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Abstract—Since Zadeh’s proposal and Mamdani’s seminal preferences, knowledge, etc.) of the person who makes the
ideas, interpretability is acknowledged as one of the most evaluation [1].
appreciated and valuable characteristics of fuzzy system iden- Interpretability is a distinguishing capability of fuzzyss

tification methodologies. It represents the ability of fuzzy sys- t that i I iated i t licati E
tems to formalize the behavior of a real system in a human ems that s really appreciated In most applications. Everem

understandable way, by means of a set of linguistic variables it becomes an essential requirement for those applications
and rules with a high semantic expressivity close to natural that involve extensive interaction with human beings. Thus
language. Interpretability analysis involves two main points of we will focus on the so-calledhumanistic systemslefined
view: readability of the knowledge base description (regarding by Zadeh [2] as those systems whose behavior is strongly

complexity of fuzzy partitions and rules) and comprehensibility . . . .
of the fuzzy system (regarding implicit and explicit semantics influenced by human judgment, perception or emotions. For

embedded in fuzzy partitons and rules, as well as the fuzzy instance, decision support systems in medicine [3] must be
reasoning method). Readability has been thoroughly treated by easily understandable, for both physicians and patients, w
many authors who have proposed several criteria and metrics. the intention of being reliable, i.e., widely accepted and
Unfortunately, comprehensibility has usually been neglected be- successfully applicable.

cause it involves some cognitive aspects related to the human Unfortunately. f t tint tabls
reasoning which are very hard to formalize and to deal with. This nfortunately, fuzzy systems are not interpretapls se

paper proposes the creation of a new paradigm for fuzzy system they have to be designed carefully to fulfill that charastégi
comprehensibility analysis based on fuzzy systems’ inference Of course, the use of linguistic variables [2] and rules [8],

maps, so-called fuzzy inference-grams (fingrams) by analogy favors interpretability due to their high semantic exprags
with scientograms used for visualizing the structure of science. close to natural language. Nevertheless, there are maiey-dif

Fingrams show graphically the interaction between rules at the ti hich t be taken int ti der to desi
inference level in terms of co-fired rules, i.e., rules fired at the SNt ISSUES WhICh mMuSt be taken Ito account in order to design

same time by a given input. The analysis of fingrams offers interpretable fuzzy systems. Firstly, several interpiits
many possibilities: measuring the comprehensibility of fuzzy constraints [6], [7] have to be imposed along the whole desig
systems, detecting redundancies and/or inconsistencies amongprocess with the aim of producing fuzzy systems with the
fuzzy rules, identifying the most significant rules, etc. Some of yaqired interpretability level, i.e., systems capablebeing
these capabilities are explored in this work for the case of fuzzy derstood. d ibed ted for b h bei
models and classifiers. understood, described or accounted for by a human being.
As a result of these constraints, interpretability is ulgual
achieved at the cost of penalizing accuracy. For this reason
most fuzzy systems are built jeopardizing interpretabitinly
paying attention to accuracy. Even in those cases, authors
usually claim their fuzzy systems are much more interptetab
than those systems based on black-box techniques, likalneur
Interpretability of a fuzzy system involves the skill ordat networks, because they are based on fuzzy logic. Thoseslaim
of the specific end-user, i.e., the person who interprets #ge quite questionable and should be rejected becauserthey a
linguistic description with the aim of inferring (conceang) deceptive. Obtaining interpretable fuzzy systems is aenaft
the significance of the system behavior. In consequence; chgesign which must be carefully considered. Unless this iedo
acterizing and assessing interpretability is a very suibjec neatly, produced fuzzy systems will be hardly interpregabl
task which strongly depends on the background (experienpecoming black-boxes in that interpretability sense.
) The assessment of interpretability has to face two main
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I. INTRODUCTION

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

individual linguistic term (and its related fuzzy set) toethtutorial that allows the user to become familiar with theltoo
analysis of the cooperation among several rules, what dispeAs a result, the interested reader can use GUAJE not only to
on the fuzzy inference mechanism. reproduce the illustrative examples presented in this pépé
Most previous works [9], [10] only analyze the readabilitylso to generate and analyze her/his own fingrams.
of the designed fuzzy system. Moreover, the analysis of The rest of the contribution is organized as follows. Sec-
readability is usually reduced to a basic analysis of corifyle tion Il presents some preliminaries including basic aspect
i.e., it consists of counting the number of elements inaludeelated to interpretability assessment, a brief overviaw o
in the fuzzy knowledge base (number of rules, premises, liexistent methodologies for visual representation andyaisl
guistic terms, etc.). Other contributions also analyzecstiral of fuzzy systems, and a short introduction to the most widely
properties of fuzzy partitions [6] such as distinguishiédgil known techniques for social network analysis extending the
coverage, and so on. Recently, a few authors have shodesign and analysis of visual science maps. Section Il in-
the importance of extending the analysis of readability tnoduces the fingram generation process while Section IV
evaluate the implicit and explicit semantics embedded presents the possibilities fingram analysis offers. Sectio
a fuzzy knowledge base [11], [12]. Of course, keeping shows some illustrative application examples. Finallyneo
small number of linguistic terms is appreciated due to thmnclusions and future works are pointed out in Section VI.
limits of human processing capabilities [13]. Neverthsles
not only the quantity but also the quality is very important. 1. PRELIMINARIES
Thus, the selection of the right linguistic terms is essénti
to yield interpretable systems. Notice that, interpreddbkzy
partitions must represent prototypes that are meaningiul f There are universal indices commonly accepted for accuracy
the interpreter. assessment. For instance, the mean square error and the
Although there has been a huge effort for defining, charaedmber of misclassified patterns are widely used for regness
terizing and assessing interpretability in the last dectiie 2and classification problems, respectively. However, thiaat
is still a lot of work to be done. Namely, the comprehendipili the cas.e'\(vhen deallng V‘_"th mterpr'etablllty evaluatlongvm
analysis of the system explanation is almost negligible: UH€ definition of such indices remains an open hot topic.
derstanding the system behavior from its linguistic deiom There are lots of interpretability indices focusing on spe-
becomes a very hard task that involves the inference leydic characteristics of FRBSs. Nevertheless, finding out a
going beyond the simple assessment of the system structyféersal index for interpretability seems to be an impilssi
readability. mis;ioq §ince the considergd concept is strongly affec;_ed b
This work presents a novel methodology, firstly sketchedy/biectivity. In fact, there is a need to look for two kinds
in [14], for analyzing the fuzzy inference layer of a fuzzyPf complementary indices, objective and subjective ones. O
rule-based system (FRBS) from the comprehensibility poift® ©ne hand, objective metrics are needed to make feasible
of view. It is mainly based on the adaptation of recerdgir comparisons among different fuzzy systems. On the_rothe
analysis techniques from a completely different researdt,fi hand, subjective measures are demanded when looking for
that of Scientometrics [15]. We will consider the use ar,.eer:sonallzed fu.zzy systems. Such systems require a flexible
enrichment of existing techniques for visualizing sciboti index to be easily adaptable to the context of each problem as
information based on social network analysis [16], [17]lech Well as to end-user's preferences. _
scientograms or visual science maps [18], to the visualaisal _Interpretability indices can be grouped according to two
of the fuzzy systems’ inference process. As a consequeng@ferent criteria [20], the nature of the interpretalylindex
our new comprehensibility analysis tool will be called fyzz (Structure vs. semantics) and the elements of the fuzzy know
inference-gramsfiigramsfrom now on). edge ba_se that it considers (fuzzy partitions vS. _rule base)
FRBSs can be either designed from expert knowledge fQur derived groups are: (Q1) structure at partition le(@i)
automatically generated from experimental data with aifipec Structure at rule base level, (Q3) semantics at partitioalje
learning technique. Anyway, the correspondence of geinera@nd (Q4) semantics at rule base level.
and specificity in between the extracted knowledge and the

A. Assessing Interpretability of Fuzzy Rule-based Systems

. " i Fuzzy Partition Level Rule Base Level
available examples is not always straightforward. Moreove o1 o
this fact may become a handicap. So for, a visual representa-
tion of the FRBS inference process allows us to find out hOWkrpretability Number of membership functions Number of rules
rules cover examples and how rules are related among them, Number of featureshvariables Number of conditions
because they interact to produce the overall behavior of the Completences o coverage Q3 04

. Normalization Consistency of rules
SySter:n ’ . . Semantlc-b_e_lsed Distinguishability Rules fired at the same time
A first software package for generation and analysis oferpretabiity Complementarity Transparency of rule structure
fingrams has been implemented. It is freely downloadable Relative measures Cointension

as open source software as part of the GUAJE ‘togll
application examples presented in this paper are conduckém 1. Quadrant of interpretability indices [20].

using this software. Moreover, it includes an interactivédg
Most well-known existing interpretability indices corre-

Lhttp:/Avww.softcomputing.es/guaje [19] spond to groups Q1 and Q2, thus they focus on readability
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. . TABLE |
(in terms of complexity at structural level) of fuzzy system CHARACTERISTICS OF VISUALIZATION METHODS FOR
In consequence, they are objective indices since theydibsic MULTI-DIMENSIONAL FUZZY RULES

count the number of elements (features/variables, methnipers
functions, rules, premises, etc.) existing in the FRBS. R
. . . epresent data samples v

Indices included in group Q3 usually measure the degree of Represent overlapping 7 7 7
fulfillment of semantic constraints that should be overisgub among rules at
during the design process. In [6] Oliveira proposed some set descriptive level
mantic constraints (coverage, normalization, distinigaiislity, Represent rule interactio
etc.) required to have interpretable fuzzy partitions frira at inferential level
semantical point of view. The use of strong fuzzy partitions
(SFP) [21] satisfies all these semantic constraints. Nefeth,
notice that, breaking the SFP property can yield more ateura

systems. Therefore, there are proposals that ensure a g&% representations of fuzzy systems. It comprises visaal

interpretability at this level without considering SFP [1[22], tion of f_uzzy data, fu;zy partltlons,. and fuzzy rules: Didiat
[23]. alternatives are available depending on the requiremets o

Finally, group Q4 is the one that contains the Iowestnumbtehre end-user (fuzzy designer, domain expert, etc.). More-

of works in the literature. These indices advocate for editen ovekr, requw?mer?t's may (':hangelaccc.erl.ng to the. visuadizati
the analysis of readability to evaluate the compreheritsibil tasks t? [c)jer orrln. w;_terz.;\ctlve exp Orftl(:jnb’ aLlJ(tofmanc Cum[_} q
i.e., the implicit and explicit semantics embedded in fuzzy-PPOred €xp ?ra lon; receving feedback from users, an
systems [12]. There are also some papers dealing with ﬁ\;aeoturmg users’ profiles and adaptation.
consistency of fuzzy rule bases and with the number of co-fire The most relevant works on the design of visual repre-
rules, i.e., rules simultaneously fired by a given input {24]sentations for multi-dimensional fuzzy rules are thoseetlev
[26]. oped by Berthold et al. [32], [33]. They make a mapping
from high dimensional feature spaces onto two-dimensional
. , spaces which maintains the pairwise distances betwees. rule
B. Visual Description and Analysis of Fuzzy Rule Bases the estaplished mapping also displays an approximation of
There are not many papers tackling with visual analysésach rule spread and overlapping. As a result, it is possible
of the fuzzy system inference process. Probably, this is dige visualize and explore multi-dimensional FRBSs in a 2D
to the well-known linguistic expressivity of fuzzy systemgraphical representation. Authors claim such representat
what gives prominence to linguistic representations. Hare yields a user friendly and interpretable exploratory asialy
when dealing with complex real world problems, even whedowever, the complexity of the analysis grows exponentiall
the design is made carefully to maximize interpretabilityvith the number of variables and rules to be displayed. In
the number of rules can become huge because of the cureasequence, in complex and high dimensional problems, the
of dimensionality characteristic of FRBSs. In those casasterpretation of the resulting graph is not straightfordva

looking for a plausible Iinguisti_c .explanat.ion of the infed Evsukoff et al. [34], [35] propose the use of an interprefati
output, derived from the linguistic description of the fzZ 3 mework that helps understanding multidimensional yuzz
knowledge base, is not straightforward. When many rules §{§eg They assign a symbol to each rule, which is repredente
fired at the same time for a given input, explaining the i€err ,, 5 Gaussian membership function. The model interpretatio

output as an aggregation of all the involved rules can be Vew pased on analysis of rule weights and on a 2D linear

complicated. principal component analysis projection to visualize trozled.
Some authors [27] have searched for understandable ways

of interpreting the system output in terms of describing the On @ different basis, Casillas et al. [36] present the skedal
inferred output possibility distribution by a set of previgy “transmpn chromatic maps” for fuzzy rules generated from
defined linguistic terms along with some linguistic modiieruncertain data. These maps are generated as result of & visua
and connectives. As an alternative, other authors have m&Rdeling process that represents the extracted knowledge i
a bet for searching visual explanations of the system olflore understandable way, thus helping in the postproggssin
put [28]-[30]. In these papers, Ishibuchi et al. establishset interpretation stage of kpowledge dlscoyery in databm
of design constraints with the aim of producing groups aésul allow us.to see the relations among variables by observiag th
with only two antecedent conditions that can be represented-romatic evolution of the surfaces on the graph.
a two-dimensional space. These works focus on providing aTable | summarizes the main characteristics of the most rel-
visual representation able to explain the output of fuz4g-ru evant visualization methods for multidimensional fuzzjesu
based classifiers to human users. Nevertheless, congjdepreviously introduced. All methods make a 2D representatio
only two antecedents per rule is a strong limitation that mayf fuzzy rules. Some of them represent data and some others
penalize the accuracy of the system, especially when dpalghow the existing overlapping among rules at descriptivelJe
with complex and high dimensional problems. but none of them represents rule interaction at inferengal.le

A complete analysis of visualization requirements for fuzzThis brief review shows that there is a lack of methods
systems is provided in [31]. That contribution gives adepicting the interaction among rules that, however, could
overview on existing methodologies to yield 2D and 3D graplstrongly help in the comprehension of the rule base behavior

[32] | [33] | [34], [35] | [36]
v

=]
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C. Social Network Analysis generation of balanced maps, etc. It assigns coordinates to

A social network is a social structure made up of individual§e nodes trying to adjust as much as possible the distances
called “nodes”, which are connected or tied by “edges” (al¥isting among them with respect to actual network distance
called ties, links, or connections) corresponding to onmore  In the Fruchterman-Reingold Algorithm [45], the attraatio
specific types of interrelations, such as friendship, comm®&' repulsion among nodes determines in which direction a
interest, or knowledge. Social network analysis (SNA) [16)0de should move. Nodes move from an original layout step
[17] views social relationships in terms of network theor)gy step. The step width of node movements decreases at each
regarding nodes and edges. Nodes are the individual acté@gation. Once nodes stop moving, the procedure ends.
within the networks, and ties are the relationships amoeg th The combination of SNA through the use of network scaling
actors. Research in a number of academic fields has shod@orithms and visualization methods has proved its céipabi
that social networks operate on many levels, from families (0 9et high quality, schematic visualizations of the resgit
to the level of nations. They play a critical role in determgn Networks in various fields: psychology (to represent the-cog
the way how problems are solved, organizations are run, aféve structure of a subject [40], [41]), software devetumt
individuals succeed in achieving their goals. (for debugging of multi-agent systems [46]), scientonestri

Given a network, the scaling algorithms have the goal {&r the analysis of large scientific domains [18], [47])c.et
take proximity information and to obtain structures reiraal
the underlying organization. They use similarities, clatiens, p. Scientogram Design and Analysis
or distances to prune a graph based on proximity amongr, termscientogram a particular case of social network
pairs of nodes. The three predominant ways proposed in the '

. . IS coined in the specialized literature to make reference to
literature to perform this task are analyzed below [37]. P

The first option introduces a link weight threshold and Elosrl:ginSSC'(\a/gfea?_g%SéS;z'é vl\l/ls:aall_,rAeﬁp;estzr:tzﬁlgln s[ 4(;; TT;”
only considers the links having weights above this thresn- - varg » Moy gtal ' :

old [38]. This approach is straightforward and easy to inr]plgroposed a methodology to create scientograms with the aim

. o of illustrating interactions among authors and papersuttino
ment. However, it does not take the intrinsic structure ef th., .. 9 L g authe pap
. . citations and co-citations. The basic idea turns up from the
underlying network into account, so the transformed networ . . o
- notion of manuscript co-citation that represents the feaqy

may not preserve the essence of the original one. Furthetmor:

the value of the threshold could be hard to adjust for the. usWIth which two documents are simultaneously cited by others

r. . . .
The second option extracts a minimum spanning tree (MS&'&',[S poss?le _to tgroup g‘fm by aughor, Jc()jgrnal, o{hthimztlcf
from a network of N vertices [39]. This approach guaranteeg egory, ?r: ins falnce.f (‘iﬁu;se, egen 'rt'g cind fe mtho
the number of links in the transformed network is always- grouping, the information hat can be extracted from the

1. However, that does not always reflect the subjacent relevl nerated maps 1S d|ffer_e nt_. - ,
The standardized co-citation measure was originally défine

information. i
The third option imposes constraints on paths and excluo@ésalton and Bergmark [49]:
links that do not satisfy the constraints. One of the mostmno 3 Celij)
methods, the Pathfinder algorithm [40], [41], is frequentgd MCN(ij) = ————= 1)

due to its mathematical properties related to the predervat
of the triangular inequality. Those properties include thahere Cc means co-citatione stands for citation; and j
conservation of links, the capability of modeling symmeti represent two different entities (authors, documentsnals,
but also asymmetrical relationships, and the representati categories, institutions, countries, etc.).
the mostsalientrelationships present in the data. The result of As an illustrative example, Fig. 2 represents the scieatogr
applying Pathfinder to a network is a pruned network callgdf the world production in 2002. It consists of 16 thematic
PFNET. areas where the volume of the nodes is shown proportional to
Once PFNETs or any other kind of pruned networks atbe volume of produced documents. The links represent the
generated, there are many different methods for their aatiom main connections among these areas.
visualization. Force-based or force-directed algorittaresthe  Notice that, the combination of entities co-citation, PHSE
most widely used class of algorithms for drawing graphs ind Kamada-Kawai considered building this scientogram
the area of information science [42], [43]. Their purpose imakes the most important entities in the network (i.e., ¢hos
to locate the nodes of a graph in a two or three dimensiorsiiaring more sources with the rest) tend to be placed toward
space so that all the edges are approximately of equal lentjte center.
and there are as few crossing edges as possible, tryingdamobt Finally, concerning the analysis of scientograms, acogydi
the most aesthetically pleasing view. This family of methodo [18], [48], there are three main measures of centrality
has Kamada-Kawai [44] and Fruchterman-Reingold [45] dkat yield useful information with the aim of detecting and
their most representative methods. identifying the most significant nodes in a PFNEJentrality
Kamada-Kawai [44] is one of the most extended method¥egree (regarding the number of direct links gathering in
for visualizing PFNETSs. Starting from a circular positioh oa node),Closeness Centralitymeasuring the shortest paths
the nodes, it generates networks with aesthetic criteridn stamong nodes, for which the inverse of the sum of the distance
as the maximum use of the available space, the minimurha node to all other nodes would indicate its importancey, a
number of crossed links, the forced separation of nodes, timermediation Centralityor Betweennesg¢looking at nodes
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® Definition A fingram is defined by a tuple
corosessoce @ (R P T, E,m, NSM, NDM) in which:
Ris the set of fuzzy rules (nodes), denotRd 1 < i < r,
N with r being the number of rules. '
s, @i A ' P_ls the set of f_uzzy partitions of input and output variables.
ovtes Greraics AT A | is the fuzzy inference mechanism used.
- utar Py @ PariePhysis E is the set of problem instances, denoféd 1 < k < d,
il i@y, Ecoay e with d being the number of instances.

m is the metric used to creat®/, a square weight matrix
(r x r) that represents the firing interactions among fuzzy

ool rules. The entries of that matrix are the weights associated

e with the links;m;; is the weight of the link connecting;
and R;.
e e Sones NSMis the considered network scaling method.
NDM is the considered network drawing method.
Fig. 2. Scientogram of the thematic areas of world scienc@220
The remaining of the section explains in detail the procedur

followed to create fingrams. The section finishes with an
that act as links between other nodes contained in the storiustrative example.
path, for which the highest value would highlight the most
central node). A. Fingram generation
The generation of a fingram from a FRBS, a fuzzy inference
I1l. FINGRAM DESIGN mechanism, and a set of problem instances is made by means

This paper proposes a new methodology for visual repf the following procedure:
resentation and exploratory analysis of the fuzzy infegenc
process in FRBSs. In such systems, various rules can be firédocedure FINGRAM(R,P,1,.E,m,NSM,NDM)
SImUItaneOUSIy by an Input Moreover’ the usual beha\/|0r Of begn /* Generation of the social network defined by M usi ng the set of fuZ_2y
FRBSs is that1 given a set of prob|em |nput8, several fuzzy rules R, the set of fuzzy partitions P, the fuzzy inference nechani sm

I, the set of instances E, and the metric m. */

rules are fired at the same time. In other words, the inputespac | M «— network generation (R, P, 1, £, m)

begin

is usually covered by rules with dense overlapping among L FR;, FRj <~ get number of fired rules (R, P, I, B);

SFR;; +— get number of co-fired rules (R, P, I, E, m);
them.

M «+— compute M;; (FR;, FRj, SFR;;);
|n thls proposal we take advantage Of '[hIS Characterlstlc /+ Scaling of the social network defined by M through the use of the ,

i
network scaling method NSM.

of FRBSs using a set of problem instances to uncover co- | i« metwork scaling (M, NSM)
fired rules. This co-firing information is used to create abci | e e o e o B ey,
networks representing fuzzy systems’ inference maps,dhe s I+ Graphical representation of the resulting pruned social network MS
calledfingrams In these kinds of social networks each fuzzy | wp < wecuorn draming (M8 NDA) !
rule is represented by a node, and the relations among mées a | " N1« compute information retated to nodes (M5);
. . . NP «— compute the network layout (MS, NDM);
represented by weighted edges whose value is computed using L MD +— paint edges(MS, NDM, NI, NP);
a specific metric. Different metrics can be used to construct —
a social network given a dataset of cases representing the
input-output relations existing in the problem tackled,et s Notice that the rest of this section is devoted to explaitheac
of fuzzy rules, and a fuzzy reasoning mechanism. As a reswf,the steps of the procedure in detail.
fingrams show graphically the interaction among fuzzy rules 1) Network generation:Starting from a set of fuzzy rules
at the inference level in terms of co-fired rules. R, a set of fuzzy partitiond?, a fuzzy inference mechanism
Due to the high overlapping among rules, the complete @ set of problem instances, and a metricm, a social
fingram is usually quite dense and difficult to analyze evetetwork can be built, represented by a matvix which shows
for medium-size FRBSs. Fortunately, network scaling meshothe relations among rules.
can be used to simplify fingrams while maintaining their most A square matrix)/ (r x r) that contains all interactions
important relations. inside R is computed regarding the proportion of problem
As seen in Sec. II-C, social networks can be representégtances co-firing the rules.
by the use of drawing methods especially designed for that

purpose. Here, a specific graph representation is develwmped 0 mip .. may
provide the relevant information of the FRBS under study. M=| M 0 ma 2
Colors and sizes are also used to highlight distinguishing
characteristics of the system, allowing the end-user to do a mer Meg e 0
systematic analysis. We propose the following metric, inspired by the co-citatio
From a formal viewpoint, the proposed fingram definitiomeasure of scientograms (Eg. 1):
is as follows: SFR.. o
0 if ¢ 7& j
msj = ./FR6~FRJ- "y ' (3)
, T =
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SFR;; corresponds to the number of instances for which rules
R; and R; are fired simultaneously, whilé'R; and FR;

account respectively for the total number of data pairs for (mi;c@ kb (m‘igm
which rulesR; or R; are respectively fired, without taking Lessak) (G=GCh)
(C1=cc1k) (C2=cCzh)

care if they are fired together or not. Notice that;; is thus
normalized and the matrid/ is symmetrical when using this
metric.

2) Network scaling: As usual in social network design,
the initial fingram is commonly quite dense and difficult
to analyze even for medium-size FRBSs. So for, a network
scaling method is required to simplify it while keeping the
most important relations. Three options have been coreider

(a) Classification.

o Prune the network to eliminate the least informative links
according to an expert. Contrary to what one may think
by intuition when confronting the problem of pruning the
graph, using a threshold to filter the graph is not worthy.
There exist a large number of links with high weights
that would imply the selection of a high threshold value,
so for, producing a disconnected network. Of course, tf@. 3. Fingram’s interpretation.
latter does not help in the comprehension of the global
system, which is our ultimate goal in this contribution.

o Use a specific scaling algorithm that preserves the most
important links without producing isolated nodes, such as
Pathfindet, previously introduced in Sec. II-C.

« Use a combination of the previously mentioned alterna- 3)
tives. First, links are pruned and then Pathfinder scales
the resulting graph. As we will show later, this hybrid
option can be used to analyze classification problems.
In such case, potential inconsistencies among rules, i.e.
relations among rules pointing out different classes, have

(b) Regression.

in this contribution).

#instances covered by,
cov = A
A 4 instances

The third line shows the goodness of the rut&),(

i.e. how the rule behaves with respect to the problem

instances available. This goodness measure reflects how
well the problem instances covered by a rule are classi-

fied or modeled. It is computed as the ratio between

the differences of cumulated firing degrees produced

to be treated carefully. So for, non-inconsistent links can
be pruned, keeping just inconsistent links. Finally, as the
resulting graph is still likely to be quite complicated,
Pathfinder is used to simplify it.

by positive instances (properly issued) and negative
ones with respect to the total cumulated firing degrees
regarding all covered instances. Hence, it can take values
from -1 to 1, assigning -1 to rules with low number of

problem instances correctly issued and close to 1 when
the rule correctly handles most problem instances.

> FDPI for Ry, — > FDNI for R,
o S FDCI for Ry,

where FDPI stands for firing degree of positive in-
stances; FDNI means firing degree of negative instances;
and FDCI is the firing degree regarding all covered
instances.
The fourth line of the nodes appears only in classifi-
cation problems. It reflects the relative coverage of the
rule output class, i.e., the number of problem instances
covered by ruleR;, that belong to class divided by
the total number of instances related to class
On = instances of clasa covered byRy

Ar = # instances of clasa

3) Network drawing:As previously outlined in Sec. II-C,
force-based algorithms are devoted to represent this kind
of information in an aesthetically pleasing way. In order to
visualize the pruned network in a 2D space, they assign coor-
dinates to the nodes obtaining a graph with the most impbrtan
elements placed toward the center of the image. Kamada-
Kawai, through Graphviz will be used in our approach
because it has been proved very effective in combinatioh wit
Pathfinder [18]. This solution is flexible enough to be addpte 4)
to the particularities of new scenarios we have to deal with.

Nodes are represented by circles and labeled with useful
textual information (see Fig. 3):

Gr,

1) The first line shows the rule identifieRy.

2) The second one provides thelative coverage of that
rule (cov), i.e. the number of covered instances divided
by the total number of instances. One problem instance
is covered by ruleR, when the rule firing degree for B. Additional fingram visualization capabilities
that instance is greater than a predefined threshold (0.1The proposed representation includes graphical infoonati

of special interest for FRBSs. Hence, once the fingram is

pruned by Pathfinder and drawn by Kamada-Kawai, some
additional visualization capabilities are incorporateuach are
specific for FRBS fuzzy inference analysis.

2MST-Pathfinder [50], a variant of Pathfinder that reducescimplexity
of the original algorithm, is the method considered in this kvor
Shttp://www.graphviz.org[51]
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In this context, nodes represent the fuzzy rules of a FRBS, /3\'
which are of the form:

Ry IF Input 1isLVi AND Input 2 isLV> AND ...
... AND Input n is LV,, THEN Output isCC

with (Input i is LV;) being the antecedents of the fuzzy rule,
and C'C' the output of the fuzzy rule.
The node size is established according to the number of

covered examples, the bigger the node size is. For instance
Fig. 3(a) shows an example of a network with two rulés. (
and R;,) where ruleR;, covers more examples than rulg,.
In addition, the border of the nodes indicates how complex
the antecedents of the rules are. Single-line border iteca ) _ _ _
two premises: double-line border means three premises; and (@ Complete fingram. sﬁihﬁagsgljcglfou;ng pruning
so on. Thus, the rule®,, and R;, depicted in Fig. 3(a) have .‘ o
three and two antecedents, respectively. g
Furthermore, edges (links) among nodes represent rule co-
firing information. Each link represents the relation betwe : =
a pair of fuzzy rules. The higher the degree of overlapping
existing over rules, the higher the edge weight and the ¢hnick = /
the link width in the visual representation to clearly reganmet s 8 =268 m= ]
this fact. = A\
We deal with problems having either categorical or contin- ’
uous outputs. Therefore we distinguish between classditat
and regression problems, providing particularities inirthe \
representations. /\
« Classification:Rules yielding the same class are depicted
by the same color of nodes. The color of links gives (c) Fingram scaled using Pathfinder.
useful information as well. Links between rules of the
same class (output) are colored in green while potential
inconsistencies (links between co-fired rules pointing
out different classes) are remarked with red color (See e

« RegressionThe output variabteis ordered in its universe /
of discourse. This order is used to assign grey tones to AN /
nodes, from black to white. So for, the typical behavior B e —=a
will relate nodes with similar grayness, and related nodes . < \
showing quite different tones should be studied in detail. / / &

In this case there is no difference among links, contrary
to what happens in classification problems with redun-
dancies and inconsistencies, and they just inform about /
their weight (See Fig. 3(b)). s

C. lllustrative example

In this section, a fuzzy rule-based classification systeRt (F /
BCS) created for the popular WINE dataset [52] is considered.
The dataset is made up of 178 examples and 13 attributes
(Alcohol, malic acid, ash, etc.) found in three types of vgine
The FRBCS has 24 rules with three different output classesy. 4. Example of fingrams: complete, pruned, scaled with Patéij and
corresponding to the three different wine kinds. with hybrid method.

Several fingrams are built with the aim of illustrating the
effect of the different network scaling methods used. The .
fingram plotted in Fig. 4(a), obtained without applying anfM°ng rules does not allow us to analyze easily the FRBCS

network scaling technique, clearly shows the previously-meP€havior. . . _
tioned scaling motivations. A quite dense set of relatigmsh 1 hen, the three scaling methods previously described are
used to simplify the network. Fig. 4(b) shows the result of

“We will only consider multi-input-single-output (MISO) FFEB. using a user-defined threshold\ (= 0.6) to prune edges.

(d) Fingram scaled using a hybrid method: pruning + Pathfinder
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It can be seen how the network is still quite dense, son
groups of rules are isolated and the network is not visualiz:
in an aesthetic way, thus hindering the comprehension
the whole set of rules. On the other hand, Fig. 4(c) shov
the result of applying Pathfinder, whose global close-¢e-tr
structure provides valuable information easy to interphest
an illustration of the hybrid scaling method, Fig. 4(d) i
created from the complete fingram of Fig. 4(a). There, nc
potential inconsistencies are pruned first (once we de#l svit
classification problem), while the resulting graph is siifigd
with Pathfinder. It can be seen how this graph only relat
nodes of different color (rules with a different output cps

It is remarkable that, thanks to the combination of rule c«
firing, PFNETs, and Kamada-Kawai’'s algorithm, informatiol
related to the inference process of the FRBSs is displaycu
in pretty nice scalable fingrams, as seen in Fig. 4(c). ASF%. 5. Visualization of the fuzzy rule set constructed toe tWINE problem
side effect, the most relevant fuzzy rules, i.e., those maliging the method proposed by Berthold et al. [33]. It showsibées overlaps
often fired, tend to be located toward the center of the scal@geng ru]es along with rule connections in terms of closengsBdiaunay
. . . . . . riangulation.
fingrams, while less salient ones (in this case, rules wiéh it
lowest co-firing degrees) go to the periphery. Hence, thpeha

of the fingram is quite informative. . ' . . .
Of course, fingrams must be carefully analyzed by an expdf€y relate rules jointly fired by a given input vector, makin

since rules that are apparently not very relevant (like ¢ho§2Sy t0 uncover how the rules of a FRBS actually cover the
ones in the periphery) may be essential for handling prgpeflPut space. Hence, fingrams can be viewed as a powerful
important cases that only happen from time to time. F&po! for dealing with FRBS comprehensibility analysis sk
instance, not common cases dealing with failures in a syst&fiated to quadrant Q4 (semantics at rule base level) in1Fig.
controlling a nuclear reactor could be extremely important (S€C- II-A), the least studied category in the existing fuzz

Moreover, it is important to highlight that our proposal i$yStém interpretability assessment literature.
not affected by the well-known curse of dimensionality that The analysis of fingrams offers many different possibsitie
implies the number of fuzzy rules grows exponentially witthanks to the high amount of information this representatio
the number of inputs. Firstly, nodes directly representzyuz gives about a FRBS and its related fuzzy inference process.
rules instead of premises, and secondly, PFNETs have b&&f instance, one can directly analyze its global struchyre
successfully applied to the analysis of large scientific dims the exploration of the number and location of the apparent
with hundreds of co-cited entities (dual to our problem indroups of rules (nodes), analyze the respective locatidheof
stances), allowing to relate different thematic areasl(duaur rules coding for different outputs, etc. As such, we wouke li
fuzzy rules in the FRBS), with the chance of also considerii§ highlight two exploratory tasks that provide a good base
hierarchical representations [18]. In consequence, fingrare {0 detect and analyze particularities or anomalies in a FRBS
able to display the interactions among a few hundreds fidentifying the most significant rules in a FRBS from the
rules in the form of highly interpretable trees. Even whelfiference viewpoint, and ii) detecting potential incotengies
the number of rules is huge the scaled fingram can be s@nong rules in the particular case of FRBCSs.
comfortably viewed by an expert. On the one hand, it should be reminded that, because of

For comparison purposes, Fig. 5 shows the same FRB® specific way network scaling and drawing are done, the
represented by the visualization method proposed by Berthonost salient links and nodes are likely to be placed towards
et al. in [33]. As it can be seen, this representation is rngainthe center of the graphical representation. Thus, thoseyfuz
descriptive, placing rules in a 2D space through a multitles that correspond to nodes located in the periphery of
dimensional scaling. So for, the distance among rules tlke fingram, especially those which are connected with a
relevant. However, it does not provide information for ruldigh weight (the value of the associated link is large) to the
behavior at inference level. Moreover, the Delaunay triangremaining graph nodes and show a low level of coverage) (
lation indicates direct neighbors for each rule. Unforteha are good candidates to be further studied. These ruleslysual
it relates rules far away in the 2D space. Of course, that famver the same space than others and do not change the final
does not help in the comprehension of the system behavioutput of the system, thus not affecting the accuracy of the
For example, rules R1 and R13, which do not co-fire for arsystem. This could have an interesting collateral advantag
problem instance (as it can be seen in Fig. 4(a)), are styongi classification problems since removing such rules islike
related in Fig. 5 because of their descriptive proximity. to increase interpretability while keeping almost the same

accuracy. We will check that assumption in the Application
IV. FINGRAM EXPERT ANALYSIS examples section (Sec. V).

Fingrams provide an enormous potential for the represen-Moreover, rules that are fired more frequently (represented

tation and comprehension of the FRBS inference processth bigger nodes) are usually placed in the center because
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they also tend to be co-fired with more rules. Those casdssirable to have only one rule that directly yields the trigh

where nodes covering a large number of examples are pladefgrred output. However, this may produce a huge number
in the periphery must be carefully analyzed. This can be doérules what is also undesirable. Fingrams allow the expert
to a fuzzy rule which covers a large part of the input space ia study and improve the system systematically as it will be

isolation. shown with an example in Sec. V-C.
The usual Centrality measures that are commonly consid-
ered in the analysis of scientograms [18], [48] (see SeD)II- V. APPLICATION EXAMPLES

can also be successfully applied to uncover the most signific  This section starts with an experimental setup subsection,

rules within a FRBS. As a first approach, we advocate for thyoted to introduce the quality indices to be considered.

use of the so-calle®egree of CentralityThis means that we Then, two examples in the next two subsections display the

will point out those fuzzy rules corresponding to the ”Odeg?éssibilities of considering fingrams in real-world prabke

that concentrate the larger number of links in a fingram as e first illustrative classification example gives an idbaut

most salient ones. how to deal with the co-firing among rules, along with the
On the other hand, the interaction among fuzzy rules giconsistencies and redundancies produced. The second ex-

inference level is very difficult to be appreciated by onlymple displays a small-sized but complex real-life regoess

reading the linguistic description of FRBSs. It should bgppjication, where fingrams make easier the understanding o
remarked that this interaction depends on the rule desmiptihe rules constructed.

but also on the fuzzy rule semantics (fuzzy partitions idelli
in the data base) and on the inference mechanism. Even wh% aExperimentaI setup
rule base is fully consistent at linguistic level, some flass . i i .
inconsistencies may arise at inference level because of th&Ve Will now describe the accuracy and interpretability
FRBS semantics and fuzzy inference process. Such poterifiglices considered in this contribution. , -
conflicts are difficult to detect mainly because they areigiyrt ~ Accuracy is computed as the percentage of misclassified
hidden since they are typically produced by new unknowRstances /C) in cl_a55|f|cat|0_n problems, and as the mean
situations that were not taken into account during the iagrn Suare errorX/SE) in regression problems.

stage (for example, data pairs not initially included when

considering a data-driven FRBS derivation). Of coursehsuc 1 d o 1, G £C

analysis is different depending on the kind of problem faced MC = d Ze”i» erri = { 0, otherwise (4)

For instance, the meaning of overlapping rules is not theesam i=1

when considering either classification or regression moisl d )
In the former case, inconsistencies must be handled as MSE = QZ(yi —9i) )
conflicts to be solved. For instance, it may happen that akver i=1

rules are jointly fired for a new given input vector and as whered means the number of problem instanc€sthe class
consequence several outputs are activated with degrelsrhigf instancei, andC; is the class inferred by the FRBCS given
than zero. When two different classes are activated with vehye instance in MC. For MSE, y; is the real output value
similar degrees, the situation can be labeled as an amlsguotiinstancei, andy; is the inferred output by the FRBS.
case. Such situation is not desirable, no matter if the syste Of course, as it was pointed out in Sec. II-A, taking only one
is (or not) able to yield the right output class, becauseghsli index is not enough to evaluate interpretability. Therefave
modification in the input data may yield a wrong output. Whave considered some of the interpretability indices coniyno
can conclude that a FRBCS producing many ambiguous casssd in the literature. Probably, the most popular indeX i3
is not reliable and should be corrected. Fortunately, logki which stands for number of rules. As an alternati¥&R L
at fingrams we can easily uncover potential inconsistenci@etal rule length) represents the total number of lindaist
(when the co-fired rules yield different output classes)e Tipropositions into the whole rule base. Another simple index
larger the degree of inconsistency among fuzzy classificatiA RL which stands for average rule length, computed &4,
rules is, the higher the weight of the “inconsistent” link®{ divided by NR. We will also report the average number of
firing degree computed by Eq. 3) will become (red edged)red rules with respect to problem instancesF{R). Notice
The interested reader is referred to [53] where a detaildtht, a rule is counted as fired by a given data instance only in
explanation of some possible inconsistency problems,galothe case it is activated with a confidence firing degree greate
with a methodology to detect and correct such inconsisésncior equal than a predefined thresholdl(in this contribution).
is presented. In the case of classification problems we will additionally
Opposite, when dealing with regression problems, the wetlompute the average confidence firing degree of winner rules
known FRBS approximation capability is mainly based on thgl £’ D). It is measured as the average of the firing degree of
interpolative reasoning carried out among overlappinggul the winner rule for each data sample over the whole dataset.
Typically, two rules with similar premises may yield two Moreover, the proportion of co-fired rules can also be
different wrong outputs but their aggregation may resuthim considered to evaluate the FRBS comprehensibility. The as-
right inferred interpolated output. Unfortunately, thdseds sumption is the following: the larger the number of simulta-
of situations are quite common but very difficult to identi®f neously fired rules for a given input vector, the smaller the
course, from the comprehensibility point of view it would be&omprehensibility of the FRBS.
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Thus, the Co-firing Based Comprehensibility

10

Index The rule base has been automatically extracted from the

(COFCI) [54] can be used to evaluate the complexity ofvhole data set following the HILK fuzzy modeling method-
understanding the inference process in terms of rules icwfir ology which is aimed at producing highly interpretable fyzz

information. Eq. 6 presents this index:

1=/l if CI < MaaThr ©)

0, otherwise

COFCI = {

CI=> "> (P +P))-mj]

i=1 j=1

)

wherer is the total number of rules in the fuzzy rule basg,

systems [53], [55]. The rule base is generated by means of
the Fast Prototyping Algoritht[59]. It is made up of the

following nine linguistic rules:

Ry: IF Sepal Length is Low AND Sepal Width is Low THEN Class is C2

. IF Sepal Length is Low AND Sepal Width is Average THEN Class is C1
: IF Sepal Length is Low AND Sepal Width is High THEN Class is C1

: IF Sepal Length is Average AND Sepal Width is Low THEN Class is C2
. IF Sepal Length is Average AND Sepal Width is Average THEN Class is C2
. IF Sepal Length is Average AND Sepal Width is High THEN Class is C1
. IF Sepal Length is High AND Sepal Width is Low THEN Class is C3

: IF Sepal Length is High AND Sepal Width is Average THEN Class is C3
: IF Sepal Length is High AND Sepal Width is High THEN Class is C3

and P; count the number of premises (antecedent conditions)yt js possible to find more accurate FRBCSs for this problem

in rules R; and R;, while m,; is the measure of co-firing
(computed by Eq. 3) for the rulgs; and R;, and M axThr is

in the fuzzy literature, but the objective of this exampldds
illustrate the creation and analysis of fingrams in clasatin

a maximum value heuristically established to get a norraellizpromems

measure in the interval [0,1].

We will detail, step by step, the different phases involved i
the construction of fingrams, as they were described in 8ec. |

B. Generation of fingrams in a simple classification problem. 1) Network generation: With the problem instances, fuzzy

Analysis of inconsistencies.

As a first example we will analyze a simple classification
problem with two input variables, which can be represented i
two dimensions, where the co-firing relations among rules ca 2)
be easily understood. For that, the IRIS data set from UQ] [52

is considered.

IRIS is perhaps the best known database to be found in the

pattern recognition literature. The data set contains 8sela

of 50 instances each, so it is perfectly balanced, where each

class refers to a type of iris plant. Class 1 is linearly saiplar

from the other two; the latter are not linearly separablenfro 3)
each other. Notice that, only two of the four input variables

of IRIS (SEPAL LENGTH and SEPAL WIDTH) have been used

with the aim of allowing a 2D representation that faciliate

the understanding of fingram construction.

partitions, and fuzzy rules previously presented (all of
them illustrated in Fig. 6), we have generated a 9x9
matrix that represents the co-firing degrees. Fig. 7(a)
shows that matrix with inconsistencies remarked by (*).
Network scaling: We have checked different scaling
methods. First, Pathfinder is applied to the original
network, obtaining a pruned matrix. Second, a hybrid
scaling method is used to discover inconsistencies in
the FRBCS. For that, non-inconsistent links are firstly
thresholded in the original network and afterwards
Pathfinder is enforced.

Network drawing: Kamada-Kawai's spring layout is
selected for plotting the previously generated and scaled
networks, considering the additional visualization capa-
bilities in Sec. IlI-B.

The first graph, the complete non-scaled fingram (Fig. 7(b)),

Fig. 6 shows graphically the distribution of examples, witdhows the relations among rules displayed in a perfect grid,

the selected variablese8AL LENGTH and SEPAL WIDTH,
remarking the flower class{l = O, C2 = +, andC3 = x).
Each input is characterized by a uniform strong fuzzy partit
with three linguistic terms (bw, AVERAGE, HIGH).

) Lo Average

Sepal Width

6.1
Sepal Length

c1 c2 c3

Fig. 6. Classification example: Problem instances, fuzzitmars, and set
of fuzzy rules used.

thanks to the dimensions and partitions considered.

A simple comparison between Figs. 6 and 7 makes easy to
appreciate the correspondence among the node sizes and how
populated the input space regions are. For example, Ryle
covers the central region with the largest number of inganc
while rule Ry covers the smallest amount of data samples.

In addition, the node layout perfectly reflects the relation
among co-fired rules, with a central fuzzy rules() that highly
overlaps with the rest, thus producing non-inconsistencie
(green links) or potential inconsistencies (red links).

By carefully analyzing the dataset, a high volume of in-
stances can be appreciated in the regions of fuzzy riles
and R5 (see Fig. 6). This can also be observed in the fingram
(Fig 7), which assigns a high value (0.794) to the connection
between these two rules. In addition, the highest link weigh
(0.897) is related to rules?; and Rz as most instances
they cover are located close to the border between the input
space regions they handle. Notice that, a quick study of the

5We have used the implementation of FPA provided with the fréevace
tool GUAJE [19]. Of course, other fuzzy modeling methods carused, as
[56]-[58].
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R1 R2 R3 R4 R5 R6 R7 R8 R9

R11.000 0.743(*)0.000 0.715 0562 0.000 0.000 0.000 0.000
R20.743(*)1.000 ~ 0.597 0.531(*) 0.763(*)0.536 0.000 0.000  0.000
R30.000 0597 1.000 0.000 0.461(*)0.897 0.000 0.000  0.000
R4 0.715 0.531(*)0.000 1.000 0.794 0.000 0.644(*) 0.542(*)0.000
R5 0.562 0.763(*) 0.461(*)0.794 1.000 0.517(*) 0.517(*) 0.603(*) 0.221(*)
R60.000 0.536 0.897 0.000 0.517(*)1.000 = 0.000 0.168(*) 0.416(*)
R70.000 0.000 0.000 0.644(*) 0.517()0.000 1.000 0.842 0.000
R80.000 0.000 0.000 0.542(*) 0.603(*) 0.168(*)0.842 1.000  0.405
R9 0.000 0.000 0.000 0.000 0.221(*) 0.416(*)0.000 0.405  1.000

(a) Co-firing matrix.

RI
(cov=0.267)
(G=-0.112)
(C2-0.500)

0715

R4
(cov=0.533)
(G=-0.171)
(C2-0.840)

R2
(cov=0.540)
(G=0378)
(C1-0.980)

(c0v=0.193)
(G=-0.267)
(€3-0.420)

(cov=0.953)
(G=-0.295)
(C2=0.980)

R3
(cov=0.200)
(G=0.000)
(C1=0.600)

%7

R6
(cov=0.233)
(G=0.206)
(C1-0.600)

(G=0.000)
(€3-0.080)

(b) Complete fingram.

Fig. 7. Classification example: Original social network.

input space can be done, even in multi-dimensional problemg:

following the same sketched procedure.

The use of Pathfinder algorithm yields a pruned fingram

11

shows up as the main cause of conflicts. It is clear that this
central rule covers most of the problem instances, and sd for
overlaps with most rules. Notice that, the input region cede

by Rs (as seen in Fig. 6) includes a large number of instances
of different classes what produces these inconsistencies.

R

(eov=0027)
(G-0000)
(€008

3

(cor=0233)
(0200
pakr)

o
gty
o R4 e (e
(ov-oss) &ai
(G=-0.171)
o (G
oo
(Gor30)
e
RS
(cov=0953)
(G=-0295)
(€2-0.980)

R
(cov=0.540) o6t
(G=0378)
(C1-0.980)
&
(cov-0200)
4 (G-0000)
£ (cr-600)

(©2-0500)

Fig. 9. Classification example: Fingram scaled with hybridhodt(Thresh-
old + Pathfinder).

In addition, a linguistic simplification can be made from the
previous FRBCS, yielding a new FRBCS with less rules but

exactly the same accuracy:
Ry: IF Sepal Length is Low AND Sepal Width is Low
THEN Class is C2
Ro3: IF Sepal Length is Low AND Sepal Width is NOT(Low)
THEN Class is C1
Rys5: IF Sepal Length is Average AND Sepal Width is NOT(High)
THEN Class is C2
IF Sepal Length is Average AND Sepal Width is  High
THEN Class is C1
R7s9: IF Sepal Length is  High
THEN Class is C3

(Fig. 8) that keeps the most salient links of the originavhere Rxy represents the merge of originBly and Ry .

network, what highlights those rules which are fired simul- Fig. 10 shows the pruned fingram, created using Pathfinder,
taneously a larger number of times. This fingram shows theft the simplified FRBCS. As expected, it can be seen that
rule R, is quite important due to the high interrelations withe information associated to the new merged rules vary with

others (producing inconsistencies with rul@s and R;, and

non-inconsistencies with rul&s).

[
(cov-0si0)
G0

€ios0)

RS
(cov=0953)
(G- 0295
(©2-0980)

(s
G0
(G,

Fig. 8. Classification example: Fingram scaled with Pathfinde

respect to the original FRBCS (Fig. 7) except for rulgs
and Rs that keep unchanged. Nevertheless, it is remarkable
how the new fingram in Fig. 10 keeps almost the same global
shape of the original FRBCS (Fig. 8). The new riilg; gets
the central position previously taken by rui& distributing
the remaining rules in three branches.

It can also be appreciated that rulBs; and R4 cover all
the problem instances of their output class€s & 1.000 in
Ro3 and C2 = 1.000 in Ry5). So for, it is interesting to test
the behavior of the system without the rest of rules of output
classes C1 and C2R; and R,, respectively). With that aim,
several FRBCSs are created and tested without those rules
from the simplified FRBCS.

Table Il summarizes the values for the quality indices in
Sec. V-A before and after the linguistic simplification, but
also after the elimination of?; and Rs. We should again

The fingram in Fig. 9, scaled using the hybrid alternativemark that we are not focused on finding out the most
with the aim of only keeping inconsistencies, emphasizes thccurate FRBCS for the tackled problem, but on exploring
main potential inconsistencies among rules, turning ugehothe opportunities fingrams offer.

regions that do not belong clearly to a single class. Reje

As previously mentioned, the accuracy (look BC' in
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(cov:il}}] Very Low Low  Average High
(G=0.206) T T T T T
(C1=0.600) 1 |
]
]
i i
0.54¢ :
ok s e NV
oo 0.2 0.4 0.6 08 1.0 12 1.4 1.6 1.8 20
Inhabitants 0*
R23
(cov=0.547)
G=0.417
((Cl:1.000)) Qﬁ 1\/ery Low . Average Low Avverage Hig'h V'&-vy High .
R4S i |
739 (cov=0.960) | / ‘
- (G=-0.164) ' !
(cov=0.267) (C2=1480) 0,601 1 :
(oo =~ . i NV N L
Ry (fg"j?gg) 0.0 02 04 06 08 10 12 1.4 15 ,
(C3=0.740) Distance 0
Fig. 10.  Classification example: Fingram scaled with Patlefindfter veyton o e i
linguistic simplification. =
i
TABLE II !
CLASSIFICATION EXAMPLE: QUALITY EVALUATION OF THE DIFFERENT |
FRBCSs GENERATED E )
00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
_ — . - Length xo®
Quality Original Simplified R, Rg R1 & Rg
index FRBCS FRBCS removal | removal removal
MC 0.32 0.32 0.313 0.34 0.333 . . .. . s
~T7 5 = 7 = 3 Fig. 11. Regression example: Fuzzy partitions for the atdtdistribution
TRL 18 9 7 7 5 problem.
ARL 2 1.8 1.75 1.75 1.667
AFR 3.287 2.347 2.08 2.113 1.847
AFD 0.476 0.546 0.54 0.544 0.538 H H i o
5 o O oan the output variable is partitioned homogeneously covettiregy

interest range, i.e. the range where problem instances are
located. Using these fuzzy partitions along with EP#e

Table 1) keeps the same after applying the linguistic siﬂ%[|9Win,9 set of rules is generated:

Distance is Very Low
plification, but the interpretability indices improve withe ;. e & ey Low OF Low O Average) AN Disianes | Low
reduction of rules. The elimination of?s produces more . . i\ ¢ ery Low AND Disnce s Average Low
classification errors indicating thaks is the winner rule ,Tp”ﬁﬁaﬁ”aiﬁ';;z (Low O Average)  AND Distance s AveragasL
for some problem instances of class C2. Only the FRBCS.. Tﬁﬁﬁa;?‘”aiﬁhs;z Arerae Lo AND Distance is Low
prOduced from e“m|nat|nﬁ1, hlghllghted In b0|dface In the Rg: -Irgllimaliaeltnagn‘tz i (Ve@liroav%eoléjtow) AND Distance is AveragegH
table, improves both the accuracy and the interpretabifity . . e o Very g AND Disiance s Average Low
the I|ngU|St|Ca”y Slmp“fled FRBCS Rg: Tyﬂaﬁgﬁz E /:\//eri\ggee AND Distance is (Average High ORI

THEN Length is Average High
Rg: IF Inhabitants is Very High AND Distance is Average High
THEN Lgngth is ngh‘ ) ) )
C. Generation of fingrams in a small-size regression problenfo: i e Vol tien AND Distance is High

Analysis of specificity and generality.
This FRBS exhibits a good accuracy/SE = 130, 046),
fhilar to the one obtained in [65IMSE = 133,763).
@nyway, we should again remind that we are not focused on
ir?ding the most accurate FRBS for the tackled problem. Our
target is showing the utility of fingrams in the context of a
real-world regression problem.

. ) . . As explained previously in Sec. IlI-B, the output of each
installed lin@. Real data of 495 villages are available. Th?uzzy ruII[:a will bep reflecte)(/j in the color of the nl?)des. From

training set contains 396 elements and the test set incl%lesdark to light the node colors represent a range from low
elements, randomly selected from the whole sample, takf%nhigh values. So for, the output label &%y Low” wil
from KEEL dataset repositoty Here we will use just the be represented by th’e darkest node whileER¥ HIGH"

%E)erresponds to the lightest one close to white. Naturdily, t
system will have relations among close labels and closeolo

d when nodes of quite different darkness are related the
eexpert should focus her/his attention on them.

This example illustrates the use of fingrams in regressi%
problems. An electrical network distribution problem irrto
ern Spain [60] is analyzed. The system aims to estimate
length of the low voltage line installed in a certain villagéne
problem has two input variables (tip@pulation of the village
and itsradius) and one output variable (tthetal length of the

the accuracy results with previous works.

First of all, the problem variables are partitioned as sho
in Fig. 11. The partitions of the input variablesNdABITANTS
and DISTANCE) are tuned to improve the performance, whil

"FPA can be used for classification and regression problentger@uzzy
Shttp://sci2s.ugr.es/keel/datasets.php modeling methods can be used for regression problems, as ¢@1]-[
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RI0
ov=0.00( (cov=0.275)

(G=-0.393)

(cov=0.275)
(G=-0.393)

R2
(cov=0.427)
(G=0.610)

Very Low

= Low

. Average Low
Average
Average High
High

I:l Very High

Fig. 12. Regression example: Complete fingram for the elettlistribution

problem. ) ) ) ) )
Fig. 13. Regression example: Fingram scaled with Pathfinder.

Fig. 12 shows the non-pruned fingram related to the inferi . Id be d
ence process on the FRBS previously presented. It can be s@&ffnatives, could be done.
that the tWO dimenSionS a."OW the ﬁngram tO Spread the node§ IF Inhabitants is Very Low AND Distance is Average Low THENgth is Low
. . . . - Ry4:  IF Inhabitants is (Low OR Average) AND Distance is Averagel. ~ THEN Length is Average Low
in a grid, relating close outputs, i.e. the evolution of GEES rg:  iF inhabitants is (Very Low OR Low) AND Distance is Averagigh _THEN Length is Average

R34 IF Inhabitants is AND Distance is THEN Length is Average Low

Of the nOdes |S mapped SmOOth|y RU|$ and R4 are (Very Low OR Low OR Average) (Average Low OR Average High)

quite general, covering almost half of the problem instance \we will develop the proposed changes in a sequential
Contrary, rulesis, Rr, Ry and Ry, cover a small amount fashion (j.e., first removing; o, then removingRy, and finally

of problem instances, thus being very specific. Moreovas, it merging R, R4, and Rg) and check how they affect the

easily appreciated that rulg;o does not cover any example resulting FRBS accuracy and interpretability (as detaited
(cov = 0), and thus it can be eliminated without any accuracyaple II).

loss. In addition, all rules buR; have two antecedents, as it

is appreciated in the single-line border of the nodes. TABLE IlI
. . . . . REGRESSION EXAMPLE QUALITY EVALUATION OF THE GENERATED
The fingram analysis lets us discover a special relation FRBSS
between rulesk; and Ry that appear isolated in a group,
composing a kind of “fuzzy rule cluster” in a specific problem Quality | Original | Rio Ro R3-Ra-Re
. . index FRBS removal | removal fusion
domain region. They cover some examples that no other rule 7SE T 130046 | 130046 | 125511 155838
covers. Moreover, they cover exactly the same examples (the NE 0 5 8 5
related link takes value 1.0) but having different outpigen TRL 19 17 15 11
more, rule Ry has a negative goodness(.725, so for it ARL 1.9 1889 | 1875 1.83
AFR 2.463 2.463 2.446 1.695

is a candidate to be removed, changing, if necessary, the
output of R;. An analysis of these rules must be achieved
to avoid this kind of behavior. Notice that only looking;

COFCI 0.971 0.971 0.974 0.981

Do X ) . Analyzing these results we can conclude that the removal
a.nd Ry at I|ng.U|st|c level is not enough for detecting thISbf Ry, does not change the behavior of the system because,
kind of potential problems, .bUt our flngram—based analysiy mentioned, it does not cover any problem instance. Thus,
methodology allows us to quickly identify them. MSE, AFR, and COFCI remain the same while the in-

Fig. 13 shows the pruned network corresponding to t.rfgrpretability indices related to transparen¢yR, TRL, and

fingram scaled with Pathfinder. It emphasizes a high reIat|%L) are improved. However, deleting the rulg simplifies
among rulesR, R, and. Re. This interrelation suggestsy,o Frpg improving both aécuracMSE decreases) and
merging the three rules in a single one. To do so, a n(?}ll\ferpretability (all the considered interpretabilitydines get

rule, Fsae, is constructed fronfts, Ity, and i in an expert e, values). The new fingram resulting from these two
way. The antecedents of all these rules are combined inations can be observed in Fig. 14. Finally, although

the output is tlaken gom the middle Iterm. This is dong Juzﬁé fusion of Rs, R4, and R reduces the accuracy of the

as an example, and a more complex process, testing BS, it could still be a good option to get a more compact
8As explained in Sec.lll.-A, we consider an instance is cedldny a rule and underStandabl_e FRBS (nOt'Ce_ that, all the 'nterp”ﬁwb'

when it fires the rule above a threshold (0.1 in this contiim)t indices are clearly improved). Besides, a more elaboratied r

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee
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R6
(cov=0.275)
(G=-0.393)

(cov=0.427)
(G=0.610)

(cov=0.467)
(G=0.171)

(1]

(2]

(3]
Fig. 14. Regression example: Fingram scaled of the best diethFRBS.

(4

VI. CONCLUSIONS ANDFUTURE WORKS [5]

This paper has introduced fingrams as a new powerfué]
methodology for exploratory analysis of fuzzy rule bases. A
brief overview of the possibilities that fingrams offer, footh [7
design and analysis of fuzzy systems, has been illustrated
through some examples. As it is a novel proposal, some (HI]
the potential uses are just outlined, opening the door to ne
alternatives and developments.

In the future we will extensively validate and extend the
methodology. For instance, we plan to look for asymmetrica[I
co-firing metrics able to yield additional information albou
consistency, generality, and/or specificity of rules.

The future of this methodology is very promising, with
several applications to design or improve fuzzy systemil
The human-centric simplification of a FRBS by means of
the elimination or modification of rules could be done after
analyzing the resulting graphs. The detection of rules duwat [12]
not cover any example is very easy by just looking fingrams
at first sight. Rules that have a low overlapping with others

(10]

kind and quick response.
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