLUTIONARY ALGORITHM
FOR MINING POSITIVE AND NEGATIVE QUANTITATIVE
ASSOCIATION RULES: MOPNAR

This section describes our proposal for obtaining a reduced
set of PNQARs with a good trade-off between the number
of rules, support and coverage, considering three objectives:
comprehensibility, interestingness, and performance. This pro-
posal extends the MOEA/D-DE algorithm [25] in order to
perform an evolutionary learning of the rules and introduces
two new components to its evolutionary model: an EP and a
restarting process. In the following, we will explain in detail
all their characteristics (see Section III-A-III-E) and present a
flowchart of the algorithm (see Section III-F).

A. EP and restarting process within MOEA/D-DE

We extend the MOEA based on decomposition MOEA/D-
DE [25], which decomposes the multiobjective optimization
problem into N scalar optimization subproblems and uses an
EA to optimize these subproblems simultaneously. In order to
store all the nondominated rules found, provoke diversity in the
population, and improve the coverage of the datasets, we have
introduced an EP and a restarting process to the evolutionary
model of this MOEA. The EP will keep all the nondominated
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rules found and will be updated with the newly generated
offspring for each solution of the population. The redundant
nondominated rules will be removed from EP in order to avoid
the overlapping rules. A rule is considered redundant if the
intervals of all its variables are contained within the intervals
of the variables of another rule. The size of the EP is not
limited, which allows us to:

1) obtain a larger number of rules of the Pareto front
regardless of the size of the population;

2) reduce the size of the population, following a dataset-
independent approach.

However, the EP will usually contain a reduced set of rules
because the non-dominance criteria allows us to maintain only
the rules of the Pareto front and that the redundant rules are
removed.

To move away from local optima and provoke diversity in
the population, the restarting process will be applied when the
number of new individuals of the population in one generation
is less than a% of the size of the current population (with
o determined by the user, usually at 5%). In this case, the
examples covered by the rules in the EP are marked and the
process of initialization of the population is again applied in
order to restart the population from examples uncovered by the
rules in the EP (see Section III-C). Moreover, the EP will be
updated with the new population following the non-dominance
criteria and the redundant rules will be removed. This process
allows us to perform a good exploration of the search spaces
and to improve the coverage of the dataset.

B. Objectives

Three objectives are maximized for this problem: inter-
estingness, comprehensibility, and performance. Performance
represents the attempt to improve the coverage of the dataset
in order to extract more interesting knowledge from it. Per-
formance is the product of support and CF (see Section II),
which allows us to mine a set of accurate rules with a good
trade-off between local and general rules.

We are interested only in very strong rules [32], which
indicate a strong dependence between items and avoid the
problem of high-support itemsets (see Section II). Notice
that negative association rules allow us to represent negative
dependence, thus we are interested in rules that have CF > 0.
Thus, a rule X — Y must satisfy:

1) CFIX - Y)> 0

2) support(X — Y) > minSup;

3) —(support(X — Y) > (1 - minSup))
where minSup is a minimum coverage of the dataset that
the rules have to fulfill;, we use zero for this value. This
measure can obtain values in the interval [0, 1]. A rule with
a performance value near to one may be more useful to the
user.

Interestingness is a means by which we can measure how
interesting the rule may be, allowing us to extract only those
rules that may be of interest to the users. Here, we have used
the well-known interestingness measure lift (see Section II).
This measure can detect negative dependence, independence
or positive dependence between items and its range is not
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Fig. 2. Example of a chromosome.

bounded, allowing us to better denote the difference between
the rules for this objective and to reduce the number of draws.

Finally, comprehensibility tries to quantify how easy it
is to understand the rule [40]. The rules generated may
involve a large number of attributes, making them difficult
to understand. The user will be highly unlikely to use the
rules generated if they are not understood. For the purposes
of this paper, we measure the comprehensibility of a rule
X — Y according to the number of attributes it contains.
This is defined as

comprehensibility(X — Y) =1/Attrx_y (10)

where Attrx_,y is the number of attributes involved in the rule.

C. Coding scheme and initial gene pool

A chromosome is a gene vector, representing the attributes
and intervals of the rule. For the purpose of this paper, we use
a positional encoding in which the i-th attribute is encoded
in the i-th gene used. Notice that the same attribute cannot
appear more than once in a rule. Each gene consists of four
parts, described below, in order to combine the learning of the
intervals with the condition selection.

1) ac indicates whether a gene is involved in the rule. If this
part is 1 or O, this attribute is part of the consequent or
antecedent of the rule, respectively, whereas if it is —1,
this attribute is not involved in the rule. The genes that
have 1 in their first parts will make up the consequent
of the rule, while genes that have 0 will make up the
antecedent.

2) pn indicates whether an interval is positive or negative.
When this part is 1, the interval is positive and when this
part is O the interval is negated in the rule.

3) Ib represents the lower bound of the interval of the
attribute.

4) ub represents the upper bound of the interval of the
attribute.

Notice that if the attribute is nominal, /b and ub will be
equal, representing only one value of the nominal attribute.
Thus, a chromosome C7 is coded in the following way, where
n is the number of attributes in the dataset

Gene; = (ac;, pn;, lb;,ub;), i=1,...,n
Cr =Gene Gene, ...Gene,.

For instance, let us consider a simple dataset with four
attributes X, X,, X3 and X4. Let us suppose that we select
at random the attributes X and X3 for the antecedent and X,
for the consequent of the rule. Based on this definition, Fig. 2
shows the chromosome, which represents the rule X; € [5, 25]
and X3 € —[90, 150] — X4 € [35, 60].
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Fig. 3. Simple example of the crossover operator.

To prevent the intervals from increasing to such an extent
that they cover the entirety of the domain, we have defined
amplitude. This is the maximum size that the interval of a
given attribute can attain. The amplitude of an attribute i is
therefore defined as

amplitude; = (Max; — Min;)/y (11

where y is a value given by the system expert that determines
the tradeoff between the generalization and specificity of the
rules, and Min; and Max; are the minimum and maximum
values of the domain of attribute i, respectively. Notice that
if the interval is negative, amplitude represents the minimum
size that the interval of an attribute can attain.

The initial population will be composed of a set of rules
containing only one attribute in the consequent and a good
coverage of the dataset. In order to do this, we first make
a random selection of the attributes that will form part of
the antecedent and consequent of the rule. An example is
then selected at random and the interval of each attribute that
has a size equal to 50% of the amplitude of each attribute
is generated. The values of the selected example are placed
in the center of each interval. If some bound of the intervals
exceeds the domain of the attribute this will be replaced by the
bound of the domain. After that, we select at random, whether
the intervals will be positive or negative. Finally, the examples
covered by this rule are marked from the dataset. This process
is repeated for unmarked examples until the initial population
is completed. Notice that, if all the examples are marked and
the initial population is not completed, then all the examples
will be unmarked again and the process will be repeated until
the initial population is completed. The EP is initialized with
the nondominated rules of the initial population.

D. Genetic operators

By interchanging the genes of the parents at random, the
crossover operator generates two offspring (exploration). An
example of how this operator works is given in Fig. 3.

The mutation operator consists of modifying, at random, the
four parts (ac, pn, Ib and ub) of a gene selected randomly. This
operator selects at random one of the bounds of the interval
and increases or decreases its value randomly. We have to be
particularly careful not to surpass the fixed value of amplitude.
In that sense, the way that we modify the interval is similar to
that calculated in the initialization process. The value for ac
and pn is randomly selected within the set {-1,0,1} and {0,1}
respectively.

The repairing operator is used to change those rules that
either have more than one attribute in the consequent or do not
have an antecedent or consequent. If the consequent contains
more than one attribute, one of them is selected at random to
be the consequent and the remaining attributes are passed to
the antecedent. If there is no attribute in the antecedent and/or

consequent these are selected at random from the attributes
that are not involved.

Finally, the repairing operator decreases the sizes of the
intervals until the number of examples covered is smaller than
that covered by the original intervals, in order to obtain simpler
rules. Alternatively, if the interval is negated then the interval
is increased, reducing the domain that it covers.

Notice that we have used common genetic operators
that work well for mining PNQARs instead of the genetic
operators of MOEA/D-DE for multiobjective optimization
problems.

E. Evolutionary multiobjective model MOEA/D-DE

With the previous modifications, the evolutionary model will
be as follows. First, the evolutionary model of MOEA/D-DE
generates a weight vector (1) for each subproblem, which
are used to calculate the value of each subproblem for the
decomposition approach (g). Then, a neighborhood (B) is
selected for each weight vector, where the T closest weight
vectors to a weight vector represent its neighborhood. Then,
the algorithm generates an initial population, initializes the
reference point (z) with the best values found so far for each
objective, and initializes the EP with the nondominated rules
of the initial population. Then, two offspring are generated
by crossover, mutation and repairing from a solution of
the population and another is selected at random from its
neighborhood or from the population with a § probability (&
is defined by the user). These offspring are used to update
the reference points and replace some of the solutions of the
current population with worse values for the decomposition
approach. Notice that the maximal number of solutions re-
placed by an offspring solution in MOEA/D-DE is bound by
n,, which should be set to be much smaller than 7. These
steps are repeated for each solution in the population and then
EP is updated. Finally, the restarting process is applied at the
end of each generation when the number of new subproblems
in the population is less than a%. This process is iterated
until a stopping condition is satisfied (for more information,
see [25]).

There are several approaches to converting the multiobjec-
tive optimization problem into a number of scalar optimiza-
tion problems. In [24], the authors presented three different
decomposition approaches and recommended the use of the
Tchebycheff approach [41]. In this paper we have also used
the Tchebycheff approach, which minimizes the distance be-
tween the objective values of the solutions and the reference
points.

E. Flowchart of the algorithm

According to the above description, the proposed algorithm
for mining PNQARs can be summarized in the following
flowchart.

Input: 1) N population size;
2) nTrials number of evaluations;
3) m number of objectives;
4) P, probability of mutation;
5) Al .AN aset of N weight vectors;
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6) T the number of weight vectors in the neighbor-
hood of each weight vector;

7) § the probability that parent solutions are selected
from the neighborhood;

8) 7, the maximal number of solutions replaced by
each child solution;

9) y factor of amplitude for each attribute of the
dataset;

10) « difference threshold.

Output:  EP

Step 1: Initialize.

a) Compute the Euclidean distances between any two
weight vectors and then work out the 7 closest
weight vectors to each weight vector. For each i =
1, veey N set B,‘ = {ii,
ir} where A, ... A" are the T closest weight vectors
to Al

b) Generate the initial population with N chromo-
somes.

c) Evaluate the initial population.

d) Initialize z = (z1,...,2s) by setting z; =
max <<y fi(x'), j=1,...,m.

e) Initialize the EP.

Update. For each i =1, ..., N do the following.

a) Uniformly randomly generate a number rand from
[0,1]. Then set

|

b) Set r; = i and randomly select r, from P. The
solutions x" and x™? are crossed, generating two
offspring g: y; and y,. Next, the mutation and re-
pairing operators are applied for the two offspring.

c) Evaluate the new individuals. For each y;, k €
{1, 2}.

i) Update of z: For each j = 1,..
fi(i), then set z; = fi(yi).

ii) Update solutions: Set ¢ = 0 and then do the
following.

Step 2:

B(i)
{1,..., N}

if rand < §
otherwise.

am, if z; <

A) If ¢ == 5, or P is empty go to Step 3.
Otherwise randomly pick an index [ from
P.
B) If g(yi|Al, 2) < g(x!|A!, 2), then x' = y; and
c=c+1
C) Remove / from P and go to a).
Step 3: Update of EP: remove from EP all the vectors domi-
nated by i, i = 1, ..., N, then add i to EP if no vectors
in EP dominate it.
Remove redundance from the EP.
If the difference between the current population and
previous population is less than «%, restart the pop-
ulation.
If the maximum number of evaluations is not reached,
go to Step 2.
Remove redundance from the EP.
The EP is returned.

Step 4:
Step 5:
Step 6:

Step 7:
Step 8:
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IV. EXPERIMENTAL ANALYSIS

Several experiments have been carried out in this paper to
analyze the! performance of our proposal. In order to present
them, this? section is organized as follows.

1) In Section IV-A, we describe the real-world datasets that
are used in these experiments.

2) In Section IV-B, we introduce a brief description of
the algorithms considered for comparison and we show
the configuration of the algorithms (determining all the
parameters used).

3) In Section IV-C, we compare our approach with the algo-
rithm Alatasetal [9] because this evolutionary algorithm
can mine the PNQARs.

4) In Section IV-D, we compare the performance of our
approach with three mono-objective evolutionary ap-
proaches (EARMGA [15], GAR [26] and GENAR [14])
and three MOEAs (ARMMGA [23], MODENAR [18]
and MOEA Ghosh [19]) for mining positive QARs.

5) In Section IV-E, we compare our approach with two
classical positive association rules extraction algorithms
(Apriori [6], [27] and Eclat [28]) and another classical
MOEA (NSGA-II [29]).

6) In Section IV-F, we analyze the scalability of the pro-
posed approach.

7) In Section IV-G, we study some of the rules obtained by
our proposal.

A. Datasets

In order to analyze the performance of the proposed ap-
proach, we have considered nine real-world datasets. Table I
summarizes the main characteristics of the nine datasets,
which are available in the repository KEEL-dataset [42]
from which they can be downloaded (Available at ), where
Attributes(R/I/N) is the number of (Real/Integer/Nominal)
attributes in the data and Examples is the number of examples.
To develop the different experiments, we consider the average
results of five runs for each dataset.

B. Algorithms Considered for Comparison and Set Up

In these experiments, we compare the proposed approach
with ten other algorithms, which are available from the KEEL
software tool [43]. A brief description of these algorithms
follows.

1) Genetic algorithm for automated mining of both posi-
tive and negative quantitative association rules (Alatase-
tal) [9]: This algorithm designs a GA to simultaneously
search for intervals of quantitative attributes and to dis-
cover the positive and negative QARSs that these intervals

'This database was designed on the basis of data provided by
U.S. Census Bureau [http://www.census.gov] (under Lookup Access
[http://www.census.gov/cdrom/lookup]: Summary Tape File 1).

2This study was performed at the 2nd Department of Medicine, 1st Faculty
of Medicine, Charles University and Charles University Hospital, under the
supervision of Prof. F. Boudk with the collaboration of M. Tomeckov and
Assoc. Prof. J. Bultas. The data were transferred to electronic form by
the European Centre of Medical Informatics, Statistics and Epidemiology,
Charles University and Academy of Sciences. The data resource is on the
web page http://euromise.vse.cz/challenge2004. At present, the data analysis
is supported by a grant from the Ministry of Education CR Nr LN 00B 107.
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TABLE I
DATASETS CONSIDERED FOR THE EXPERIMENTAL STUDY

Names Attributes(R/I/N)  Ezamples
Bolts (bol) 8 (2/6/0) 40
S. Flare (fla) 12 (0/0/12) 1066
House_16H (hh)' 17 (10/7/0) 22784
Movement Libras (mov) 91 (90/0/1) 360
Pollution (pol) 16 (16/0/0) 60
Quake (qua) 4 (3/1/0) 2178
Segment (seg) 20 (19/1/0) 2310
Stock Price (sto) 10 (10/0/0) 950
Stulong (stu)? 5 (5/0/0) 1419

2)

3)

4)

5)

conform to in a single run. The chromosomes represent
rules, in which each gene has four parts. The first part
represents the antecedent or consequent of the rule, the
second part represents the positive or negative ARs, and
the third and fourth part represent the lower and upper
bound of the item interval, respectively. The proposed
GA performs a dataset-independent approach that does
not rely upon the minSup and minConf thresholds.
Evolutionary association rules mining with genetic algo-
rithm (EARMGA) [15]: This algorithm uses a GA, which
does not require a user-specified threshold for minSup, to
identify QARs. Each chromosome encodes a generalized
k-rule, where k indicates the desired length. The most
interesting rules are returned according to the interest-
ingness measure defined by the fitness function, which is
based on the support of the rule and its antecedent and
consequent support.

Genetic association rules (GENAR) [14]: This algorithm
mines association rules in numeric datasets by using
a GA. Each chromosome encodes an association rule,
containing maximum and minimum intervals of each
numeric attribute. The length of the rules is always
fixed to the number of attributes, only the last attribute
forms the consequent. The objective function considers
the number of records covered by the rule and penalises
those which have already covered the same records in the
dataset.

Genetic association rules (GAR) [26]: This algorithm
is an extension of GENAR [14], which searches for
frequent itemsets in numeric datasets without needing to
discretize the attributes. Each chromosome is a k-itemset,
in which each gene represents the maximum and mini-
mum values of the attributes that belong to the k-itemset.
This algorithm finds frequent itemsets, and it is therefore
necessary to run another procedure afterwards in order to
generate association rules.

Multiobjective association rules with genetic algorithms
(ARMMGA) [23]: This algorithm is an MOEA based on
the EARMGA algorithm for mining QARs without taking
the minSup and minConf into account. According to the
comments of the authors, the most important aspect of
this algorithm is that its fitness function only specifies
the order of chromosomes in the population and does
not have any other effect on the GA operator, using this
order as a selection criterion. The population with the

0)

7

8)

9

10)

best average fitness, which is based on the product of the
support and confidence of the rules, will be returned.
Multiobjective differential evolution algorithm for min-
ing numeric association rules (MODENAR) [18]: This
algorithm uses a multiobjective differential evolution al-
gorithm based on Alatasetal [9] to mine accurate and
comprehensible QARs without specifying minSup and
minConf. This algorithm uses the same coding scheme
for the chromosomes as Alatasetal but without the second
part. MODENAR weighs four objectives to improve
the quality objectives of the rules: support, confidence,
comprehensibility, and amplitude of the domain of the
attributes.

Multiobjective rule mining using genetic algorithms
(MOEA Ghosh) [19]: This algorithm uses a Pareto
based GA to extract some useful and interesting rules
from any dataset. Each chromosome represents an asso-
ciation rule, where for each attribute bits are associated
that indicate the antecedent or consequent of the rule, the
absence or presence of the attribute, and the relational
operators involved with the attribute. It uses three mea-
sures: comprehensibility, interestingness, and predictive
accuracy to solve the multiobjective rule mining problem.
A separate population is used, which will contain those
chromosomes that are non-dominated from among the
current population, as well as the non-dominated solu-
tions from the previous generation.

Apriori [6], [27]: Apriori follows a breadth-first strategy.
It generates candidate itemsets for the current iteration
by means of itemsets considered to be frequent in the
previous iteration. It then enumerates all the subsets for
each transaction and increments the support of candidates
matching them. Then, those that have the user-specified
minSup, are marked as frequent for the next iteration.
This process is repeated until all frequent itemsets have
been found. Finally, Apriori uses the frequent itemsets
to generate positive rules with confidence greater than
minConf.

Eclat [28]: Eclat employs a depth-first strategy. It gener-
ates candidates by extending the prefixes of an itemset
until an infrequent one is found. In such cases, it simply
backtracks to the previous prefix and then recursively
applies the above procedure. Unlike Apriori, for all the
items in a dataset, it first constructs a list of all the
transaction identifiers (tid-list) containing that item. Then
it counts the support by merely intersecting two or more
tid-lists to check whether they have items in common. If
so, the support is equal to the size of the resulting set.
The process for generating the positive rules is the same
as Apriori.

Nondominated Sorting Genetic Algorithm II (NSGA-II)
[29]: This MOEA is one of the most well known and
frequently used in the literature. NSGA-II uses an evo-
lutionary model similar to other evolutionary algorithms
but with two different features, which make it a high-
performance MOEA. One is the fitness evaluation of each
solution based on Pareto ranking and a crowding measure,
and the other is an elitist generation update procedure.
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TABLE I
PARAMETERS CONSIDERED FOR THE COMPARISON

Algorithms Parameters
Alatasetal Newar=50000, ninitialRandomChromo=12, r = 3, TournamemiSize = 10, Pyp= 0.25, Fero = 0.7, Prut_min = 005, Prut_maz = 0.9,
H”s‘hp =3, 1’1"::gn_f =20, H’nmpIRuIﬂ = 0.05, H”ampffﬂtﬁrv = 0.02, Wegperea = 0.01
EARMGA PopSize = 100, Npygr = 50000, k = 2 (3 with HH), Pepp = 0.75, Pero = 0.7, Pyt = 01, a0 = 0.01
GAR PopSize = 100, nltemset = 100, Neyqr = 50000, Pooy= 025, Pero = 0.7, Pyt = 04, w = 0.4, W= 0.7, p= 0.5, minSup = 0.1, minConf = 0.8
GENAR PopSize = 100, Noyg = 50000, Pygy= 0.25, Pero = 0.7, Pt = 0.1, nRules = 30, FP = 0.7, AF = 0.2
ARMMGA PopSize=100, Noyaqr=50000, k=2 (3 with HH), P,o1=0.95, Pero=0.85, Ppye = 004, db=0L01
MODENAR PopSize = 100, Noyqr=50000, Threshold= 60, CR = 0.3, Waup = 0.8, Weong = 0.2, Weomp = 0.1, Wompliintery = 0.4
MOEA_Ghosh  PopSize = 100, Noyq=350000, PointCrossover=2, FPero=0.8, Pyyr= 0.02
Apriori minSup = 0.1, minConf = 0.8
Eclat minSup = 0.1, minConf = 0.8
NSGAII PopSize = 100, N, pap=50000, v=2, Prut= 0.1
MOPNAR Newat=30000, H=13, m=3, PopSize=Nfj  » |, T=10, §=0.9, jr=2, v=2, Pmut= 0.1, a = 5%
TABLE III
RESULTS FOR ALL DATASETS IN THE COMPARISON WITH ALATASETAL
Algorithm #R  Avsup  Avcony  Avpisr  Avconv  Avep  AUNeteons  AVyylerso  Avamp  HTran
Bolts
Alatasetal 29.6 0.95 1 1.03 oo 0.12 0.12 0.12 3.65 95
MOPNAR 53.6 0.34 1 14.82 oo 0.99 0.95 1 2.29 100
Flare
Alatasetal 86.8 0.13 1 1.38 oo 0.91 Q0.15 0.64 8.16 92.31
MOPNAR 31.8 0.4 0.91 8.24 o0 0.88 0.58 0.93 2.94 100
Housel6H
Alatasetal 90.67 0.19 0.99 1.03 oo 0.58 0.03 0.41 8.76 98.09
MOPNAR 99 0.31 0.95 10.23 oo 0.92 0.78 0.99 2.7 99.96
Movement Libras
Alatasetal 0 - - - - - - - - -
MOPNAR 53.6 0.24 0.97 16.62 o0 0.96 0.92 1 2.49 94.28
Pollution
Alatasetal 34.6 0.59 1 6.3 oo 043 0.39 0.43 3.18 59.67
MOPNAR 45 0.26 0.98 23.58 00 0.96 0.81 0.99 245 99
Quake
Alatasetal 4.25 0.67 1 1.01 oo 0.1 0 0 2.08 98.06
MOPNAR 54.6 0.27 0.91 6.42 oo 0.84 0.55 0.94 2.32 99.2
Segment
Alatasetal 47.5 0.53 0.94 1.03 oo 0.26 0.02 0.21 4.14 100
MOPNAR 86.8 0.3 0.98 14.4 o0 0.98 0.92 1 2.57 100
Stock
Alatasetal 14.4 0.08 1 96.54 oo 0.92 0.72 0.75 2.73 21.04
MOPNAR 824 0.31 0.94 8.17 oo 0.93 0.81 1 2.75 99.6
Stulong
Alatasetal 10 0.61 0.99 2.59 oo 0.39 0.21 0.32 2.97 99.25
MOPNAR 73.6 0.27 0.82 4.29 o0 0.74 0.52 0.93 2.83 99.85

The parameters of the analyzed algorithms are shown in
Table II. With these values, for our proposal, we have tried to
facilitate comparisons, selecting standard common parameters
that work well in most cases instead of searching for very
specific values. The parameters of the remaining algorithms
were selected according to the recommendations of the cor-
responding authors of each proposal, which are the default
parameter settings included in the KEEL software tool [43].

Notice that the length of the rules for EARMGA and
ARMMGA is higher in the dataset House 16H, because the
number of attributes and transactions is higher in this problem.
Moreover, only Apriori, Eclat and GAR need a minSup and
a minConf to mine positive QARs. In order to facilitate

comparisons, we have selected 0.1 for minSup and 0.8 for
minConf for all the datasets, which are standard common
values that work well in most cases, instead of searching for
highly specific values for each one. For all the experiments
conducted in this paper, the results shown in the tables for
the multiobjective algorithms always refer to nondominated
association rules.

C. Comparison With PNQARs Alatas’s Algorithm

In this section we study the performance of our proposal
against an evolutionary approach for mining PNQARs, the
Alatasetal algorithm [9]. The results obtained by the analyzed
algorithms are shown in Table III, where #R is the number



62 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 1, FEBRUARY 2014

e ]
- /T 5 T
o _ o nl B
o ; i i
— 8 g e
§ 7 g - _L o - _i_ o
s}
_ ° 8 )
S ° °
. 8 |
° :
v o :
S !
o]
o]
(2]
o o]
! | | | | | | | |
bol fla hh mov pol qua seg sto stu

Fig. 4. Boxplot of the CF measure for all datasets.

of generated association rules, Avg,, and Avc,,, are, respec-
tively, the average support and the average confidence of the
rules, Avy;p is the average value for the lift measure of the
rules, Avc,p, is the average value for the conviction measure
of the rules, Avcr is the average value for the CF measure
of the rules, AVyecons is the average value for the netconf
measure of the rules, Avy,.o is the average value for the
yule’sQ measure of the rules, Avy,,, is the average length of
the rules in terms of attributes involved, and %Tran is the
percentage of examples covered by the rules. The value oo
shown in the table represents the maximum value for some
measures (see Section II).

We can present the following conclusions from an analysis
of the results presented in Table III.

1) The rules obtained by our proposal present improvements
for almost all the interestingness measures over those ob-
tained by Alatasetal in all the datasets. Alatasetal extracts
rules with good average support and confidence but some
of them present high-support itemsets in the consequent
or negative dependencies, obtaining low values for the
rest of the measures.

2) Our proposal obtains a reduced set of short PNQARs
without overlapping rules (less than 100 in all the
datasets) where each rule provides us with interesting
knowledge of the dataset. Moreover, the coverage of
the dataset is very high (close to 100% in all the
datasets), providing us with knowledge of the whole
dataset. Alatasetal obtains a smaller number of rules than
our proposal but with lower values of coverage for allmost
all the datasets.

3) MOPNAR presents a reduced set of interesting PNQARSs,
obtaining a good trade-off between the number of rules,
support and coverage.

Figs. 4 and 5 are boxplot graphics that show values for the
measures CF and yule’sQ, respectively, for the rules obtained
from one of the five runs performed by our proposal for all
the datasets, selected at random. We can see how all the rules
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Fig. 5. Boxplot of the yule’sQ measure for all datasets.
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Fig. 6. Boxplot of the CF and yule’sQ measures for Alatas’s algorithm and
our proposal in the dataset Stock.

represent positive dependencies with values close to maximum
values for these measures (see Section II). Notice that more
than 75% of the rules obtained have a value greater than 0.85
for the CF (less in Stulong) and for the yule’sQ. Fig. 6 shows
the values obtained by Alatasetal and our proposal for the
measures CF and yule’sQ in the dataset Stock. We can see
that MOPNAR presents better values of CF and yule’sQ than
Alatasetal, as all the rules obtain values close to the maximum
values for these measures. Notice how some rules obtained
by Alatasetal represent independence or negative dependence
according to these measures.

D. Comparison With Other Evolutionary Algorithms

This section compares the performance of our algorithm
with three mono-objective algorithms (EARMGA [15], GAR
[26], and GENAR [14]) and three MOEAs for mining QARs
(ARMMGA [23], MODENAR [18], MOEA Ghosh [19]).
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TABLE IV
RESULTS OBTAINED BY EVOLUTIONARY ALGORITHMS

Algorithm #R  Avsup  Avcong  Aviipe  Avoony  Avcr  AUNeteonf  AVyulers@  AVAmp %Tran
Bolts
EARMGA 100 0.35 1 1.10 ] 0.20 0.07 0.20 2 100
GAR 33.20 0.21 0.98 4.21 ] 0.96 0.86 0.99 3.36 91.50
GENAR 30 0.14 1 1.57 oo 1 0.42 1 8 39
ARMMGA 1 0.46 1 1.3 oo 1 0.42 1 2 46
MODENAR 39.60 0.39 0.94 2.27 oo 0.48 041 0.54 393 68.5
MOEA_Ghosh 11.8 0.76 0.95 4.08 ] 0.33 0.29 0.37 6.33 100
MOPNAR 53.6 0.34 1 14.82 oo 0.99 0.95 1 2.29 100
Flare
EARMGA 95.8 0.49 1 1.01 oo 0.01 0.01 0 2 100
GAR 380.6 0.93 0.99 1.01 oo 0.44 0.15 0.86 3.86 99.65
GENAR 30 0.06 0.97 6.26 o0 0.97 0.85 0.99 12 32.84
ARMMGA 1 0.88 1 1.01 4.13 0.66 0.12 0.82 2 86.95
MODENAR 28.6 0.29 0.86 1.91 ] 0.49 0.2 0.44 6.62 98.94
MOEA_Ghosh 19 0.59 0.84 1.71 oo 0.52 0.31 0.66 6.34 92.37
MOPNAR 31.8 0.4 0.91 8.24 oo 0.88 0.58 0.93 2.94 100
Housel6H
EARMGA 60.2 0.17 1 1.01 oo 0.28 0.01 0.01 3 98.56
GAR 105.6 0.76 0.9 1.03 1.33 0.2 0.17 0.48 2.01 99.99
GENAR 30 0.44 0.99 1.02 2.09 0.44 0.03 0.41 17 87.31
ARMMGA 1 0.98 0.99 1.0 1.13 0.09 0.04 0.16 3 97.97
MODENAR 64.40 0.69 0.99 1.15 oo 0.72 0.19 0.74 7 81
MOEA_Ghosh 19.8 0.6 0.79 269.17 oo 0.36 0.11 0.3 7.75 98.87
MOPNAR 99 0.31 0.95 10.23 oo 0.92 0.78 0.99 2.7 99.96
Movement Libras
EARMGA 100 0.39 1 1 ] 0 0 0 2 100
GAR 2.60 0.42 0.94 3.73 12.62 0.90 0.90 1 2 53.28
GENAR 30 0.04 0.89 13.35 oo 0.89 0.86 0.99 91 53.73
ARMMGA 1 0.26 0.87 3.27 28.86 0.79 0.79 0.93 2 25.95
MODENAR 234 0.01 0.15 32.31 ] 0.04 0.15 0.17 61.61 3.17
MOEA_Ghosh 10.8 0.01 0.22 79.47 oo 0.22 0.22 0.22 80.08 0.28
MOPNAR 53.6 0.24 0.97 16.62 oo 0.96 0.92 1 249 94,28
Pollution
EARMGA 100 0.25 1 1.19 oo 0.31 0.06 0.27 2 100
GAR 54 0.67 091 1.17 oo 0.53 043 0.77 2.03 100
GENAR 30 0.22 1 1.23 oo 0.98 0.24 0.98 16.00 48
ARMMGA 1 0.64 1 1.04 oo 1 0.10 1 2 63.34
MODENAR 34.40 0.27 0.91 2.94 oo 0.85 0.52 0.94 7.20 48.34
MOEA_Ghosh 26.8 0.18 0.67 8.89 o0 0.61 0.62 0.95 13.18 39
MOPNAR 45 0.26 0.98 23.58 oo 0.96 0.81 0.99 2.45 99
Quake
EARMGA 100 0.27 1 1 ] 0.01 0 0 2 100
GAR 1 0.44 0.84 0.98 0.88 -0.03 -0.05 -0.17 2 52.89
GENAR 30 0.55 0.95 1.01 1.09 0.09 0.02 0.10 4 81.78
ARMMGA 1 0.66 0.73 1.01 1.02 0.02 0.04 0.09 2 65.94
MODENAR 63.60 0.36 0.84 117.09 oo 0.31 0.09 0.22 2.09 92.84
MOEA_Ghosh 8 0.86 1 1.01 oo 0.18 0.01 0.14 3.09 100
MOPNAR 54.6 0.27 0.91 6.42 o] 0.84 0.55 0.94 2.32 99.2
Segment
EARMGA 99.20 045 1 1.04 oo 0.08 0.02 0.04 2 100
GAR 18.8 0.36 0.89 2.49 3.61 0.58 0.47 0.73 2 97.97
GENAR 30 0.07 0.78 5.43 oo 0.74 0.70 0.93 20 83.49
ARMMGA 1 0.92 1 1.14 ] 0.2 0.2 0.2 2 91.33
MODENAR 58.80 0.33 0.97 1.72 ] 0.93 0.58 0.96 10.60 56.49
MOEA_Ghosh 28.2 0.36 0.86 108.6 oo 0.73 0.5 0.8 12.63 72.95
MOPNAR 86.8 0.3 0.98 14.4 oo 0.98 0.92 1 2.57 100
Stock
EARMGA 100 0.37 1 1.01 oo 0.02 0.01 0.02 2 100
GAR 2 0.56 0.87 1.35 3.19 0.62 0.62 0.88 2 73.30
GENAR 30 0.29 0.92 1.69 oo 0.81 0.54 0.89 10 88.51
ARMMGA 1 0.37 0.77 1.63 2.25 0.56 0.56 0.86 2 36.22
MODENAR 63.80 0.48 0.92 1.75 oo 0.61 0.30 0.54 3 81.86
MOEA_Ghosh 19.8 0.61 0.91 42.56 oo 0.53 0.36 0.68 5.28 96.4
MOPNAR 82.4 0.31 0.94 8.17 oo 0.93 0.81 1 2.75 99.6
Stulong
EARMGA 92.6 0.27 1 1.01 oo 0.13 0.01 0.02 2 100
GAR 1574 0.78 0.94 1.03 1.63 0.31 0.21 0.63 2.96 99.94
GENAR 30 0.88 0.99 1.01 1.02 0.02 0.01 0.04 5 95.26
ARMMGA 1 0.87 0.87 1.01 1.03 0.03 0.62 0.91 2 86.38
MODENAR 63.20 0.52 0.88 13.94 ] 0.27 0.06 0.27 3 99.28
MOEA_Ghosh 19.6 0.83 0.99 1.04 oo 0.51 0.23 0.6 3.47 99.92
MOPNAR 73.6 0.27 0.82 4.29 oo 0.74 0.52 0.93 2.83 99.85

63
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TABLE V
RESULTS FOR APRIORI AND ECLAT WITH THREE, FOUR, AND FIVE INTERVALS PER ATTRIBUTE

.ngo-:‘-ian # R A'L-‘s.u P -41"(.‘011)‘ A'ULift /l'l_-‘(;on.,__- “‘l'b‘(; F A’L‘Netcoﬂ f A'L‘y ule’ sQ /l't-‘,‘; mp %T-:-an
Housel6H
Apriori-3 2382102 0.25 0.98 1.93 o0 0.81 0.38 0.76 9.05 100
Apriori-4 1749917 0.22 0.97 2.19 o] 0.83 0.45 0.76 8.65 100
Apriori-5 1073035 0.2 0.96 2.9 00 0.85 0.56 0.8 8.26 100
Eclat-3 2382102 0.25 0.98 1.93 =] 0.81 0.38 0.76 9.05 100
Eclat-4 1749917 0.22 0.97 2.19 o] 0.83 0.45 0.76 8.65 100
Eclat-5 1073035 0.2 0.96 29 00 0.85 0.56 0.8 8.26 100
Stulong
Apriori-3 99 0.35 0.92 2.02 00 0.58 0.41 0.62 3.33 100
Apriori-4 89 0.31 0.93 1.22 o0 0.43 0.14 0.29 3.26 99.86
Apriori-5 44 0.25 1 1.01 [s¢] 0.33 0.01 0.24 3.12 98.81
Eclat-3 99 0.35 0.92 2.02 00 0.58 0.41 0.62 3.33 100
Eclat-4 89 0.31 0.93 1.22 [s¢] 0.43 0.14 0.29 3.26 99.86
Eclat-5 44 0.25 1 1.01 [se] 0.33 0.01 0.24 312 98.81
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Fig. 7. Boxplot of the CF measure for the evolutionary algorithms in the  Fig. 8. Boxplot of the yule’sQ measure for the evolutionary algorithms in

dataset Stock.

The results obtained by the analyzed algorithms are shown in
Table IV (this kind of table was described in Section IV-C).
Through the analysis of the results presented in these tables,
we can highlight the following facts.

1) The rules obtained by our proposal present values for the
interestingness measures that are better than or similar
to the rules obtained by the analyzed algorithms in all
the datasets. As with Alataetal, some of these algorithms
obtain good average support and confidence but the
average values for the rest of the measures are low
in some datasets due to the fact that they obtain rules
with high-support itemsets in the consequent or negative
dependences.

2) MOPNAR allows us to mine reduced sets of interesting
PNQARSs, which provide us with interesting knowledge
of the whole datasets, presenting average values of cov-
erage greater than 99% in all cases, while the rest of the
analyzed algorithms obtain values worse than or similar
to MOPNAR. Notice that EARMGA obtains the best
coverage for almost all of the datasets but its rules present

the dataset Stock.

low values for the interestingness measures, and that the
GENAR obtains low values of coverage for almost all of
the datasets due to the fact that the rules obtained always
involve all the attributes in the dataset.

3) Finally, the rules obtained by MOPNAR have a low num-
ber of attributes for all the datasets, giving the advantage
of easier understanding from a user’s perspective.

Figs. 7 and 8 are boxplots that show the values for the
measures CF and yule’sQ for the rules obtained from one
of the five runs performed by all the evolutionary algorithms
analyzed in the dataset stock, selected at random. We can see
that MOPNAR presents the best values of CF and yule’sQ
in comparison with the rest of the algorithms, with almost
all of the rules obtaining values greater than 0.9 for these
measures. Notice how some rules obtained by MODENAR
and EARMGA represent independence or negative dependece
according to these measures.

E. Comparison With Classical Algorithms

This section compares the performance of our algorithm
with two classical association rules extraction algorithms,
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TABLE VI
RESULTS FOR ALL DATASETS IN THE COMPARISON WITH CLASSICAL ALGORITHMS FOR MINING ASSOCIATION RULES

Algorithm #IR Avb'up A'L'C-'ouf Avbi,ft Avcony Aver AT’,’\-’e:tcouJ’ At"\’u!(:’.ﬁQ At"Amp Y%Tran
Bolts
Apriori 1246 0.15 0.99 7.16 s} 0.98 0.96 1 4.36 97.50
Eclat 1246 0.15 0.99 7.16 o0 0.98 0.96 1 4.36 97.50
NSGA-II 80.2 0.33 1 7.75 oo 0.99 0.93 1 2.55 100
MOPNAR 53.6 0.34 1 14.82 oo 0.99 0.95 1 2.29 100
Flare
Apriori 28512 0.18 0.97 4.95 oo 0.94 0.82 0.97 5.87 100
Eclat 28512 0.18 0.97 4.95 oo 0.94 0.82 0.97 5.87 100
NSGA-II 63.6 0.33 0.9 45.38 o0 0.83 0.51 0.87 3.59 98.65
MOPNAR 31.8 0.4 0.91 8.24 o0 0.88 0.58 0.93 2.94 100
Housel6H
Apriori 1749917 0.22 0.97 2.19 o0 0.83 0.45 0.76 8.65 100
Eclat 1749917 0.22 0.97 2.19 oo 0.83 0.45 0.76 8.65 100
NSGA-II 99.6 0.37 0.95 419.07 oo 0.91 0.57 0.88 3.73 98.32
MOPNAR 99 0.31 0.95 10.23 e 0.92 0.78 0.99 2.7 99.96
Movement Libras
Apriori - - - - - - - E - -
Eclat - - - - - - - - . -
NSGA-IIL 63.40 0.24 0.96 29.49 o0 0.94 0.91 1 2.38 90.17
MOPNAR 53.60 0.24 0.97 16.62 0o 0.96 0.92 1 249 94.28
Pollution
Apriori 41510 0.13 0.95 5.84 00 0.93 0.86 0.98 5.88 100
Eclat 41510 0.13 0.95 5.84 oo 0.93 0.86 0.98 5.88 100
NSGA-II 26.8 0.2 0.97 30.21 00 0.95 0.85 0.99 2 95.67
MOPNAR 45 0.26 0.98 23.58 s} 0.96 0.81 0.99 245 99
Quake
Apriori 18 0.25 0.91 1 1.15 0.11 -0.01 0.02 2.56 90.55
Eclat 18 0.25 0.91 1 1.15 0.11 -0.01 0.02 2.56 90.55
NSGA-II 96.8 0.24 0.92 59.67 oo 0.88 0.64 0.94 2.82 92
MOPNAR 54.6 0.27 0.91 6.42 oo 0.84 0.55 0.94 2.32 99.2
Segment
Apriori - - - - - - - - - -
Eclat - - - - - - - - - -
NSGA-II 86.80 0.29 0.98 73.30 o0 0.97 0.84 0.97 2.62 98.16
MOPNAR 86.80 0.30 0.98 14.40 s} 0.98 0.92 1 2.57 100
Stock
Apriori 855 0.13 0.91 4.77 o0 0.88 0.76 0.96 4.16 99.48
Eclat 855 0.13 0.91 4.77 o] 0.88 0.76 0.96 4.16 99.48
NSGA-II 100 0.22 0.94 19.97 oo 0.93 0.87 1 3.12 96.97
MOPNAR 824 0.31 0.94 8.17 0 0.93 0.81 1 2.75 99.6
Stulong
Apriori 89 0.31 0.93 1.22 oo 0.43 0.14 0.29 3.26 99.86
Eclat 89 0.31 0.93 1.22 o0 043 0.14 0.29 3.26 99.86
NSGA-II 95.8 0.31 0.89 13.33 s} 0.81 0.53 0.93 3.29 98.1
MOPNAR 73.6 0.27 0.82 4.29 00 0.74 0.52 0.93 2.83 99.85

Apriori [6], [27], and Eclat [28], and with the classical MOEA
NSGA-II [29]. A commonly used method to mine QARs from
classical association rules extraction algorithms is to partition
the domains, introducing new attributes with intervals. In this
paper, for each quantitative attribute we have used a uniform
partition [44], which is the usual discretization algorithm
applied when we lack additional information with which to
apply algorithms based on information theory [45], [46] or
other concepts [47].

The problem is finding an appropriate number of intervals
for a quantitative attribute. This problem was first introduced
in [6], in which the authors pointed out that if too many
intervals are defined for the attributes, the rules obtained might
not achieve the minimum support threshold. On the other
hand, if intervals are defined that are too large, the rules

might not achieve the confidence threshold. For this reason,
several experiments have been carried out with three, four
and five intervals per attribute, in order to select the number
of intervals. Table V shows the results obtained by Apriori
and Eclat (this kind of table was described in Section IV-C).
Analyzing the results obtained in House 16H, we can see
that #R, Avg,p,, and Avc,,s decrease in accordance with the
increase in the number of intervals. Moreover, in Stulong,
the number of rules that can achieve the confidence threshold
decreases quickly with the increase in the number of intervals,
while the values for the interesting measures present the same
behavior. Therefore, we will use a uniform partition with four
intervals for each quantitative attribute in the experiments.

In order to compare our proposal with NSGA-II, we have
used the same code scheme, objectives, initial gene pool and
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Fig. 9. Boxplot of the CF and yule’sQ measures for classical algorithms in
the dataset stock.

genetic operators as in our proposal. The results obtained by
the classical algorithms are shown in Table VI (this kind of
table was described in Section IV-C). Analyzing the results
presented in this table we can see how.

1) In most datasets Apriori and Eclat mine large sets of
QARs, obtaining a good coverage of the datasets. Notice
that movement libras and segment have a large number
of attributes and they cannot be run. By contrast, our
proposal allows us to obtain a reduced set of PNQARs
with a good coverage in all datasets. Moreover, the rules
obtained present values for the interestingness measures
that are better than or similar to the rules obtained by
Apriori and Eclat in all the datasets. Notice that, in the
dataset Quake, Apriori and Eclat extract rules with good
average support and confidence but low values for the
rest of the measures due to the fact that they first need to
partition the quantitative domains into intervals in order
to mine the QARs, and these partitions are not appropriate
for this dataset.

2) NSGA-II obtains reduced sets of PNQARs with good
values for the interestingness measures; however, in two
datasets the number of rules obtained by NSGA-II is
limited by the size of the population (100 rules) and the
coverage is less than that of our proposal in all datasets.
Moreover, MOPNAR obtains PNQAR sets with a smaller
number of rules in almost all of the datasets, and with
similar values for the interestingness measures.

Fig. 9 presents a boxplot that shows the values for the mea-
sures CF and yule’sQ for the rules obtained from the classical
algorithms and MOPNAR in the dataset stock. We can see
that all the rules obtained represent positive dependencies, and
that MOPNAR and NSGA-II obtain rules with values close to
each other. Moreover, MOPNAR presents better values of CF
and yule’sQ than the classical algorithms, but it and NSGA-II
obtain rules with values close to the maximum values for these
measures.
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Fig. 10. Relationship between the runtime and the number of attributes with
the datasets House 16H for the evolutionary algorithms.
TABLE VII
RUNTIME (SECONDS) EXPENDED BY ALL THE ALGORITHMS WHEN THE
NUMBER OF ATTRIBUTES INCREASES WITH THE DATASETS HOUSE716H

Number of Attributes

Algorithms 4 8 12 16 17
EARMGA 78 61 78 75 65
GAR 619 1528 1991 2083 2014
GENAR 24 38 47 57 59
Alatasetal 50 77 52 72 154
ARMMGA 104 93 95 100 97
MODENAR 60 81 97 95 93
MOEA_Ghosh 23 36 50 46 73
Apriori 3 5 233 5192 11268
Eclat 3 5 251 5812 12467
NSGA-II 54 56 55 96 77
MOPNAR 45 47 58 77 72
TABLE VIII

RUNTIME (SECONDS) EXPENDED BY ALL THE ALGORITHMS WHEN THE
NUMBER OF EXAMPLES INCREASES WITH THE DATASETS HOUSEi 16H

Number of Examples

Algorithms 20%  40% 60% 80%  100%
EARMGA 15 31 39 50 65
GAR 467 898 1260 1595 2014
GENAR 12 23 36 47 59
Alatasetal 16 24 93 104 154
ARMMGA 21 40 60 77 97
MODENAR 13 41 37 115 93
MOEA_Ghosh 13 24 37 44 73
Apriori 2689 5180 10050 9004 11268
Eclat 3076 8700 11300 10604 12467
NSGA-II 13 27 51 67 77
MOPNAR 16 31 47 59 72

FE. Analysis of Complexity and Scalability

Several experiments have been carried out to analyze the
scalability of the algorithms in the dataset House 16H. All of
the experiments were performed using an Intel Core i7, 2.80
GHz CPU with 12GB of memory and running Linux. The
average runtime expended by the analyzed algorithms when
the number of attributes and examples increases are shown in
Tables VII and VIII, respectively.

Figs. 10 and 11 show the relationship between the runtime
and the number of attributes for all algorithms studied. We
can see how almost all the evolutionary algorithms scale quite
linearly when the number of attributes in the dataset increases,
however the classical association rules extraction algorithms
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TABLE IX
RULES OBTAINED BY OUR PROPOSAL FROM SEVERAL DATASETS

Data Rule Sup Conf CF  YulesQ
Bolts RI1: If SENS is not [7.0, 10.0] then SPEEDI1 is not [3.0, 5.0] 0.49 1 1 1
Flare R2: If HistComplex is not 2 then X-class is 0 0.59 1 1 1
Quake  R3: If Latitude is [—10.58, 47.44] then Longitude is not [—179.96, —155.45]  0.59 1 1 1
Stock R4: If Company2 is not [4()',38._ 56.99] then Companyl1 is not [17,22, 31 .99] 0.58 0.99 097 0.99

TABLE X
RELATIONSHIP BETWEEN PNQARS OBTAINED BY OUR PROPOSAL AND POSITIVE QARS OBTAINED BY OTHER ALGORITHMS

Data Our proposal Other algorithms

Bolts  If SENS is [0, 6] then SPEED2 is not [1.51,2.49] If SENS is [0, 6] then SPEED2 is [0, 1.5]
If SENS is [0, 6] then SPEED2 is [2.5, 2.5]

Quake  If Focal depth is not [136, 176] and If Longitude is [—179.88, —171.16]  If Focal depth is [0, 135] and Longitude is [—179.88, —171.16]

then Latitude is [-33.79, —14.91] then Latitude is [-33.79, —14.91]

If Focal depth is [177,656] and Longitude is [—179.88, —171.16]
then Latitude is [—33.79, —14.91]

Stock  If Company2 is not [46.38,56.99] then Companyl is not [17.22,31.99]  If Company2 is [19.25,46.37] then Companyl is [32,61.5]

If Company2 is [57, 60.25] then C vl is [32,61.5]
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Fig. 11. Relationship between the runtime and the number of attributes with
the datasets House 16H for the classical algorithms.

(Apriori and Eclat) increases exponentially when the number
of attributes is higher than ten. Moreover, we can see that the
GAR expends a large amount of time mining the association
rules because it needs an additional process to extract the
association rules.

Figs. 12 and 13 show the relationship between the runtime
and the number of examples. As in the previous case, the
runtime scales quite linearly when the number of examples
in the dataset increases. Moreover, we can see how the
increase in the number of examples and attributes affects
classical association rules extraction algorithms more than the
evolutionary algorithms. Notice that Figs. 10 and 12 show
few results pertaining to the GAR because its runtime exceeds
more than 650 s in almost all cases, which can easily be seen
from Tables VII and VIII.

G. Some Rules Obtained by Our Proposal

In this section, we analyze some PNQARs mined by the
proposed approach. Table IX shows some interesting PNQARSs
obtained from several datasets, where Data is the dataset in
which the rule was obtained, Rule is the rule obtained, Sup
and Conf are, respectively, the support and the confidence of
the rules, CF is the value for the CF measure of the rules,
and Yules(Q is the value for the yule’sQ measure of the rules.

These rules could be interpreted as follows. The Bolts
dataset was generated to store data from experiments on the
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Fig. 12. Relationship between the runtime and the number of examples with
the datasets House 16H for the evolutionary algorithms.
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effects of machine adjustments on the time taken to count
bolts. R1 indicates that when the sensitivity of the electronic
eye (SENS) is less than seven (the domain of this variable is
[0, 10]) then the speed of rotation (SPEEDI) of the plate is
lower than three (low) or higher than five (very fast). The Flare
dataset stores data on the number of times a certain type of
solar flare occured in a 24 hour period. R2 shows that when the
region is not historically complex (HistComplex) then severe
flares (X-class) will not be produced in the following 24 hours.
The Quake dataset provides data on smoothing methods in
statistics. In this case, R3 indicates that when the latitude
is between -10.58 and 47.44 then longitude is lower than
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-155.45. The data provided by the Stock dataset are daily
stock prices from January 1988 through October 1991, for
ten aerospace companies. R4 shows that when the second
company (Company?2) does not have prices between 46.38 and
56.99 then the first company (Company1) does not have prices
between 17.22 and 31.99.

Most of these rules obtained by our proposal include
negated items, allowing us to reduce the number of rules
needed to extract interesting knowledge from datasets. In order
to illustrate this fact, Table X shows some PNQARs obtained
by our proposal and the positive QARs obtained by other
analyzed algorithms that were needed to extract the same
knowledge, where Data is the dataset in which the rules
were obtained, Our proposal is the PNQARs obtained by
our proposal and Other algorithms are the positive QARs
obtained by other algorithms.

V. CONCLUSION

We have proposed MOPNAR, a new MOEA that allows
mining with a reduced set of PNQARs. The PNQARs are
easy to understand, interesting, and offer good coverage of the
dataset, maximizing three objectives: comprehensibility, inter-
estingness, and performance. To accomplish this, this proposal
extends the MOEA MOEA/D-DE to perform an evolutionary
learning of the intervals of attributes and a condition selection
for each rule. This proposal introduces an EP and a restarting
process to the evolutionary model in order to store all the
nondominated rules found and to improve the diversity of the
rule set obtained. Moreover, the rules obtained are very strong,
which indicates a strong dependence between the items and
solves the support drawback.

Taking into account the results obtained over nine real-
world datasets, we can conclude that our proposal allows us to
mine PNQAR sets with a good trade-off between the number
of rules, support, and coverage, presenting high coverages in
all the datasets. Moreover, MOPNAR obtains reduced sets of
PNQARs with few attributes, making it easier to understand
from a user’s perspective, and with high values for the in-
terestingness measures in all datasets. Finally, the proposed
approach presents a good computational cost in all datasets
and good scalability when the size of the problem increases.
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