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Group decision making is a type of decision problem in which multiple experts acting collectively, ana-
lyze problems, evaluate alternatives, and select a solution from a collection of alternatives. As the natural
language is the standard representation of those concepts that humans use for communication, it seems
natural that they use words (linguistic terms) instead of numerical values to provide their opinions. How-
ever, while linguistic information is readily available, it is not operational and thus it has to be made
usable though expressing it in terms of information granules. To do so, Granular Computing, which
has emerged as a unified and coherent framework of designing, processing, and interpretation of infor-
mation granules, can be used. The aim of this paper is to present an information granulation of the lin-
guistic information used in group decision making problems defined in heterogeneous contexts, i.e.,
where the experts have associated importance degrees reflecting their ability to handle the problem.
The granulation of the linguistic terms is formulated as an optimization problem, solved by using the par-
ticle swarm optimization, in which a performance index is maximized by a suitable mapping of the lin-
guistic terms on information granules formalized as sets. This performance index is expressed as a
weighted aggregation of the individual consistency achieved by each expert.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction than numbers is, in general, less specific, more flexible, direct, real-
A Group Decision Making (GDM) problem is defined as a deci-
sion problem in which several experts provide their judgments
over a set of alternatives. The aim is to reconcile differences of
opinions expressed by individual experts to find an alternative
(or set of alternatives), which is best acceptable by the group of ex-
perts as a whole.

Since the process of decision making, in particular of group
type, is centered on humans, coming with their inherent subjectiv-
ity, imprecision and vagueness in the articulation of opinions, the
theory of fuzzy sets, introduced by Zadeh (1965), has delivered
new tools in this field for a long time, as it is a more adequate tool
to represent often not clear-cut human preferences encountered in
most practical cases. As the information provided by the humans is
inherently non-numeric, partial evaluations, preferences, judg-
ments, and weights are usually expressed linguistically (Herrera
et al., 2009; Montero, 2009). The use of words or sentences rather
istic, and adequate form to express the qualitative aspects of the
problem at hand. In such a case, when linguistic information is
used, it needs to be made operational in some way.

To effectively operate on linguistic information in GDM prob-
lems, several linguistic computation models have been proposed
in the literature (Herrera et al., 2009): (i) the linguistic computa-
tional model based on membership functions (Degani and Borto-
lan, 1988; Fu, 2008); (ii) the linguistic computational model
based on type-2 fuzzy sets (Mendel, 2002); the linguistic symbolic
computational models based on ordinal scales (Delgado et al.,
1993; Herrera et al., 1996, 1997); and (iv) the 2-tuple linguistic
computational model (Herrera and Martinez, 2000), which is a
symbolic model extending the use of indexes. Different methods
for solving GDM problems using the above linguistic computation
models have been developed (see, for example, Cabrerizo et al.
(2009, 2010), Fu (2008), Herrera et al. (1996, 1997), and Mata
et al. (2009)). In all of them, both the distribution and the seman-
tics of the linguistic terms are established a priori.

Granular Computing is an emerging paradigm of information
processing (Pedrycz, 2011). It deals with representing and
processing of information in form of information granules, which
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are complex information entities that arise in the process (called
information granulation) of abstraction of data and derivation of
knowledge from information (Bargiela and Pedrycz, 2003). The
process of information granulation and the nature of information
granules imply the definition of a formalism that is well-suited
to represent the problem at hand. The resulting information gran-
ules are afterwards effectively processed within the computing
setting pertinent to the assumed framework of information granu-
lation. There are a number of formal frameworks in which informa-
tion granules can be defined such as sets (Bargiela, 2001) (interval
mathematics), fuzzy sets (Zadeh, 1965, 1975a,b,c), rough sets (Slo-
winski et al., 2002; Greco et al., 2006, 2011), shadowed sets (Ped-
rycz, 2009), and probabilities (Zadeh, 2002) (probability density
functions).

Linguistic information may be made operational through infor-
mation granulation. However, it is not clear both how the linguistic
terms have to be translated into the entities and what optimization
criterion can be envisioned when arriving at the formalization of
the linguistic terms through information granules.

When information is provided by individuals, an important is-
sue to bear in mind is that of consistency (Alonso et al., 2008;
Chiclana et al., 2008; Herrera-Viedma et al., 2007), which may be
used as an optimization criterion. Preference relations are the most
common representation of information used for solving GDM prob-
lems due to effectiveness in modeling decision processes. The ef-
fort to complete pairwise evaluations is far more manageable in
comparison to any experimental overhead we need when assign-
ing membership grades to all alternatives of the universe in a sin-
gle step, which implies that the expert must be able to evaluate
each alternative against all the others as a whole, which can be a
difficult task. The pairwise comparison helps the expert focus only
on two elements once at a time thus reducing uncertainty and hes-
itation while leading to the higher of consistency. It is obvious that
consistent information, which does not imply any kind of contra-
diction, is more relevant or important than the information con-
taining some contradictions. However, due to the complexity of
most GDM problems, experts’ preferences can be inconsistent. For-
tunately, the lack of consistency can be quantified and monitored
(Cutello and Montero, 1994; Herrera et al., 1997; Herrera-Viedma
et al., 2004).

The objective of this paper is to develop a new method based on
granular computing to solve GDM problems when linguistic infor-
mation is used. In particular, we focus on GDM situations defined
in heterogeneous contexts, that is, situations where the experts
have different background and level of knowledge about the prob-
lem and, then, importance degrees are provided or associated to
them in order to reflect their importance to solve the problem.
The novelty of the proposed method is that the distribution and
the semantics of the linguistic terms are not assumed a priori. Here,
the information granulation offers an operational model of the
GDM problem to be used in presence of linguistic information. This
information granulation is formulated as an optimization problem
in which a performance index, based on experts’ consistency, is
optimized by a suitable mapping of the linguistic terms on infor-
mation granules. The Particle Swarm Optimization (PSO) (Kennedy
and Eberhart, 1995) is utilized as an optimization framework, sup-
porting the formation of the information granules. It helps trans-
late linguistic terms into meaningful information granules so that
the highest performance index is achieved. We should point out
that in this study the granulation formalism being considered con-
cerns intervals (sets). However, it applies equally well to any other
formal scheme of information granulation.

The paper is set out as follows. In Section 2, we present both the
GDM scenario considered in this paper and the method to obtain
the consistency achieved by an expert when expressing his/her
opinion using preference relations. Section 3 is concerned with
information granulation of the linguistic information present in
GDM problems in heterogeneous contexts, and its optimization
using the PSO framework. To illustrate the method, some experi-
mental studies are shown in Section 4. A discussion among the pro-
posed method and the classical linguistic computation models is
carried out in Section 5. Finally, we offer some conclusions and fu-
ture works in Section 6.

2. Preliminaries

In this section, we describe the GDM scenario which is consid-
ered in this study. One the one hand, we show both the main char-
acteristics of the GDM problems and the steps which are faced to
solve them. On the other hand, we define the concept of consis-
tency and show how it can be calculated.

2.1. GDM problems in heterogeneous contexts

In a classical GDM situation, there is a problem to solve, a solu-
tion set of possible alternatives, X = {x1, x2, . . . , xn}, (n P 2) and a
group of two or more experts, E = {e1, e2, . . . , em}, (m P 2), who ex-
press their opinions about the set of alternatives and their suitabil-
ity to achieve a common solution (Greco et al., 2012; Kacprzyk,
1986; Liu et al., 2012). In a fuzzy context, the objective is to classify
the alternatives from best to worst, associating with them some
degrees of preference expressed in the [0,1] interval.

In many cases, it is assumed that to each expert assigned is an
importance degree which reflects his/her importance level or
knowledge degree about the problem, and in such a case we work
in a heterogeneous or non-homogeneous GDM framework (Chicl-
ana et al., 2007; Montero, 1988). This importance degree is inter-
preted as a fuzzy subset, I, with a membership function,
lI:E ? D, in such a way that lI(el) 2 D denotes the importance de-
gree of the opinion provided by the expert el, and D is the represen-
tation domain of the importance degrees. If D is of linguistic
nature, then linguistic terms as ‘‘Very Important’’, ‘‘Important’’,
‘‘Less Important’’, could be used.

There are several different preference representation formats
that can be used by experts to express their opinions (Herrera-
Viedma et al., 2002). Among them, preference relations are one
of the commonly used because experts have much more freedom
when expressing their preferences and they can gain in expressiv-
ity. Different types of preference relations can be used according to
the domain studied to evaluate the intensity of the preference. This
is expressed in the following definition:

Definition 1. A preference relation P on a set of alternatives X is
characterized by a function lP:X � X ? D, where D is the domain of
representation of preference degrees.

When cardinality of P is low, the preference relation may be
conveniently represented by the n � n matrix P = (pik), being pik =
lP(xi,xk) ("i,k 2 {1, . . . , n}) interpreted as the preference degree or
intensity of the alternative xi over xk. In this case, if D is a linguistic
domain, then linguistic terms as ‘‘High’’, ‘‘Medium’’, ‘‘Low’’, could
be used.

Usually, to solve a GDM problem, two steps are considered
(Herrera-Viedma et al., 2007):

� Aggregation phase. The aggregation step of a GDM problem con-
sists in combining the experts’ individual preferences into a
group collective one in such a way that it summarizes or reflects
the properties contained in all the individual preferences. The
collective preference, Pc ¼ pc

ik

� �
, is computed by means

of the aggregation of all individual preference relations,
fP1; P2; . . . ; Pmg : pc

ik ¼ U p1
ik; p

2
ik; . . . ; pm

ik

� �
, with, U, being an
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appropriate aggregation operator (Yager and Kacprzyk, 1997).
The general procedure for the inclusion of importance weight
values in the aggregation process involves the transformation
on the preference values, pl

ik, under the importance degree, lI(-
el), to generate a new value, �pl

ik, and then aggregate these new
values using the aggregation operator. According to the partic-
ular properties to consider, different methods for including
importance degrees in the aggregation operators can be used
(Chiclana et al., 2007).
� Exploitation phase. This final step uses the information produced

in the aggregation phase to identify the solution set of alterna-
tives. So, we must apply some mechanism to obtain a partial
order of the alternatives and thus select the best alternative(s).
There are several ways to do this. A usual one is to associate a
certain utility value to each alternative (based on the aggre-
gated information), thus producing a natural order of the alter-
natives. For example, the quantifier guided dominance degree

(Herrera-Viedma et al., 2007), QGDDi ¼ / pc
i1; . . . ; pc

iði�1Þ;
�

pc
iðiþ1Þ; . . . ; pc

inÞ, can be used, with, U, taken as an appropriate
aggregation operator.

2.2. Consistency

Definition 1 dealing with a preference relation does not imply
any kind of consistency property. However, the study of consis-
tency is crucial for avoiding misleading solutions in GDM.

Coherence in preference modeling has been introduced in stan-
dard decision making frameworks, taking many different formula-
tions in each context, as a need in order to assure consistent
decision making procedures (Garcı́a-Lapresta and Montero,
2006). In the classical numeric (Boolean) context, preferences use
to be assumed to be transitive in order to assure consistent behav-
ior. In the fuzzy framework, transitivity plays a crucial role in
coherence modeling, since crisp behavior should appear as a par-
ticular case. Hence, crisp transitivity has been generalized into fuz-
zy preference modeling, existing a great variety of fuzzy
transitivity properties, each one offering a different consistency
assumption (Herrera-Viedma et al., 2004). Alternatively, consis-
tency has been understood by Cutello and Montero (1994) as a
rationality measure, therefore allowing degrees of performance. A
key argument was that most standard fuzzy transitivity conditions
in literature were crisp in nature, i.e., they either hold or not hold.
But it is apparent that some situations are extremely intransitive
while sometimes we only find small or unexpected transitivity vio-
lations that can be in some way bypassed in practice. Consistency
in most cases allows different degrees, and it should be measured.
The axiomatic approach of Cutello and Montero (1994) was a first
proposal in this direction, proposing a particular family of condi-
tions any rationality measure should verify within preference
modeling.

As the granulation formalism being considered in this study to
represent the linguistic information concerns intervals in the unit
interval [0,1], we study the fuzzy preference relations and how
to characterize their consistency.

Definition 2. A fuzzy preference relation P on a set of alternatives
X is a fuzzy set on the product set X � X, which is characterized by a
membership function lP:X � X ? [0,1].

Every value pik in the matrix P represents the preference degree
or intensity of preference of the alternative xi over xk: pik = 0.5 indi-
cates indifference between xi and xk (xi � xk), pik = 1 indicates that xi

is absolutely preferred to xk, and pik > 0.5 indicates that xi is pre-
ferred to xk (xi � xk). Based on this interpretation we have that
pii = 0.5 "i 2 {1, . . . , n} (xi � xi). Since pii’s (as well as the corre-
sponding elements on the main diagonal in some other matrices)
do not matter, we will write them as ‘–’ instead of 0.5 (Herrera-
Viedma et al., 2007; Kacprzyk, 1986). Moreover, it is assumed that
the matrix is reciprocal, that is pik + pki = 1 "i, k 2 {1, . . . , n}.

To make a rational choice, properties to be satisfied by such fuz-
zy preference relations have been suggested (Herrera-Viedma
et al., 2004). In this paper, we make use of the additive transitivity
property which facilitates the verification of consistency in the
case of fuzzy preference relations. As it is shown in Herrera-Vied-
ma et al. (2004), additive transitivity for fuzzy preference relations
can be seen as the parallel concept of Saaty’s consistency property
for multiplicative preference relations (Saaty, 1994). The mathe-
matical formulation of the additive transitivity was given by Tani-
no (1984):

ðpij � 0:5Þ þ ðpjk � 0:5Þ ¼ ðpik � 0:5Þ; 8i; j; k 2 f1; . . . ;ng: ð1Þ

Because the additive transitivity implies additive reciprocity (pij +
pji = 1,"i, j), it can be rewritten as:

pik ¼ pij þ pjk � 0:5; 8 2 i; j; kf1; . . . ;ng: ð2Þ

A fuzzy preference relation is considered to be ‘‘additive consistent’’
when for every three options encountered in the problem, say xi, xj,
xk 2 X their associated preference degrees pij,pjk, pik fulfil Eq. (2).

Given a reciprocal fuzzy preference relation, Eq. (2) can be used
to calculate an estimated value of a preference degree using other
preference degrees. Indeed, using an intermediate alternative xj,
the following estimated value of pik (i – k) is obtained (Chiclana
et al., 2008; Herrera-Viedma et al., 2007, 2004):

epj
ik ¼ pij þ pjk � 0:5: ð3Þ

The overall estimated value epik of pik is obtained as the average of
all possible values epj

ik:

epik ¼
Xn

j¼1;j–i;k

epj
ik

n� 2
: ð4Þ

The value jepik � pikj can be used as a measure of the error between
a preference value and its estimated one (Herrera-Viedma et al.,
2007).

When information provided is completely consistent then
epj

ik ¼ pik "j. However, because experts are not always fully con-
sistent, the assessment made by an expert may not verify (2)
and some of the estimated preference degree values epj

ik may
not belong to the unit interval [0,1]. From Eq. (3), it is noted
that the maximum value of any of the preference degrees epj

ik

is 1.5 while the minimum one is �0.5. In order to normalize
the expression domains in the decision model, the final esti-
mated value of pik (i – k), cpik, is defined as the median of the
values 0, 1 and epik:

cpik ¼ medf0;1; epikg: ð5Þ

The error assuming values in [0,1] between a preference value, pik,
and its final estimated one, cpik, is:

epik ¼ jcpik � pikj: ð6Þ

Reciprocity of P = (pik) implies reciprocity of CP = (cpik), therefore
epik = epki. epik = 0 is interpreted as a situation of total consistency
between pik (pki) and the rest of entries of P. Obviously, the higher
the value of epik the more inconsistent is pik (pki) with respect to
the remaining entries of P.

This interpretation allows us to evaluate the consistency degree
associated to a reciprocal fuzzy preference relation P as follows
(Chiclana et al., 2008):

cd ¼
Pn

i;k¼1;i–kð1� epikÞ
n2 � n

ð7Þ
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When cd = 1, the reciprocal fuzzy preference relation P is fully con-
sistent, otherwise, the lower cd the more inconsistent P is.
3. Granulation of the linguistic information and its
optimization in GDM problems in heterogeneous contexts

In this section, we elaborate on the quantification of linguistic
terms present in the reciprocal preference relations provided by
the experts in a heterogeneous GDM context. The granulation pro-
cess of the linguistic terms leads to the operational realization of fur-
ther processing forming a ranking of alternatives according to the
preferences provided by the group of experts. Furthermore, the opti-
mization of the granulation process using PSO as the optimization
framework is described. This information granulation is similar to
the clustering which can be formulated as an optimization problem
and forms one of the most visible conceptual and algorithmic frame-
work of developing information granules (Pedrycz and Bargiela,
2012). In such a way, our method is in some way similar to the clus-
tering of semantically distinct variables proposed in (Bargiela and
Pedrycz, 2002; Pedrycz and Bargiela, 2010, 2012). However, in the
method proposed here, the information granules (clusters) are rep-
resented as sets and they are formed according to the optimization
of a performance index based on experts’ consistency.
3.1. Construction of information granules of linguistic terms as
intervals

The linguistic terms used in a pairwise comparison of alterna-
tives in a preference relation are expressed linguistically by admit-
ting qualitative terms. For example, as aforementioned, linguistic
terms such as ‘‘High’’, and ‘‘Medium’’, are in common usage. As there
is some apparent linear order among linguistic terms, they can be or-
ganized in a linear fashion. However, the linguistic terms themselves
are not operational meaning that no further processing can be real-
ized, which involves a quantification of the linguistic terms.

The problem of a granular representation or description of lin-
guistic terms is concerned with the formation of a family of infor-
mation granules over the unit interval. In this study, we consider
an interval format of information granulation meaning that the
information granules come in the form of intervals [ak,ak+1], that
is to say, information granules L1, L2, . . . , Lc where L1 = [0,a1), L2 -
2 = [a1,a2), . . . , Li = [ai�1,ai), . . . , Lc = [ac�1,1]. The above intervals
form a partition of the unit interval where 0 < a1 <, . . . , < ac�1 < 1.
The interval format of granulation of the unit interval is fully char-
acterized by the vector of cutoff points of the granular transforma-
tion in the unit interval, a = [a1 a2, . . . , ac�1].

The process of arriving at the operational realization of three
linguistic terms with the aid of sets (intervals) is shown in Fig. 1.

The two important features of such granulation mechanisms are
worth noting here: (i) the mapping is by no means linear, that is, a
localization of the associated information granules on the scale is
not uniform; and (ii) the semantics of the terms allocated in the
process of granulation is retained.

It is worth stressing that in this study we consider a joint treat-
ment of the linguistic terms coming from the experts engaged in
the process of GDM. It allows us to deal with these terms in a uni-
fied fashion and reconcile their semantics so that the individual
consistencies are made comparable and thus could be aggregated
Fig. 1. Towards the operational realization of linguistic terms with the aid of
intervals.
to arrive at the joint view at the performance index. A granulation
of the linguistic terms realized at the level of individual experts in-
volved in the GDM may result in results of individual consistencies
that are more difficult to aggregate and compare. Furthermore, lin-
guistic terms are also used to indicate the experts’ importance, and
both the number and the semantics of the terms can be different
from the linguistic terms used by the experts to provide their opin-
ions. Therefore, we consider two different linguistic term sets, one
to provide experts’ preferences, and the other one to express the
experts’ importance.

The question on how to arrive at the operational version of the
information granules specified as intervals can be reformulated as
a certain optimization problem. In the following, the optimization
criterion used in the optimization problem is defined.

3.2. The optimization criterion

The formulation of the optimization problem needs to be now
specified so that all technical details are addressed. First, the opti-
mization criterion which has to be optimized needs to be defined.

As the lack of consistency in the decision making process can
lead to a wrong solution, the consistency of the preference rela-
tions provided by the experts can be used to obtain the quality
of the solution obtained in a GDM problem. If the consistency level
of each preference relation is high, the solution obtained will be
better than if the consistency level is low. Therefore, for a given
vector of cutoff points, we compute its quality by means of a per-
formance index obtained as the weighted aggregation of the con-
sistency levels measured for all preference relations {P1, . . . , Pm}.
Then, the goal is to increase that performance index, which is used
as optimization criterion.

In light of the form of the optimization criterion, we can con-
sider alternatives such as genetic algorithms or PSO to optimize
it. In comparison with genetical algorithms, PSO is especially
attractive given its less significant computing overhead (Pedrycz
et al., 2012). In addition, this population-based method offers a sig-
nificant level of diversity of possible objective functions, which
play a role of fitness functions.

3.3. PSO in the formation of the granular representation of linguistic
terms

PSO algorithm is a population based stochastic optimization
technique inspired by bird flocking and fish schooling originally de-
signed and introduced by Kennedy and Eberhart (1995). It is based
on communication and interaction between the members of the
swarm, what means that each member of the PSO algorithm, named
as particle, determines its position by combining the history of its
own best location with those of others members of the swarm.

The algorithm flow of the PSO starts with a population of parti-
cles whose positions are the potential solutions of the problem,
and the velocities are randomly initialized in the problem search
space. In each iteration/generation, the search for optimal position
(solution) is performed by updating the particle’s velocities and
positions based on a predefined fitness function. The velocity of
each particle is updated using two best positions, namely personal
best position and neighborhood best position. The personal best
position is the best position the particle has visited and neighbor-
hood best position is the best position the particle and its neigh-
bors have visited (Daneshyari and Yen, 2012; Fu et al., 2012;
Wang and Watada, 2012).

The construction of the information granules formalized as sets
is realized as a certain optimization problem solved by using the
PSO. In the following, we elaborate on the fitness function, its real-
ization, and the PSO optimization along with the corresponding
formation of the components of the swarm.



Fig. 2. Particle structure for a vector of cutoff points.
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3.3.1. Particle
One of the essential issues in designing a PSO algorithm is finding

an appropriate mapping between problem solution and the parti-
cle’s representation. In this study, each particle represents a vector
of cutoff points in the [0,1] scale. These cutoff points are used to rep-
resent the intervals into which the linguistic terms are translated.

For example, in Fig. 2 we show a set of five linguistic terms
(Very Low (VL), Low (L), Medium (M), High (H), and Very High
(VH)) with their respective cutoff points (a1,a2,a3,a4) to express
preferences, and a set of three linguistic terms (Less Important
(LI), Important (I), and Very Important (VI)) with their respective
cutoff points (b1,b2) to quantify the importance degrees. Then we
form the following mapping: VL: [0,a1], L: [a1,a2], M: [a2,a3], H:
[a3,a4], and VH: [a4,1], and LI: [0,b1], I: [b1,b2], and VI: [b2,1],
respectively. If we consider m linguistic values of the linguistic
term set used by the experts to express their opinions and n lin-
guistic values in the linguistic term set used to assign the impor-
tance degrees, this results in m + n � 2 cutoff points. Being
arranged in a single vector, they constitute an individual in the
swarm of the PSO. In this particular example, an individual is rep-
resented as [a1 a2 a3 a4 b1 b2] (see Fig. 2).

3.3.2. Fitness function
The aim of the PSO is the maximization of the values of the per-

formance index by adjusting the positions of the cutoff points in
the [0,1] scale. When it comes to the formation of the fitness func-
tion, its determination has to take into account a fact that interval-
valued entries of the reciprocal preference relations have to return
numeric values of the fitness function. This is realized as follows:
as we encounter information granules in the form of intervals, a
series of their realizations being the entries both of the preference
relations and the importance degrees associated to the experts is
formed by randomly generating entries coming from the above
intervals. To do so, the reciprocal linguistic preference relations
{P1, . . . , Pm} provided by the experts are sampled to obtain the pref-
erence relations {R1, . . . , Rm} where each entry of Rl, l = 1, . . . , m, is
represented by a number drawn from the uniform distribution de-
fined over the corresponding subinterval of the [0,1] interval
according to the linguistic term of that entry in the linguistic pref-
erence relation Pl. In the same way, the importance degree lI(el)
associated to each expert el is sampled to obtain a weight uk which
is represented by a number drawn from the uniform distribution
defined over the corresponding subinterval of the unit interval
which represents the linguistic term lI(el). According to it, the per-
formance index Q is expressed as follows:

Q ¼
Xm

l¼1

wl � cdl; ð8Þ
where cdl is the consistency degree associated with the reciprocal
preference relation Rl and wl is a weight associated to the experts
el calculated as wl ¼ ul

SðmÞ, being SðmÞ ¼
Pm

i¼lul. To obtain the consis-
tency degree cdl, the procedure described in Section 2.2 is used.

As the components are intervals but we require a numeric value
of the fitness function, the reciprocal linguistic preference relations
{P1, . . . , Pm} and the linguistic importance degrees lI(el) associated
to each expert are sampled 500 times. The average of the values of
the performance index Q computed over each collection of 500
samples is the fitness function, f, associated with the particle
formed by the cutoff points:

f ¼ 1
500

X500

i¼1

Q i; ð9Þ

A way of the formation of the fitness function is in line with the
standard practices encountered in Monte Carlo simulations (Wil-
liams, 1991).

3.3.3. Algorithm
In the PSO we use the generic form of the algorithm where the

updates of the velocity of a particle are realized in the form v(
iter + 1) = w � v(iter) + c1a � (zp � z) + c2b � (zg � z) where ‘‘iter’’ is
an index of the generation and � denotes a vector multiplication
realized coordinatewise. a and b are vectors of random numbers
generated from a uniform distribution expressed over the unit
interval, zp represents the local best solution and zg represents
the global best solution positioned in the search space. The next
position (in iteration step ‘‘iter + 1’’) of the particle is computed
in a straightforward manner: z(iter + 1) = z(iter) + v(iter + 1). The
inertia coefficient (w) is kept constant through the entire optimiza-
tion process and equal to 0.2 (this value is commonly encountered
in the existing literature (Pedrycz et al., 2012)). The progression of
the optimization is quantified in terms of the fitness function ob-
tained in successive generations.

When it comes to the representation of solutions, the particle z
consists of ‘‘m + n � 2’’ entries positioned in the [0,1] interval that
corresponds to the search space. There is some additional imple-
mentation constraint to be addressed in order to arrive at a mean-
ingful solution. We request that the bounds of the intervals are
kept sufficiently distinct so that the values of the fitness function
is adjusted as follows: if the minimal length of the intervals, length,
is less than 0.05 then the fitness function is set to some low value,
say �1, that is far above the typical values of this fitness function
encountered when optimizing the intervals. In other words, the
low value of the fitness function penalizes a situation when the
bounds start to overlap and lose their semantics.

Finally, one should note that while PSO optimizes the fitness
function, there is no guarantee that the result is optimal, rather
than that we can refer to the solution as the best one being formed
by the PSO.

4. Experimental studies

In this section, we illustrate the method presented in Section 3
and highlight its main features by presenting several examples. In
all experiments, PSO was used with the following values of the
parameters which were selected as a result of intensive
experimentation:

� The size of the swarm consisted of 100 particles. This size of the
population was found to produce ‘‘stable’’ results meaning that
very similar or identical results were reported in successive
runs of the PSO. Since the search space is quite large, this partic-
ular size of the population was suitable to realize a search
process.
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� The number of generations (or iterations) was set to 500. It was
observed that after 500 generations there were no further
changes of the values of the fitness function.
� The parameters in the update equation for the velocity of the

particle were set as c1 = c2 = 2. These values are commonly
encountered in the existing literature.

4.1. Example 1

Let us suppose that an investment company wants to invest a
sum of money in the best industrial sector, from the set of five pos-
sible alternatives: {x1 = car industry, x2 = food industry, x3 = com-
puter industry, x4 = arms industry, x5 = TV industry}.

To do this, four experts E = {e1,e2,e3,e4} within the company are
requested to express their preferences. The experts provide the fol-
lowing reciprocal linguistic preference relations using the set of
five linguistic labels S1 = {VL = Very Low, L = Low, M = Medium,
H = High, VH = Very High}:

P1 ¼

� VL M M H
NegðVLÞ � M H M
NegðMÞ NegðMÞ � NegðLÞ L
NegðMÞ NegðHÞ L � VL
NegðHÞ NegðMÞ NegðLÞ NegðVLÞ �

0
BBBBBB@

1
CCCCCCA

P2 ¼

� NegðLÞ NegðHÞ NegðVLÞ NegðMÞ
L � NegðVLÞ NegðVLÞ NegðVHÞ
H VL � M NegðVLÞ
VL VL NegðMÞ � NegðMÞ
M VH VL M �

0
BBBBBB@

1
CCCCCCA

P3 ¼

� M H L M
NegðMÞ � M L L
NegðHÞ NegðMÞ � NegðMÞ VL
NegðLÞ NegðLÞ M � VH
NegðMÞ NegðLÞ NegðVLÞ NegðVHÞ �

0
BBBBBB@

1
CCCCCCA
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Fig. 3. Plots of the fitness function
P4 ¼

� VL H NegðVLÞ M
NegðVLÞ � VL VL M
NegðHÞ NegðVLÞ � NegðLÞ L

VL NegðVLÞ L � VH
NegðMÞ NegðMÞ NegðLÞ NegðVHÞ �

0
BBBBBB@

1
CCCCCCA

It is important to note that as the linguistic terms as repre-
sented as intervals, Neg s1

i

� �
denotes the complementary qualitative

value of s1
i , whose semantics will be determined in our model using

the equivalence index characterizing s1
i . Suppose that s1

i ¼ M, and
M is represented by the interval [0.2,0.4]. If it is sampled as, for
example, with the numeric value 0.25, Neg(M) will be equal to
0.75.

To assign importance degrees to the experts, different ap-
proaches can be used. On the one hand, the importance degrees
can be given externally, someone evaluates the experts and assigns
them the importance degrees according their knowledge about the
problem. On the other hand, the importance degrees can be as-
signed internally by evaluating how consistent the opinions pro-
vided by the experts are, the more consistent is the expert, the
more importance degree is assigned to him/her (Chiclana et al.,
2007). In this case, we use the first approach. Due to the fact that
the individuals involved in the problem have different knowledge
level on the five industrial sectors, they received the following
importance degrees using the following set of three linguistic la-
bels S2 = {LI = Less Important, I = Important,VI = Very Important}:

lIðe1Þ ¼ I; lIðe2Þ ¼ VI; lIðe3Þ ¼ LI; lIðe4Þ ¼ VI

Fig. 3a shows the progression of the optimization quantified in
terms of the fitness function obtained in successive generations.
The PSO returns the optimal cutoff points of 0.50, 0.58, 0.66, and
0.74, for the linguistic term set S1, and 0.38, and 0.73, for the lin-
guistic term set S2, respectively. Hence, the intervals corresponding
to the linguistic terms of the set S1 are: VL: [0,0.50], L: [0.50,0.58],
M: [0.58,0.66], H: [0.66,0.74], and VH: [0.74,1], whereas the inter-
vals corresponding to the linguistic terms of the set S2 are: LI:
[0,0.38], I: [0.38,0.73], and VI: [0.73,1]. The average value of the
performance index Q is equal to 0.836958 with a standard deviation
of 0.0233191.

The increase of the values of the consistency degree of each
individual preference relation in successive generations is shown
0 100 200 300 400 500
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in Fig. 3b. As we consider a joint treatment of the linguistic terms
used by the experts to express their opinions, it can be seen that
when the PSO returns new cutoff points for the linguistic terms,
the consistency degree associated of each preference relation
changes so that the consistency degrees of some preference rela-
tions increase and the consistency degrees of some preference rela-
tions decrease. However, the fitness function f always increases
(see Fig. 3a).

To put the obtained optimization results in a certain context, we
report the performance obtained when considering a uniform dis-
tribution of the cutoff points over the scale, which are equal to
0.20, 0.40, 0.60, and 0.80, for the linguistic term set S1 and 0.33,
and 0.67, for the linguistic term set S2, respectively. The average
performance index Q assumes the value 0.701907 with a standard
deviation of 0.0142151. Comparing with the values obtained by the
optimized cutoff points, the performance index Q takes on now
lower values. The histogram of distribution of values assumed by
the performance index Q in Fig. 4 provides a more comprehensive
view at the results: with the uniform distribution of the cutoff
points there is a visible presence of a longer tail of distribution
spread towards lower values of the Q.

To obtain the ranking of alternatives from best to worst, both
the aggregation phase and the exploitation phase are carried out:

� Aggregation phase. From the optimal split of the scales S1 and S2,
a collective preference relation is obtained by aggregating all
individual preference relations using the weighted average
(Montero, 1988) in the following way: pc

ik ¼
Pm

l¼1wl � rl
ik.
fre
qu

en
cy

Fig. 4.
Pc ¼

� 0:44 0:50 0:67 0:57
0:56 � 0:47 0:52 0:46
0:50 0:53 � 0:51 0:53
0:33 0:48 0:49 � 0:54
0:43 0:54 0:47 0:46 �

0
BBBBBB@

1
CCCCCCA
� Exploitation phase. The values obtained using the quantifier
guided dominance degree, QGDDi, described in Section 2.1, with
the average operator as aggregation operator, are the following:
{x1 = 0.54,x2 = 0.50,x3 = 0.51,x4 = 0.46,x5 = 0.48}.

Therefore, the global ranking of alternatives is: x1 � x3 �
x2 � x5 � x4, being the car industry the best industrial sector in
performance index Q
0.65 0.70 0.75 0.80 0.85 0.90
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25 PSO−optimized distribution of the cutoff points

Uniform distribution of the cutoff points

Histogram of distribution of values assumed by the performance index Q.
which the company should invest. The PSO-optimized distribution
of the cutoff points allows us to obtain solutions with higher levels
of consistency and, therefore, better results.

4.2. Example 2

Suppose that the supermarket manager wants to buy 1000
bottles of Spanish wine from among four possible brands of
wine or alternatives: {x1 = Marqués de Cáceres, x2 = Los Molinos,
x3 = Somontano, x4 = René Barbier}.

The manager decide to inquire eight experts about their opin-
ions E = {e1, . . . , e8}. The experts provide the following reciprocal
preference relations using the linguistic expression domain
S1 = {EL = Extremely Low, VL = Very Low, L = Low, M = Medium,
H = High, VH = Very High,EH = Extremely High}:

P1 ¼

� EH EL L
NegðEHÞ � M H
NegðELÞ NegðMÞ � VL
NegðLÞ NegðHÞ NegðVLÞ �

0
BBB@

1
CCCA

P2 ¼

� L EL NegðHÞ
NegðLÞ � VL VL

NegðELÞ NegðVLÞ � NegðVLÞ
H NegðVLÞ VL �

0
BBB@

1
CCCA

P3 ¼

� NegðELÞ M EL
EL � EL EH

NegðMÞ NegðELÞ � H
NegðELÞ NegðEHÞ NegðHÞ �

0
BBB@

1
CCCA

P4 ¼

� EL H NegðVHÞ
NegðELÞ � VL NegðEHÞ
NegðHÞ NegðVLÞ � NegðLÞ

VH EH L �

0
BBB@

1
CCCA

P5 ¼

� NegðMÞ NegðELÞ NegðVHÞ
M � L VL
EL NegðLÞ � VL
VH NegðVLÞ NegðVLÞ �

0
BBB@

1
CCCA

P6 ¼

� L M NegðVLÞ
NegðLÞ � EL VL
NegðMÞ NegðELÞ � H

VL NegðVLÞ NegðHÞ �

0
BBB@

1
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P7 ¼

� EH NegðMÞ EH
NegðEHÞ � NegðVLÞ NegðHÞ

M VL � VH
NegðEHÞ H NegðVHÞ �

0
BBB@

1
CCCA

P8 ¼

� EH VL M
NegðEHÞ � EL VH
NegðVLÞ NegðELÞ � VH
NegðMÞ NegðVHÞ NegðVHÞ �

0
BBB@

1
CCCA

As the experts involved in the problem have different
levels of knowledge about wine, they received the following
importance degrees provided by the manager using the
following set of five linguistic labels S2 = {LI = Less Important,
N = Neutral, I = Important, SI = Somewhat Important, VI = Very
Important}:
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Fig. 5. Plots of the fitness function f and the consistency degree.
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lIðe1Þ ¼ N; lIðe2Þ ¼ I; lIðe3Þ ¼ VI; lIðe4Þ ¼ LI
lIðe5Þ ¼ LI; lIðe6Þ ¼ VI; lIðe7Þ ¼ SI; lIðe8Þ ¼ LI

The progression of the optimization is quantified in terms of
the fitness function obtained in successive generations (see
Fig. 5a). The PSO returns the optimal cutoff points of 0.38,
0.43, 0.50, 0.59, 0.65, and 0.70, for the linguistic term set S1,
and 0.10, 0.49, 0.61, and 0.72, for the linguistic term set S2,
respectively. In this way, the intervals corresponding to the lin-
guistic terms of the set S1 are: EL: [0,0.38], VL: [0.38,0.43], L:
[0.43,0.50], M: [0.50,0.59], H: [0.59,0.65], VH: [0.65,0.70], and
EH: [0.70,1], whereas the intervals corresponding to the linguis-
tic terms of the set S2 are: LI: [0,0.10], N: [0.10,0.49], I:
[0.49,0.61], SI: [0.61,0.72] and VI: [0.72,1]. The average perfor-
mance index Q takes a value equal to 0.779122 with a standard
deviation of 0.0207083.

In Fig. 5b we show the progression of the consistency degree of
each individual preference relation in successive generations. As in
performance index Q
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Fig. 6. Histogram of distribution of values assumed by the performance index Q.
the above example, when the PSO returns new cutoff points for the
linguistic terms, the consistency degree associated of each prefer-
ence relation changes. In this way, some consistency degrees in-
creases and others decreases, but the fitness function f always
increases.

When considering a uniform distribution of the cutoff points
over the scale, which are equal to 0.14, 0.28, 0.42, 0.56, 0.70, and
0.84, for the linguistic term set S1 and 0.20, 0.40, 0.60, and 0.80,
for the linguistic term set S2, respectively, the average perfor-
mance index Q assumes the value 0.696679 with a standard
deviation of 0.0112915. As before, the optimized cutoff points
obtain higher values of the performance index Q than the values
obtained by the uniform distribution of the cutoff points. In the
histogram shown in Fig. 6, we can see that in the PSO-optimized
cutoff points there is a visible presence of a longer tail of
distribution spread towards higher values of the performance in-
dex Q.

In order to obtain the best wine, both the aggregation phase and
the exploitation phase are carried out:

� Aggregation phase. From the optimal split of the scales S1 and S2,
a collective preference relation is obtained by aggregating all
individual preference relations. To do so, we use the weighted
average described in the above example. A reciprocal collective
preference relation with the higher performance index Q is
given below:
Pc ¼

� 0:66 0:43 0:54
0:34 � 0:42 0:54
0:57 0:58 � 0:62
0:46 0:46 0:38 �

0
BBB@

1
CCCA
� Exploitation phase. Using the quantifier guided dominance
degree, QGDDi, described in Section 2.1, with the average oper-
ator as aggregation operator, we obtain the following values:
{x1 = 0.54, x2 = 0.44, x3 = 0.59, x4 = 0.43}.

The global ranking of alternatives is: x3 � x1 � x2 � x4, and
therefore the manager should buy 1000 bottles of Somontano
wine. As in the above example, the PSO-optimized distribution of



632 F.J. Cabrerizo et al. / European Journal of Operational Research 230 (2013) 624–633
the cutoff points obtains solutions with higher levels of consis-
tency and, therefore, better results.

5. Discussion

In this section, we analyze some possible drawbacks and
advantages of the model proposed in this paper with respect to
the classical linguistic computation approaches presented in
Section 1.

We have presented the methodology and the algorithmic
framework of constructing the ranking of alternatives from best
to worst in GDM problems defined in heterogeneous contexts
when the experts provide their opinions using linguistic preference
relations. In such a case, although the linguistic information is
readily available, to be fully utilized, the phase of information
granulation becomes indispensable. The mapping of the linguistic
terms to the corresponding information granules (specified as
intervals) makes the linguistic information operational so that
the final ranking of alternatives is determined. The formation of a
suite of information granules realizing a linguistic quantification,
as a result of a given optimization problem, equips these granules
with well-articulated semantics.

On the one hand, the main advantage of our method is that the
distribution and the semantics of the linguistic terms are not
established a priori, as they are obtained according to an optimiza-
tion problem in which a performance index, based on experts’ con-
sistency, is optimized by a suitable mapping of the linguistic terms
on information granules. It allows us to obtain solutions with high-
er levels of consistency in GDM problems and, hence, better re-
sults. On the other hand, the drawback is that as information
granules are in the form of intervals, a series of their realizations
have to be formed by randomly generating values coming from
the intervals and, therefore, the method comes with some loss of
information. It is important to note that as granulation uses inter-
vals, the approach discussed here is more general and some other
formalism of granulation, say fuzzy sets, could be used.

In what follows, we describe briefly some classical linguistic
computation models and contrast them with the presented in this
study:

� Linguistic computational model based on membership functions.
This computational model makes use of the Extension Principle
from fuzzy arithmetic (Degani and Bortolan, 1988): the result of
an aggregation function over a set of linguistic labels in a lin-
guistic term set is a fuzzy number that usually does not have
an associated linguistic label on the linguistic term set. There-
fore, it is necessary to apply an approximation function to asso-
ciate it to a particular label on the linguistic term set – the
retranslation problem (Martin and Klir, 2006) – or to use fuzzy
ranking procedures to obtain a final order of the alternatives.
However, the use of the approximation function to solve the
retranslation problem introduces loss of information. In addi-
tion, it is necessary to establish a priori both the distribution
and the semantics of the linguistic terms. In this way, solutions
with lower levels of consistency are obtained.
� Linguistic computational model based on type-2 fuzzy sets. This

computational model makes use of type-2 fuzzy sets (Mendel,
2002) to model linguistic assessments. It is worth to note that
as the previous linguistic model, this type-2 fuzzy sets based
model also suffers from the retranslation problem, that is, the
resulting type-2 fuzzy set from an aggregation operation must
be mapped into a linguistic assessment at the end of a decision
process, and it needs to define a priori both the distribution and
the semantics of the linguistic terms.
� Linguistic symbolic computational models based on ordinal scales.

In this model, the computation is made using a convex combi-
nation of linguistic labels which directly acts over the label
indexes of the linguistic terms set (Delgado et al., 1993; Herrera
et al., 1996, 1997). Note that this model usually assumes that
the cardinality of the linguistic term set is odd and that linguis-
tic labels are symmetrically placed around a middle term.
Therefore, the distribution of the linguistic terms is known a
priori and uniform. As we have seen in the examples of the
above section, when the distribution of the linguistic terms is
uniform, solutions with lower levels of consistency are usually
obtained. In addition, as the result of the aggregation is not usu-
ally an integer, that is, does not correspond to one of the labels
in the term set, it is also necessary to introduce an approxima-
tion function to obtain a solution on the terms set. This model
also suffers from loss of information.
� 2-tuple linguistic computational model. The 2-tuple linguistic

representation model (Herrera and Martinez, 2000) is a sym-
bolic model carrying out processes of computing with words
easily and without loss of information, as the results of pro-
cesses of computing with words are always expressed in the ini-
tial linguistic domain extended to a pair of values including the
label and additional information. However, in this model, the
distribution of the linguistic term is uniform and it is define a
priori. Therefore, this model produces solutions with lower lev-
els of consistency.

6. Conclusions

In this paper, we have developed a method based on granular
computing to solve GDM problems defined in heterogeneous con-
texts when linguistic information is used. To do so, an information
granulation of the linguistic information and its optimization using
the PSO framework have been presented. In the future, we propose
to continue this research in several directions:

� We have used the PSO an optimization framework because it
offers a great deal of flexibility. Different fitness functions could
be easily accommodated and a multiobjective optimization can
be sought. The need for the two-objective optimization
becomes apparent in case of a GDM problem where, in addition
to the criterion of consistency, one can consider a maximization
of the consensus achieved among the experts. The direct appli-
cation of the aggregation and the exploitation steps can lead
sometimes solutions that are not well accepted by some experts
in the group (Saint and Lawson, 1994), because they could con-
sider that their opinions have not been taken into account prop-
erly to obtain the solution and, hence, they might reject it. To
avoid this situation, it is advisable that experts carry out a con-
sensus process (Cabrerizo et al., 2009, 2010; Fu and Yang, 2012;
Mata et al., 2009), where the experts discuss and modify their
preferences gradually to achieve a sufficient agreement before
applying the aggregation and the exploitation steps.
� We propose the application of the discussed methodology to

other formalisms of information granules as fuzzy sets, rough
sets, shadowed sets, probabilities and so on. In particular, deal-
ing with probabilistically granulated linguistic terms could help
shed light on possible linkages between probabilistic and fuzzy
models of decision making along with some possible hybrid
probabilistic-fuzzy schemes.
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