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a b s t r a c t

Subgrap h mining is the process of identifying concep ts describing interesting and repeti- 
tive subgraphs within graph-based data. The exponential number of possible subgraphs 
makes the problem very challenging. Existing methods apply a single-objective subgraph 
search with the view that interesting subgraphs are those capable of not merely compress- 
ing the data, but also enhancing the interpretation of the data considerably. Usually the 
methods operate by posing simple constraints (or user-defined thresholds) such as return- 
ing all subgraphs whose frequency is above a specified threshold. Such search approach 
may often return either a large number of solutions in the case of a weakly defined objec- 
tive or very few in the case of a very strictly defined objective. In this paper, we propose a
framework based on multiobjective evolutionar y programming to mine subgraphs by 
jointly maximizing two objectives, support and size of the extracted subgraphs. The 
proposed methodology is able to discover a nondominated set of interesting subgraphs 
subject to tradeoff between the two objectives, which otherwise would not be achieved 
by the single-objective search. Besides, it can use different specific multiobjective 
evolutio nary programming methods. Experimental results obtained by three of the latter 
methods on synthetically generated as well as real-life graph-based datasets validate the 
utility of the proposed methodology when benchmarked against classical single-ob jective 
methods and their previous, nonevolutionary multiobjective extensions. 

� 2013 Elsevier Inc. All rights reserved. 
1. Introduction 

Much of the real world data have spatial or temporal characterist ics. Some examples include web data [35], transporta- 
tion networks [44], scientific information analysis [48], bioinformat ics [51], and Oligonucleotide probe design [59], among 
others. In recent years, labeled graphs have emerged as a promising abstraction to model such complex data [1,11]. In this 
approach, each object correspond s to a separate graph whose nodes represent the entities in the object, and edges represent 
the relations between the entities. Within that model, one method of formulating a data mining task is that of finding sub- 
graphs that occur frequent ly over the graph-ba sed data, called frequent subgraph mining. Frequent subgraphs are especiall y
useful in characterizing graph sets, detecting network motifs [7], discriminati ng different groups of graphs [3], classifying 
and clustering graphs [17,24], and building graph indices [67]. A number of efficient frequent subgraph mining algorithms 
nication 
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List of symbols 

G, g graph dataset and a graph g 2 G
S subgraph in the dataset G
MDL (.) the minimum description length measure in Eq. (1)
DL(.) description length of (sub) graph in Eq. (1)
f vector of objective functions in Eq. (2)
y vector of objective values in Eq. (2)
d size of vector of objective values in Eq. (2)
x vector of decision variables in Eq. (2)
o size of vector of decisio n variables vector in Eq. (2)
X solution search space 
Y objective space 
P the Pareto optimal set defined in Eq. (4)
PF the Pareto optimal front defined in Eq. (5)
PF an approximat ed Pareto front produced by an algorithm 
P population of subgraph individuals 
Q population of child subgraph individual s
R temporary population of P [ Q
PA external Pareto archive of nondomi nated subgraph individu als 
N number of subgraphs in the population P
#Nð:Þ function to compute the suppor t of a subgraph in Eq. (6)
#Vð:Þ function to compute the size of a subgraph in Eq. (7)
fitness fitness of an individu al in the population 
r rank of an individual in the population 
sh(.) sharing function in Eq. (9)
rshare the maximum distanc e allowed, a paramet er, in Eq. (9)
a positive scaling factor, a paramet er, in Eq. (9)
cij the normalized distance between two individual s i and j in Eq. (10)
nc niche count in Eq. (11)
cd crowding distance in Eq. (14)
f l
min; f l

max the minimum and maximum values of the lth objective in Eqs. (10) and (14)

fl value of lth objective in Eqs. (10) and (14)
j.j size of population/ graph dataset/no ndominated set 
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are available in the Graph-Ba sed Data Mining (GBDM) community , including Subdue [10,13], Gaston [42], the apriori family 
of methods [27], FSG [34], gSpan [65], MoFa/Mo SS [3], JoinPath [61], CloseGra ph [66], FFSM [25], Spin [26], CLOSECUT and 
SPLAT [68], gPrune [69], etc. Recently , evolutionary programming [18,19] has also been applied for frequent subgraph min- 
ing [2,39]. The proposal was basically an extension of Subdue and showed an improved performance over it. The perfor- 
mance improvement was a consequence of the use of global search instead of the beam search [37] with no backtracking 
as applied by the standard Subdue method in the subgraph search space. 

Frequent subgraph mining is generally guided by a single objective, i.e., applying some threshold, such as mine subgraphs 
whose frequency (or support) is above a specified threshold, or mine subgraphs whose size is greater than some user-defined
threshold. Other objectives may be defined as well towards obtaining the mined subgraphs [1,11]. This approach has some 
important limitations [44]. In some cases where the constraints are weak, the number of mined subgraphs is large, posing 
difficulties in selecting the most important ones. In other cases where the constrain ts are too strict, we risk an empty output 
or very few subgraphs. 

In addition, any successful methodology should consider additional criteria to extract better defined concepts based on 
the complexity of the subgraph being explained, the number of retrieved subgraphs, and their diversity [12,50,51,53,73].
These are conflicting criteria that can be approached as an optimization problem, close in spirit to the minimum description 
length methods [49], which are based on the aggregation of the various objectives into a global measure of subgraph quality. 
The basic challenge with this approach is the potential bias caused by weighting the objectives [52,53], which always derives 
from the convergence to solutions correspondi ng to single or limited regions of the search space. This problem is noteworthy 
because typical data mining approach es, particularly in computational biology, tend to emphasize consensus or most fre- 
quent subgraphs [72]. These subgraph s often conceal rather than reveal novel and useful knowledge about the problem, 
retrieving only already known or irrelevant information that discourages the use of computational methods [38,40]. Conse- 
quently, there is a need for new methods that can provide even less frequent but more descriptive substructures that reflect
problem descriptions from different angles [74]. This emphasizes the application of multiobject ive subgraph mining in 
GBDM.
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Multiobjecti ve subgraph mining has been termed as multiobjective GBDM [51,55,58 ] or skyline processing [44]. To tackle 
this problem, one method is of formulat ing a single-objecti ve optimization problem in which the objective is an 
aggregation function of all the individua l objectives, as classically done in multiobject ive optimization literature 
[6,9,15,60]. However, this will discover only the specific subgraph s subject to the tradeoff between the objectives explicitly 
or implicitly specified by the aggregation function, as seen in [58] for a Subdue variant based on a weighted combination 
of support and size. 

Apart from that basic approach , there are a few instances of multiobject ive GBDM methods in the literature. 
Papadopoul os et al.’s SkyGraph [44] actually manages to generate Pareto-optima l subgraph s defined by two specific objec- 
tives, the edge connectivity and the size of the subgraph, by means of a very advanced and well designed polynomial time, 
exact algorithm. However, the drawback of SkyGraph is that it is problem- specific, i.e., it can only be applied to the latter 
concrete multiobject ive frequent subgraph mining task. This specificity allows it to use a single-objecti ve (and not multiob- 
jective) underlying search method. Romero-Zaliz et al. [51] introduced the EMO-CC methodology (Evolutionary Multiobj ec- 
tive Optimization-b ased Conceptual Clustering) for the Gene Ontology domain. In EMO-CC, the chromosom e representat ion 
used is a tree-like subgraph, which is evaluated using two objectives, support and size. However , it cannot handle large 
graphs having a more general graph representat ion, where a node may have several parents. Finally, MOSubdue (Multi-
Objective Subdue), a Pareto dominan ce-based multiobject ive subgraph mining algorithm, was developed by the authors 
in [55,58]. It is an adaptation of Subdue, as MOSubdue selects subgraph s for the underlying beam search by means of 
NSGA-II’s [16] nondominated sorting method using two objectives , support and size. Neverthel ess, MOSubdue has an impor- 
tant limitation as Subdue’s beam search performs a state space search [43], which does not allow backtrack ing in the mul- 
tiobjective subgraph solution space. The algorithm is limited in exploring the different search paths due to the choice of the 
beam width, and thus it may end up providing sub-optimal results. 

In this paper, we present a pure Evolutionary Multiobjecti ve Optimizatio n (EMO) (and, more specifically, Multiobj ective 
Evolutionary Propgramm ing (MOEP)-based) framework to perform global search in the multiobject ive subgraph solution 
space. Thus, it allows the user to obtain a good approximat ion to the whole set of Pareto-optima l subgraphs at a reasonable 
computational effort. In the proposed MOEP framework, an individual in the population is a subgraph in the input data. The 
input dataset is a set of connected relational graphs with or without cycles and directed or undirected edges. Each individua l
in the population is evaluated using two objectives , support and size. At any generation, parent individuals give rise to child 
individuals through mutation, and subsequently the next generation is selected from the collection of parent and child 
individuals.

We empirically demonstrate the feasibility of evolutionar y search for the multiobjective GBDM task on 10 different data- 
sets. They include three synthetically generate d and seven real-life datasets concerning the analysis of web sites [22] and
scientogram s (visual representation s of scientific domains) [48], respectively . Three different MOEP approaches, namely 
MOEP-based on Nondomina ted Sorting (MOEP-NS) [63], MOEP with Summati on of Objectives (MOEP-SO) [46], and MOEP 
with nondominance (MOEP-ND) [41] have been implemented as specific methods within our proposed framework. To 
compare their performance, we have also applied two single-objecti ve methods, Subdue [10,13] and EP-Subdue [2], as well 
as a multiobjective one, MOSubdue [58], for the multiobject ive GBDM task. Their performance is compared using different 
multiobject ive metrics commonl y employed in the EMO field [9,70,71].

The paper is organized as follows. Section 2 presents some preliminar ies related to single- and multiobject ive GBDM 
using Subdue and EP-Subdue. Section 3 outlines the proposed MOEP framework for multiobject ive GBDM. The exper- 
imental analysis is given in Section 4, and finally some concluding remarks and proposals for future work are provided 
in Section 5.
2. Preliminaries 

2.1. Graph-based data mining 

Fig. 1 represents a subgraph lattice for a graph dataset G = {g1, g2, g3, g4}. The subgraph lattice in Fig. 1 models the search 
space for frequent subgraph mining in the dataset G, where the top of the lattice, i.e., at level 0, is the empty subgraph labeled 
⁄. The first level includes all possible single node subgraph s. The second level of the lattice represents subgraphs with one 
edge, and so on. At the bottom of the lattice graphs in G are shown. Frequent subgraph mining can be formulated as finding
the embedding subgraphs in the lattice. For example, at level 1 of the lattice, a single node subgraph Q can be embedded in 
two single edge subgraph s P–Q and Q–R at level 2. In Fig. 1, the subgraph P–Q at level 2 is a parent of the subgraph P–Q–R at 
level 3 of the lattice as the subgraph P–Q–R is different from the subgraph P–Q by exactly one edge. Thus, the subgraph 
P–Q–R is a child of the subgraph P–Q. All the subgraphs of gi 2 G are present in the lattice and every subgraph occurs only 
once in it. 

All the GBDM algorithms have in common that they search a subgraph lattice of the latter kind representing all possible 
subgraphs. They are intereste d in finding subgraphs whose support is above a user specified threshold. Thus, the goal is to 
discover all subgraphs that are frequent in this dataset. For instance, correspondi ng to a frequenc y threshold of three and an 
order threshold of two, the algorithm will output the circled subgraph (at level 2) shown in Fig. 1 as it can be embedded 
thrice in the running example. 



Fig. 1. A subgraph lattice of the graph dataset G = {g1, . . ., g4} (modification of a figure presented in Jiang et al. [30]).
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Searching this lattice can be done depth- or breadth-first. Most of the graph mining algorithms traverse the lattice in a
depth-first way as it needs less memory than breadth-first search. Exploring the hypothesis space involves two highly com- 
plex steps: candidate generation , where child subgraphs are created from parent subgraphs, and support computation , where 
the support of candidate subgraphs in the input data is obtained. There are two popular ways of creating child subgraphs: 
extending parent subgraph by an edge (and a node if no cycle is closed) or merging parent subgraphs that share a common 
core. Edge extension needs access to the input data and only creates existing candidates. This strategy has been most widely 
used. The other possibility to generate child subgraph s is by merging two parent subgraphs that have common core. How- 
ever, this merging approach solely works on the subgraphs and may generate infeasible candidates which may not constitute 
to be part of the input data. 

Support calculation of a candidate subgraph involves several computational ly intensive subgraph and graph isomorphism 
tests. There are two possibilities to reduce the number of tests. One possibility is to use a so-called appearance list that re- 
cords the graphs as candidat e subgraphs occur in. Another possibility is to use a so-called embedding lists. An embedding is a
subgraph isomorph ism of a subgraph in the lattice to a graph in the input data. In general the use of embedding lists needs 
much more memory. 

Recently evolutionary algorithms have been proposed to work on graph-repre sented data for dealing with tasks such as 
community detection [45], pattern matching [33], graph isomorphism [64], etc. They have shown encouraging results. How- 
ever, the specialized solution encoding schemes and fitness functions employed to solve particular tasks do not make them 
readily adaptable for frequent graph mining problem, where the computation of the objective, support of a subgraph, is 
crucial.

2.2. The Subdue algorithm 

Subdue [10,13] is a classical method in GBDM that performs different tasks such as subgraph discovery, conceptual clus- 
tering, and classification. The search process of Subdue is guided by the minimum description length (MDL) principle [49],
which assumes the best subgraph is the one that minimizes the description length of the input graph when compressed by 
the subgraph [13]. This compression is calculated as: 
MDLðG; SÞ ¼ ðDLðSÞ þ DLðGjSÞÞ=DLðGÞ ð1Þ
where DL(S) and DL(G) are the description lengths of the subgraph S and the complete graph G, and DL(GjS) is the description 
length of the input graph G compressed by the subgraph S. The description length of a graph is calculated here as the number 
of bits needed to encode an adjacency matrix representat ion of the graph [10,13]. The Subdue algorithm attempts to max- 
imize the value of the subgraph S, which is the multiplicative inverse of the compression in Eq. (1). Notice that, to evaluate a
subgraph, the compress ion measure in Eq. (1) jointly considers two commonl y used objectives in GBDM, the support and the 
size of the subgraph. 

Subdue performs a level-wise search in the subgraph lattice as shown in Fig. 1. Subdue starts with a parent list of single 
node subgraph s correspondi ng to unique label nodes in the input graph. It creates child subgraph s from each subgraph in the 
parent list by expanding each of its instances in all possible ways. The expansion is done by adding an edge (and a node if no 
cycle is closed). These subgraphs are stored in a child list in ascending order of MDL values. In order to avoid an exponential 
explosion, Subdue applies a beam search [37], limiting the number of subgraphs in the child list by the choice of a threshold 
parameter called beam-width. For the next level of expansion, the child list becomes the parent list. The algorithm iteratively 
applies this process until reaching a user specified limit on the number of parent subgraphs to be extended or exhaustion of 
the search space. The output is a list of the best subgraph s found. 

The drawback of Subdue is that it uses a computational ly constrained beam search that discards some of the less prom- 
ising subgraph s at an early stage of the exploration. This thereby terminates the possibility of expanding these less promising 
subgraphs later on in order to search other promising subgraph solution space regions. Thus, beam search is a kind of search 
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in the state space of subgraphs lattice not allowing backtrackin g. Therefore, it may often end up providing sub-optim al 
results.
2.3. Evolutionary programmin g

Evolutionary programmin g (EP) is a special type of evolutionary algorithm (EA) that seeks to optimize a fitness function. 
To this end, it simulates the evolution process by repeated ly executing the following loop [18,19]: (i) Initially, a population P
consisting of N individuals, each representing a candidate solution, is generated at random; jPj specifies the population size 
per generation. (ii) In each generation, a population Q of offspring individuals is created; To generate a single offspring, a
mutation operator is utilized on each parent individual from P. (iii) The offsprings are evaluated and a temporary population 
R = P [ Q is created. Among the individua ls in R, the selection operator chooses the best N candidates, which then form the 
population P of the next generation. (iv) The whole procedure is repeated until a stopping criterion is met. We refer [19] for a
general introduction to EP. 
2.4. Evolutionary programmin g-based Subdue 

One way to overcome the drawback of Subdue is the use of a global search to explore different layers of the subgraph 
lattice using a population of subgraph s. One straight away improvement to the beam search of Subdue was maintaining 
the parent list like a population in EP [2,39]. Unlike Subdue, this EP-Subdue method utilizes a population P of subgraphs 
in order to explore different regions of the subgraph lattice in each generation. 

At any generation, a child subgraph population Q is created using mutation on each parent subgraph from P. The mutation 
applies Subdue’s original subgraph expansion procedure. During mutation of an individua l, the subgraph S that it holds is 
extracted. Each of its instances is expanded in all possible ways to create new child subgraphs. Among the generated child 
subgraphs from the subgraph S, a child subgraph is randomly selected that becomes the mutated individual in the popula- 
tion Q. The fitness of this new individua l is to be maximiz ed and evaluated as the multiplicative inverse of the compress ion 
in Eq. (1). The global best individual is updated using the individuals in Q. To yield the next generation, the population is 
created by copying the global best individual, and selecting the remaining individuals from R = P [ Q based on the fitness
proportionate selection . The method continues exploring the search space for a maximum number of given generations. A
single best subgraph as pointed by the global best individual is then returned. 

The performanc e of EP-Subdue was tested on several WWW datasets [22] and compared against that of the standard Sub- 
due method. The results indicated that the EP-Subdue approach had often outperform ed the Subdue method. The reason is 
that EP is a global search that can simultaneou sly explore different regions in the search space of the subgraph lattice. 

This EP-Subdue [2,39] impleme ntation has one drawback. Mutation creates a new individua l by random selection of a
child subgraph among all the possible child subgraphs generate d from the individual. Generating all the possible child sub- 
graphs for choosing just a single child subgraph is a needless waste of computational resources. Instead, it would be faster 
and much more efficient if a feasible child subgraph is randomly created from an individual. With this view, we have mod- 
ified the mutation operator in EP-Subdue as follows. To mutate the subgraph S, first the instances of subgraph S in the input 
dataset are expanded by adding either an edge and a node or an edge only. This gives rise to a list of new instances . From this 
list an instance is picked up randomly that becomes the definition of child subgraph, and only the instances that match the 
definition of this child subgraph are retained. Thus, this new mutation operator has discarded all other possible child sub- 
graphs that could otherwis e be produced by the original mutation operator of EP-Subdue to generate a single child subgraph. 

We have applied this new mutation in the EP-Subdue method and tested its performance on several WWW datasets 1 [22].
We have used five datasets which were also employed by EP-Subdue in [2]. Both EP-Subdue variants were executed over an 
equal run time as given in Table 1.

The results represent the average graph compression values over 10 executions for both methods, together with the stan- 
dard deviations in parentheses . The lower value corresponds to higher compress ion of the input graph according to Eq. (1).
As can be seen, the new variant incorporating the modified mutation operator clearly outperform s the original approach on 
all the input datasets. Therefore, we will consider this new mutation operation in our proposals for multiobject ive GBDM 
which will be detailed in Section 3.
2.5. Multiobjecti ve optimization in data mining and multiobjecti ve graph-based data mining 

Several studies have shown that multiobject ive learning approaches are more powerful compared to learning algorithms 
with a scalar objective function in addressing various topics of machine learning. A nonexhaust ive list of examples includes 
classification, clustering, feature selection, improvement of generalizati on ability, knowled ge extraction, system identifica-
tion, and ensemble generation [4,5,14,23,29,3 6] . The concept of Pareto optimality [6] has been recently applied to machine 
learning and data mining, particularly inspired by the successful developments in EMO [8,31,32].
1 http://ailab.wsu.edu/su bdue/datasets/webdata.tar.gz .

http://ailab.wsu.edu/subdue/datasets/webdata.tar.gz


Table 1
Comparison of results between modified and original EP-Subdue method s. 

Dataset #Nodes #Edges Run time (s) EP-Subdue 

Modified Original 

W1 8 30 1 0.7928(0.01) 0.7969(0.00)
W2 31 43 1 0.6060(0.01) 0.8157(0.00)
W3 19 159 50 0.7086(0.03) 0.7383(0.04)
W4 22 314 50 0.5237(0.00) 0.5964(0.02)
W5 94 106 100 0.9176(0.02) 0.9257(0.02)
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A general multiobject ive optimizati on (MOO) problem can be described as a vector function f that maps a tuple of o
parameters (decision variables) to a tuple of d objectives [6,21]. Assume, without loss of generality, a maximizatio n problem: 
max : y ¼ fðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fdðxÞÞ
subject to x ¼ ðx1; x2; . . . ; xoÞ 2 X

y ¼ ðy1; y2; . . . ; ydÞ 2 Y

ð2Þ
where x is called the decision vector, X is the parameter space, y is the objective vector, and Y is the objective space. To 
compare any two solutions, we apply the well known concept of Pareto dominance: consider two solutions x1 and x2 with
vector-valued objective functions y1 and y2 respectively . An objective vector y1 is said to weakly dominate another objective 
vector y2 (y1 � y2) if no component of y1 is smaller than the correspondi ng component of y2 and at least one component is 
greater. Accordingly , we can say that a solution x1 is better than another solution x2, i.e., x1 weakly dominates x2 as f(x1) -
� f(x2). Mathema tically, the concept of Pareto dominance is defined as follows: 
8i 2 f1;2; . . . ; dg : fiðx1ÞP fiðx2Þ^
9j 2 f1;2; . . . ;dg : fjðx1Þ > fjðx2Þ

ð3Þ
A solution x 2 X with objective vector y is said to be Pareto optimal with respect to the search space X iff there is no solution 
x0 2 X with objective vector y0 that dominates y. For a MOO problem in Eq. (2), the Pareto optimal set P is defined as: 
P :¼ fx 2 Xj:9x0 2 X fðxÞ � fðx0Þg ð4Þ
and the Pareto-optima l front PF associated with the Pareto optimal set P is defined as: 
PF :¼ ffðxÞ ¼ ðfiðxÞ; . . . ; fdðxÞÞjðx 2 PÞg ð5Þ
Hence, there is not usually a single optimal solution to solve a typical MOO problem but a set of optimal solutions when all 
the objectives are jointly considered. These optimal solutions are known as nondominated , efficient, or Pareto optimal, and 
constitute the so-called nondominated , efficient, or Pareto-optima l solution set. Their set of objective vectors is called the 
nondominated , efficient or Pareto front (PF). With the aid of EMO, it may be possible to obtain an approximat ion to the true 
Pareto front of nondominated solutions for MOO problems [8,31,32].

In this study, a multiobject ive GBDM problem is formulated as that of finding an optimal set of subgraphs correspondi ng 
to the maximizatio n of two objectives, support and size, in the search space of the subgraphs [51,58]. A subgraph is evaluated 
considering two objective functions: (i) the support (the occurrence frequency of the subgraph S in the input set of graphs G),
and (ii) the size or order (the number of nodes in the subgraph S). These objectives can be calculated as: 
supportðG; SÞ ¼ #NðgijS # gi; i ¼ 1; . . . ; jGjÞ ð6Þ
sizeðSÞ ¼ #VðSÞ ð7Þ
where #Nð:Þ is the number of graphs in G which contains the subgraph S and #Vð:Þ return the number of nodes of the sub- 
graph S. The calculatio n of support of S requires subgraph isomorph ism test for determining how many graphs in G contain a
subgraph that is isomorphic to S. It is an NP-compl ete task [65]. Both objectives are clearly in conflict. More frequent (or
higher support) subgraphs represent sounder insights but often of small size, while large size subgraphs represent more con- 
cise (and thus more difficult to uncover) descriptions but of small support values. Therefore, there may exist several optimal 
objective vectors representing tradeoff between the objectives. A user will be interested in an algorithm that will allow her/ 
him to uncover cohesive subgraphs comprising even a moderate number of concepts (and not only the ordinary ones, as 
usual) which describe the underlyin g phenomena from different angles, revealing novel information that otherwise would 
be concealed by the usual uninformative mined concepts. In the following section, we briefly describe one such algorithm for 
multiobject ive GBDM. 
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2.6. The multiobjecti ve Subdue algorithm 

MOSubdue [58] is an extension of the single-obj ective Subdue method that utilizes a Pareto dominance-bas ed approach 
for selecting child subgraph s for the next level of expansion. It employs NSGA-II’s [16] nondominated sorting procedure for 
evaluating the fitness of child subgraphs. 

Based on the ways of selecting child subgraphs for the beam search, two different MOSubdue methods were applied. In 
the first approach (MOSubdue-I), a beam-width number of child subgraphs are selected accordin g to their fitness values. 
MOSubdue-I performs a determinist ic search as the selection is performed on the child list ordered according to the fitness
of child subgraphs. In the other approach (MOSubdue-II), a beam-width number of diversified child subgraphs from a non- 
dominated front are selected according to NSGA-II’s crowding-di stance measure computed for each subgraph in that front. 
When two subgraph s share the same fitness value, the one located in the less crowded-regi on is preferred. The effect of 
diversified child subgraphs selection is that MOSubdue-II may perform a stochasti c search in the multiobjective search space 
of the subgraph s. 

As seen in [58], the use of a Pareto-based search strategy and a diversified subgraph selection can benefit the MOSubdue 
algorithm in achieving a good nondominated set approximat ion. However , in MOSubdue-II the crowding distance-ba sed 
selection of child subgraphs at any expansion level is biased towards one objective, support, as the subgraphs are nearly 
indifferent in the other objective, size. The reason is that Subdue’s constructive search generate s nearly equal size child sub- 
graphs by adding either an edge and a node or an edge only to the parent subgraphs. Moreove r, at the early expansion stage, 
the algorithm usually generates a large number of child subgraphs belonging to the first nondomi nated front. This indicates 
that the diversified child subgraphs selection will not help the MOSubdue-II method to achieve a well distributed nondom- 
inated set of subgraph s [58]. This suggests an implementati on of EMO-bas ed GBDM could be more useful. This is due to the 
fact that at any generation, it can explore different layers of the lattice in the multiobjective subgraph search space. The next 
section is devoted to introduce an algorithm of that kind. 
3. Multiobjective evolutio nary programmin g for subgraph mining 

3.1. Graph and subgraph representation 

The input dataset G to the MOEP-based GBDM methodol ogy consists of feature-values that map to nodes and relation- 
ships between them that map to edges. For example, Fig. 2 shows the input G corresponding to the Shapes geometrical 
domain [10]. The objects in the figure (e.g., C, T, S) become labeled nodes in the graph and the relationship s (e.g. on (T,
S), on shape triangle) become labeled edges in the graph G.
Fig. 2. An example of a subgraph and its instances in geometrical domain: (a) an input set of graphs G; (b) a subgraph S being the graphical representation 
corresponding to the object in gray shade in G; (c) a list of instance subgraphs in G that match to the subgraph S. The subgraph S has four instances in G.
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3.2. Individual representatio n

An individual in the population P is represented as a possible subgraph S in the dataset G. P is a set of N subgraphs
S1; Si; . . . ; SN 2 X, where Si is a connected subgraph within the graphical representat ion for all those subgraphs in G that
match to the subgraph S. This graphical representation serves as a solution in the MOEP-based GBDM framework. It is clar- 
ified with an example given in Fig. 2. Consider subgraph S is a solution under the subgraph mining task within the input G.
One of the four instances of the subgraph S is highlighted in gray area in the figure. The instance shown in the gray area in G
is a subgraph having a set of nodes and edges from G. This subgraph can become the instance of subgraph S only if there is 
the graph theoretic match as one-to-one mapping of all nodes of the two subgraphs (i.e. the subgraph S in graphical repre- 
sentation and the subgraph shown in the gray area) such that all the adjacency relationship s are preserved. A list of the four 
subgraph instances of the solution S in G that match to the subgraph S is also shown in Fig. 2c. In the proposed MOEP frame- 
work, an individua l (or a solution) in the population P is always composed of a subgraph S with its associated instances in the 
input dataset G.

3.3. Population initializati on 

Usually, an EP initialize s the population P by random generation of individuals in the solution search space. For the cur- 
rent applicati on, we can form the initial population of possible subgraphs in G from the output of any GBDM method, such as 
the Subdue algorithm or any other. This population can contain subgraphs from different layers of lattice. In this work, a
simple procedure has been applied to initialize the population. Referring to Fig. 1, initially, all single node (i.e. one-size) sub- 
graphs are created from unique label nodes in G. The next layer of the lattice is then explored by extendin g all the instances 
of these subgraphs by drawing feasible edge and a node from the graph data. This will produce candidate subgraph s of the 
same size (i.e., of order three) but may have different values for the other objective, support. An initial population contains 
subgraphs randomly selected from these candidate subgraphs. More sophistic ated procedures can also be applied to gener- 
ate the initial population that may well represent different search space solutions. 

3.4. Candidate subgraph s generatio n

The current application of our MOEP approach for GBDM relies only on the use of a mutation operator for candidate gen- 
eration. Mutation yields a maximum of N new candidat e subgraphs as each parent subgraph S in P is used to create a new 
child subgraph. All the instances in G of the parent subgraph S are extended by an edge (and a node if no cycle is closed) in 
order to create child instances. A child instance is then randomly selected that becomes a child subgraph in graphica l rep- 
resentation. All of the child instances that match this child subgraph become its new instances. This child subgraph should 
have at least two instances in G to qualify as a child subgraph of the parent subgraph S. Otherwise a new child instance will 
be randomly selected to form a child subgraph. 

A child subgraph generation is illustrated in Fig. 3 by considering a parent subgraph S as shown in Fig. 2 with its associ- 
ated instances. In Fig. 3a, the four instances of the subgraph S are extended by an edge and a node which has produced four 
child instances. Three different child subgraphs can be assembled from these child instances, as can be seen in Fig. 3b. Out of 
three child subgraphs, one with a support value of two will be chosen. The mutation applies extending parent subgraph by 
an edge, which always create existing (or feasible) candidates in the input G. This is the most commonly used candidate gen- 
eration method employed by GBDM techniqu es [10,65].

3.5. Objective functions calculatio n

An individual S in the population P is evaluated using the two objective functions given by Eqs. (6) and (7). To compute 
the support objective, the present MOEP framework applies a kind of appearan ce list that records the graphs in which a can- 
didate subgraph occurs [10,13]. An individual S in P is always associated with its subgraph instances in the input G. It suffices
to check all the subgraph instances in the appearance list instead of testing the whole input data for calculating the support. 
The second objective, size (or order) of the subgraph S, is equal to the number of nodes present in S.

3.6. Implementing multiobjecti ve evolutionary programmi ng methods for multiobjective subgraph mining 

In our earlier studies [56,57] with preliminar y results, we have shown different applications of EP for multiobject ive 
GBDM. This study involves proposing a general framework based on EP for GBDM. To this end, in the following, we consider 
three different MOEP methods, namely MOEP-ND, MOEP-NS, and MOEP-SO . MOEP-ND is newly proposed in this study while 
the other two were previously described in [56,57].

MOEP-ND: This EP algorithm was recently proposed for multiobject ive optimization in power generation expansion plan- 
ning [41]. The algorithm employs the nondominance to evaluate individuals’ fitness and applies niching for diversified selec- 
tion of individuals. MOEP-ND utilizes an external archive PA to store nondominated solutions. Here, an applicati on of MOEP- 
ND for subgraph discovery can be given in the following steps as: 



Fig. 3. An example of the mutation operation that creates a candidate subgraph. (a) Four possible child instances from the expansion of instances in G
corresponding to the subgraph S shown in Fig. 2. (b) Three different child subgraphs in graphical representation corresponding to the four child instances in 
(a).
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Step 1: Initialize the population P of N individual subgraphs, and an external population PA = ;.
Step 2: Update PA using nondominated solutions in P.
Step 3: Create a population Q of child subgraphs from parent subgraphs in P by mutation. 
Step 4: Update PA using nondominated solutions in Q.
Step 5: Combine the two populations to produce a temporary population R = P [ Q.
Step 6: Assign fitness to individuals in the current population R using Pareto dominan ce [41]. Note that dominance of an 

individual is evaluated only with respect to the current population and its nondominance is determined by compar- 
ing against the remaining ones. A rank 1 + ri is assigned to an individua l i reflecting its domination by r individuals.
As a result, all the nondominated individuals are assigned a rank of one. In R, the nondomi nated individua ls carry the 
lowest (best) rank and the dominated individuals are with the highest (worst) rank. A fitness value based on this 
rank is then assigned to individua ls 
fitnessi ¼ 1=ð1þ riÞ ð8Þ

where ri is the domination count (rank) of the subgraph individual Si in the population R.

Step 7: Select N best individuals (as a new parent population P) from R according to the fitness. This selection also uses the 

idea of niching [20] to preserve the diversity of the new population P along the approximate Pareto front. The nich- 
ing updates the fitness of individuals in R based on their proximities in the objective space. To this end, the sharing 
function value for two individuals i and j with the same rank is computed as follows: 
shðcijÞ ¼
1� cij

rshare

� �a
if cij 6 rshare

0 otherwise 

8<
: ð9Þ

where rshare is the maximum distance allowed between i and j individuals to become a member of a niche, and a is a
positive scaling factor typically less than one. cij is the normalized distance between individua ls i and j with the same 
rank

cij ¼
Xd

l¼1

f l
i � f l

j

� �2

f l
max � f l

min

2
64

3
75

1=2

ð10Þ

where f l
min and f l

max are the minimum and maximum objective function values of the lth objective, in the current iter- 
ation, respectively . f l

i and f l
j are objective function values of i and j individuals. The niche count of individual i is cal- 

culated by summing the sharing function 
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nci ¼
XjRj

j¼1

shðcijÞ ð11Þ

finally, the fitness for individual i is adjusted by the niche count 

fitnessi ¼ fitnessi=nci ð12Þ

and the best N individuals from R are selected based on this updated fitness values. 

Step 8: Go to step 2, if termination criterion is not satisfied.
Step 9: Report the nondominated subgraphs in PA.

MOEP-NS: This algorithm for subgraph discovery was proposed in [57] and can be described in the following steps: 

Step 1: Initialize the population P of N subgraphs.
Step 2: Create a population Q of child subgraphs using mutation on each parent subgraph in P.
Step 3: Combine the two populations R = P [ Q.
Step 4: Assign fitness to subgraphs in R using the nondominated sorting procedure [16] as follows. Individual s in R receive a

rank value based upon their degree of nondomi nance. The nondominance among the individuals is determined by 
comparing all the subgraphs to each other. A rank one individuals are obtained when the nondomi nance is evaluated 
on the current population R. To obtain rank two individuals, discard temporarily all the ranked (i.e., rank one) indi- 
viduals in R and then evaluate the nondominance on this reduced population R. Thus, to obtain rank r individuals,
first discard temporarily all the ranked (i.e. rank 1, 2, . . ., r � 1) individuals from the population R and then evaluate 
the nondominance on the reduced population R. As a result, all nondominated subgraph s are assigned a rank one, 
while the dominated ones are penalized by assigning rank 1 + r according to the region of the tradeoff surface. In 
the population R, individuals that are nondominant are assigned with the lowest (best) rank and individuals that 
are highly dominated are assigned highest (worst) rank. A minimization of fitness function is then assumed 
fitnessi ¼ ri ð13Þ

where ri is the rank of the subgraph individual Si in the population R.

Step 5: Create a new population P by selecting among individua ls in R according to minimizatio n of fitness function. To 

select N subgraphs, first choose the set of rank one subgraphs in R. If the size of this set is smaller than N then choose 
the set of rank two subgraph s, and so on. Consider that the set of rank r is the last one that can be accommodated . In 
general, the total number of subgraphs belonging to rank 1 to r will be greater than N. To choose exactly N sub-
graphs, a crowding-di stance assignment [16] is applied in the set of rank r subgraphs. The crowding-dista nce cdi

associated with the subgraph Si is the absolute normalized distance between two subgraph s Sj and Sk on either side 
of the subgraph Si with the same rank r
cdi ¼
Xd

l¼1

f l
j � f l

k

f l
max � f l

min

ð14Þ

where f l
max and f l

min are the maximum and minimum objective function values of the lth objective, respectively. f l
j and

f l
k are the objective function values of the subgraphs Sj and Sk, respectively . Note that, the subgraphs with the min- 

imum and maximum objective function values are assigned an infinite crowding-dista nce. For all other subgraphs, 
the crowding-di stance is calculated using Eq. (14). The subgraph set with rank r is sorted in the descending order of 
the crowding-di stance values and is then pruned at a point to have exactly N subgraph s in the population P.
Step 6: Go to Step 2, if terminat ion criterion is not satisfied.
Step 7: Report the nondominated subgraphs in P.

MOEP-SO: This MOEP algorithm is different from MOEP-NS in two ways [56]: (a) creating the new population from R, and 
(b) use of an external population PA for storing nondominated solutions. Here, an applicati on of MOEP-SO for subgraph dis- 
covery can be described in the following steps as: 

Step 1: Initialize the population P of N subgraphs, and an external archive PA = ;.
Step 2: Update archive PA using nondomi nated solutions in P.
Step 3: Create a population Q of child subgraphs from parent subgraph s in P by mutation. 
Step 4: Update archive PA using nondomi nated subgraphs in Q.
Step 5: Combine the two populations R = P [ Q.
Step 6: Create a new population from R using summation of objectives for diversified selection [46] as follows. For each 

objective function find its range from the maximum and minimum objective values, and evenly divide the range 
of the objective space into some 100 bins (or grids). For each individual a fitness (or rank) is assigned equal to 
the summation of grid numbers that holds each of the objective values of the individual. The diversified selection 
constitutes two sets of individuals, preferential set and backup set. To obtain the preferent ial set correspond ing 
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to each objective function scan some 80 or 90 percent of the objective space divided into 100 bins. For each scanned 
bin an individual with the lowest fitness value is chosen. The backup set is obtained from the individuals that are not 
part of the preferential set. The new population is obtained from the preferential set. If the size of the preferent ial set 
is greater than the population size, the new population P is created by random selection of individuals from the pref- 
erential set. If the size of the preferential set is smaller than N then the remaining individuals are selected from the 
backup set according to the lowest fitness values. 

Step 7: Go to Step 2, if termination criterion is not satisfied.
Step 8: Report the nondominated subgraph s in PA.

4. Experimental results 

Th e pe rf or man ce of th e thr ee MO EP al go rith ms fo r th e pro pos ed mul ti ob je ct ive sub gr ap h mi ni ng ta sk (as define d in
Se ct io n 2. 5) is an al yze d by mea ns of va rio us un ar y an d bi na ry met ri cs [9, 70 ,7 1], an d vi su al rep re sen ta ti on s of th e ob -
ta in ed PF ap pro xim at io ns . For co mpar iso n pur pos es , we al so ap ply sin gl e- ob jec ti ve Su bdu e [10 ,1 3] an d EP -Su bd ue [2] 
us ing th re e di ff er en t ob jec ti ve fu nc ti on s to pr od uc e ag gr eg at ed PF s on se ve ral gr ap h da ta set s (see Se ct ion 4. 2). Be si de s, 
th e two va ria nt s of MO Su bd ue [5 8] ar e ap pli ed fo r a br oa der per fo rman ce stu dy . Al l th e co ns ide red met hod s ha ve be en 
im pl em en te d in C, an d al l ex per imen ts ha ve be en per fo rmed on an In te l Co re Qua d at 2. 66 GH z, wi th 4 GB RAM, ru nn ing 
Ce nt OS 5. 5. 
4.1. Graph-repres ented datasets used 

A total of 10 datasets have been employed . Table 2 summari zes a few characterist ics of these datasets, such as the 
number of nodes, the number of edges, etc. The datasets are of different sizes. Besides, these datasets consist of varying 
degrees of nodes and unique labels. For example, the smallest size dataset www2 consists of only four graphs while the 
biggest size dataset random2 consists of 200 graphs. The number of nodes ranges from a small number of 500 in the 
shapes dataset to a large one of 19,253 in the scientograms73 dataset. The number of unique nodes ranges from 7 in 
the random1 dataset to 1156 in the www2 dataset. The first two datasets, random1 and random2, were synthetically gen- 
erated using the random graph generator available at Subdue’s website. 2 A brief descrip tion of the remaining datasets is 
provided as follows. 

Shapes is a synthetic ally constructed geometrical example of structural data in the classical Subdue’s study domain [10].
Fig. 2 shows an example of a graphical representat ion of the input shapes data. This dataset consists of 100 different graphs 
with a total of 500 nodes, 400 edges, and 8 unique labels. The true Pareto set (which is known for this simple domain as it has 
been computed in an exhaustive way) contains 12 different nondominated subgraphs out of which 7 are distinct in the 
objective vector space. 

WWW is a dataset available online at Subdue’s website. 1 The data were extracted from real World Wide Web pages and 
were transformed to labeled graphs using a web robot [22]. In this work, we have considered the ProfStu graph dataset 
which was generated using professor and student web sites. The informat ion these graphs contain is hyperlink structure 
and page’s content. ProfStu dataset consists of 47 graphs, which are quite complex containing several unique node labels. 
We consider this real-worl d data as a challengi ng way to illustrate our MOEP framewor k for GBDM. Instead of dealing with 
each of the huge graphs individually as done in [22], we created two different datasets, namely www1 and www2, where 
www1 is composed of five graphs numbered 6, 19, 25, 43, and 45; and www2 consists of four graphs numbered 15, 27, 
38, and 46. For these datasets, the true Pareto sets are not known due to large complexity and real-world nature. For com- 
parison purposes , we have used a pseudo-opti mal Pareto set, which is obtained as a fusion of all the nondomi nated sets 
achieved by each of the applied algorithms during the simulations .

Scientogram s [48] is a database built following De Moya-Anegón et al.’s methodol ogy [62] to design visual science maps 
(scientograms) for huge scientific publications collections. The rough considered data have been extracted from the Scimago 
Journal & Country Rank portal 3 and comprise a set of 36 millions documents indexed in Elsevier Scopus from 1996 to 2008 over 
73 countries [62]. The nodes of the graphs correspon d to Elsevier SCOPUS-SJR 4 co-citat ion categories. Only the salient relation- 
ships between categories are kept, capturin g the essential underl ying intellectu al structure of the studied scientific domain, 
using the Pathfinder social networks algorithm [47] to prune the graphs. Recently, this database has been extensively analyzed 
in [48] to propose an automatic Subdue-ba sed approach for the identification and the comparison of scientific structure s within 
scientogr ams. In our experiment al study, we have used four datasets compil ed for the countries United States (US), United King- 
dom (UK), Japan, and Germany over the period of 1996–2005, and with the sciento grams73 dataset combin ing the scientogr ams 
of 73 countries for the publicati on year 2005. The optimal Pareto sets are not known for these datasets, so we rely on the pseu- 
do-optimal Pareto sets. 
2 http://ailab.wsu.edu/su bdue/datasets/subgen.tar.gz .
3 http://www.scimagojr.com /.
4 http://www.scopus.com.

http://ailab.wsu.edu/subdue/datasets/subgen.tar.gz
http://www.scimagojr.com/
http://www.scopus.com


Table 2
Description of different graph-represented datasets used. 

Dataset #Graphs #Nodes #Edges #Unique labels MOEP run time (s)

random1 100 2954 3009 7 100 
random2 200 5876 6015 7 145 
shapes 100 500 400 8 1
www1 5 832 885 511 450 
www2 4 2178 2539 1156 625 
US 10 2762 2769 294 2000 
UK 10 2732 2748 292 1300 
Japan 10 2635 2680 278 3100 
Germany 10 2676 2702 284 900 
scientograms73 73 19,253 19,709 296 265 
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4.2. Nondominated subgraphs extraction using single-objecti ve Subdue and EP-Subdu e methods 

On each dataset, both Subdue and EP-Subdue independen tly apply a single-objective search per objective function MDL 
(Eq. (1)), support (Eq. (6)), and size (Eq. (7)). The output of the algorithm was set to return a maximum of 100 best subgraphs. 
The three different outputs of the algorithm were aggregated and a nondominated set of subgraph s using nondominance (Eq.
(3)) was produced as the final output of the algorithm. The nondomi nated set was restricted to contain a maximum of 100 
subgraphs.

An implementation of the Subdue algorithm is publicly available at Subdue’s website. 5 In this work, we have only modified
the subgraph evaluati on function of the Subdue algorithm to accommodat e the suppor t objective. The algorithm parameter 
beam-width was set equal to 5 after a preliminary experiment ation. Subdue performs a determ inistic search and thus it is exe- 
cuted once on each dataset. 

We have impleme nted a single-objective EP-Subdue method [2,39] as described in Section 2.4 which considers two addi- 
tional objectives the support and the size. EP-Subdue was run with the following parameters: population = 100, output best 
subgraphs = 100 per objective function. EP-Subdue performs a stochastic search and hence executed 10 times independen tly 
on each dataset. 
4.3. Parameter settings and multiobjec tive metrics 

MOSubdue : We have applied both MOSubdue variants. MOSubdue-I is a determinist ic approach and thus it is applied 
once. While, MOSubdue-II is a stochastic search and thus it has been run 10 times independen tly on each dataset. Both 
the variants of MOSubdue were applied with the following paramete r settings: beam-width = 5, size of output list = 100. 

MOEP Methods: For MOEP methods the population was set to 100. The output of MOEP-NS was the nondominated sub- 
graphs in the population when the termination criterion was met. On the contrary, MOEP-SO and MOEP-ND have reported 
the nondominated subgraphs stored in the external Pareto archive (PA). The size of PA was set to 100. The three MOEP meth- 
ods have been run 10 times independently on each dataset. In MOEP-ND, the niche count computati on needs setting two 
parameters rshare and a in Eq. (11). After preliminar y experimentation, these paramete rs were set to rshare = 0.005 and a = 1. 

To have a fair comparison between the EP methods and MOSubdue- II, the three MOEP variants and EP-Subdue have used 
a fixed run time as given in Table 2. This run time was determined from the average run time of 10 different executions of 
MOSubdue-II for each dataset. 

Note that on all the datasets used, none of the methods in any of their executions could produce a number of nondom- 
inated subgraph s that surpass the maximum archive size limit of 100. Nevertheles s, the single-obj ective Subdue and EP- 
Subdue, and MOSubdue methods used the crowding distance measure [16] to prune the nondominated set. However, 
when datasets have a large number of nondominated and repetitive subgraphs, a larger limit on the archive size could 
be used. 

Due to the nature of MO problems, multiple performanc e indexes (classically called multiobjective metrics) should be 
used for comparing the performanc e of the different algorithms [9,70,71]. In our experimental analysis, a unary and a binary 
performanc e metric are used. As regards the former type, we use the hypervolume ratio (HVR) to compare the different Par- 
eto set approximation s taking the pseudo-opti mal PF as a reference. For a Pareto set approximation , the HVR-metric value is 
better when it tends to one. For pair-wise evaluation of MO algorithms based on dominance, we have considered the binary C
metric [70] that compares the Pareto set approximation s in pairs. The C-metric is also better when it tends to one. Further, 
considering the stochasti c nature of EAs, we apply a statistical test proposed in [54] about the probability that algorithm A
dominates the algorithm B based on the binary I�(A, B)-metric [71]. The three considered metrics are described in the 
Appendix.
5 http://ailab.wsu.edu/su bdue/software/subdue-5.2.1.zip .

http://ailab.wsu.edu/subdue/software/subdue-5.2.1.zip


130 P. Shelokar et al. / Information Sciences 237 (2013) 118–136
4.4. Experimenta l analysis 

Table 3 presents the mean and standard deviation of the HVR-metric values of the PF approximation s achieved by the 
different algorithms for each dataset. 

Fig. 4 shows the assessment of different algorithms in pairs using the C-metric. For an ordered algorithm pair (A, B), there 
is a sample of 10 C-metric values accordin g to the 10 runs performed. Each value is computed on the basis of nondomi nated 
sets achieved by A and B with the same initial population. Note that, in case of determinist ic algorithms (Subdue and MOSub- 
due-I) a single run was performed on a dataset. Here, box-plots are used to visualize the distribut ion of these samples. 
Besides, notice that, the two worst performing algorithms (the two single-obj ective methods, Subdue and EP-Subdue) are 
not included in the C-metric box-plots collected in Fig. 4. This is due to the fact that their poor results made the scale become 
so large just for the two, thus making very difficult to distinguish visually the differences among the remaining better per- 
forming algorithms. Figs. 5 and 6 show the plots of the PF approximat ions produced by the different algorithms on the www2
and scientogram s73 datasets. The plots correspondi ng to Subdue-I and MOSubdue-I are the approximat ions generated by the 
Table 3
HVR-metric values for the nondominated subgraph sets found by different meth ods. The numbers in the parentheses represent the standard deviation. 

Dataset Subdue EP-Subdue MOSubdue-I MOSubdue-II MOEP-NS MOEP-SO MOEP-ND 

random1 0.9552(–) 0.8724(0.02) 0.9536(–) 0.9623(0.00) 0.9721(0.01) 0.9708(0.01) 0.9614(0.01)
random2 0.9663(–) 0.8626(0.02) 0.9747(–) 0.9795(0.01) 0.9163(0.02) 0.9723(0.01) 0.8675(0.03)
shapes 1.0000(–) 0.9920(0.00) 1.0000(–) 0.9954(0.01) 1.0000(0.00) 1.0000(0.00) 1.0000(0.00)
www1 0.7788(–) 0.8467(0.06) 0.8391(–) 0.9899(0.03) 0.9663(0.01) 0.9969(0.01) 1.0000(0.00)
www2 0.7567(–) 0.5939(0.07) 0.7432(–) 0.9162(0.03) 0.5824(0.03) 0.8790(0.06) 0.8054(0.10)
US 0.6114(–) 0.5796(0.15) 0.9673(–) 0.9013(0.11) 0.9740(0.03) 0.9791(0.03) 0.9741(0.03)
UK 0.6318(–) 0.4123(0.10) 0.7302(–) 0.7635(0.18) 0.9326(0.04) 0.9316(0.05) 0.9217(0.03)
Japan 0.6429(–) 0.6030(0.09) 0.8021(–) 0.9850(0.03) 0.9857(0.01) 0.9878(0.01) 0.9857(0.01)
Germany 0.7406(–) 0.5204(0.11) 0.8083(–) 0.8920(0.06) 0.9501(0.04) 0.9452(0.03) 0.9329(0.03)
scientograms73 0.8096(–) 0.5067(0.06) 0.7775(–) 0.8336(0.01) 0.8072(0.05) 0.8026(0.07) 0.7940(0.04)

Average 0.7893(0.14) 0.6770(0.20) 0.8596(0.10) 0.9219(0.08) 0.9087(0.13) 0.9465(0.06) 0.9336(0.08)

Bold represent the best results obtained on the dataset. 

MOSubdue− I

MOSubdue− II

MOEP−NS

MOEP−SO

MOEP−ND

Fig. 4. Box-plots based on the C-metric computed for the best methods considered. Each rectangle contains 10 box-plots representing the distribution of 
the C-metric values for a certain ordered pair of algorithms; the leftmost box-plot relates to random1 dataset, the rightmost to scientograms73 dataset.
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Fig. 5. The aggregated PF approximations produced by the different algorithms on www2. The pseudo-optimal PF is also shown as a reference. 
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Fig. 6. The aggregated PF approximations produced by the different algorithms on scientograms73. The pseudo optimal PF is also shown as a reference. 
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single run of the algorithm, while those correspondi ng to the remaining methods are the aggregation of the results of 10 
different runs. The fused outputs of stochastic methods are only used for graphical representation . For the sake of a better 
visual representat ion, the PF plots are grouped into two figures per dataset. They are grouped accordin g to the average HVR-
metric values on the 10 datasets, consideri ng a figure for the worst performing and another for the best performing 
algorithms.

We can make some remarks in view of the obtained results. First, the HVR-metric values in Table 3 indicate that the sin- 
gle-objectiv e algorithms (Subdue and EP-Subdue) have produced the worst approximation s to the reference PFs on all the 
datasets as compared to those achieved by the multiobject ive algorithms , MOSubdue and MOEP-based methods. The only 
exception is the small size shapes dataset. This conclusio n can be further evident from the average values of HVR-metric over 
all the datasets, which are much lower for Subdue (0.7893) and EP-Subdue (0.6770) as compared to that of any multiobjec- 
tive search method. This suggests the incorporation of multiobject ive search strategy enables the algorithm to explore more 
efficiently the multiobject ive subgraph solution search space. 

Comparing the results between MOSubdue methods, Table 3 shows that MOSubdue-II has clearly been the best. MOSub- 
due-II has produced better results than MOSubdue-I on eight datasets. The exceptions are only the shapes and US datasets.
The average of the HVR-metric values for MOSubdue-II is 0.9219, which is significantly higher than that of 0.8596 for 
MOSubdue-I. Fig. 4 also shows that the PF approximat ions by MOSubdue-II have achieved more coverage over those by 
MOSubdue-I. Further, the graphical representat ions of the PFs obtained by MOSubdue-I and MOSubdue-II as shown in Figs. 5
and 6 indicate that MOSubdue-II was able to produce wider or similar spread of solutions over the reference PF when com- 
pared to that obtained by MOSubdue-I. The better performanc e of MOSubdue-II was mainly due to the diversified subgraph 
solution selection during the beam search. 

From Table 3, three MOEP methods have produced the best quality PFs on seven datasets. www2 is the only dataset where 
MOEP-NS shows a clearly disappointing performanc e. The average HVR value corresponding to MOEP-SO is the highest 
(0.9465). Further, the binary C-metric in Fig. 4 indicates that the PF approximat ions produced by MOEP-SO have more 
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coverage to that produced by the other two MOEP methods. The aggregated PF plots of all the MOEP methods in Fig. 5 indi-
cate that the differences are more significant in the aggregated PFs on the www2 dataset, where the bad performance of 
MOEP-NS is clearly identified. The same stands for scientogram s73 in Fig. 6. Hence, the obtained differences are mainly 
due to the dispersion of the results in the 10 different runs. 

Based on the results of the different multiobject ive performance metrics, we can conclude that MOEP-SO is the best per- 
former, followed by MOEP-ND, MOSubdue-II and MOEP-NS, respectivel y. Even so, as some of the executions of MOEP-SO 
were dominated by MOSubdue- II and vice versa , we want to assess the actual improvement MOEP-SO has obtained over 
MOSubdue-II. To do so, we perform a statistical analysis of multiple executions of MOEP-SO and MOSubdue-II. For this pur- 
pose, we apply a statistical test on the results of the I�(A, B)-metric pair-wise comparison to study the extent to which, on 
average, the algorithm A is better than the algorithm B. Table 4 reports the obtained p-values correspondi ng to a pair-wise 
comparison between the three best performi ng methods, MOEP-SO, MOEP-ND, and MOSubdue-II, on all the datasets. 

According to p-values < 0.05 (i.e., with 95% of confidence), MOEP-SO has significantly dominated MOSubdue-II and MOEP- 
ND on four datasets. As against, it has been dominated with significant differenc e by MOSubdue-II on a single dataset 
(www2) and by MOEP-ND on one dataset (www1). Comparison between MOSubdue-II and MOEP-ND shows that both 
algorithms have dominate d each other on three and two datasets, respectivel y. This clearly says that MOEP-SO is the best 
algorithm in our experimental study, while MOSubdue- II and MOEP-ND have shown a similar performance. 

The explanat ion for the latter good performanc e lies in the fact that the proposed MOEP framewor k is a global search 
approach. At any generation, the MOEP-based GBDM method maintain s a population of solutions belonging to different 
layers of the subgraph lattice. This helps exploring more efficiently the multiobject ive subgraph lattice space and thus pro- 
ducing more diverse solutions. On the contrary, MOSubdue performs a beam search with no backtrackin g in the subgraph 
lattice space. At any generation, the beam search explores a single layer of the subgraph lattice, and for the next generation 
it comprises the solutions mostly belonging to that layer. Thus, the depth exploration applied by the beam search, although 
complemen ted by width search, may miss out exploring other regions of the multiobject ive subgraph lattice space due to the 
fact that it discards nonpromising solutions at early stages of the search and it never backtracks. 

Nevertheles s, the evolutionary search has performed somewhat poorly on the individual runs on www2. While MOEP-SO 
and MOEP-ND are generally the best performi ng methods for all the remaining datasets, they are clearly outperform ed by 
MOSubdue-II on www2. On this dataset even the single-objective Subdue and EP-Subdue, and the determini stic MOSub- 
due-I have achieved better values of the HVR-metric than that obtained by MOEP-NS (Table 3). We performed an in depth 
analysis of the subgraph generation process of MOEP on this dataset in order to understa nd a possible reason behind the 
inferior performanc e. The www2 dataset of four graphs contain not only several unique node labels (1156) but also many 
repeated ones. At the beginning of the search process, a parent subgraph has several repetitive instances in a graph of the 
dataset. As against, the definition of the objective support assumes just one occurrence (and no repetition) in any graph 
of the dataset. The different repetitive instances of the subgraph bring huge redundancy in the mutation operation for a child 
generation. The current definition of the support objective fails to take into account this redundancy during subgraph selec- 
tion. Thus, a new definition of the support objective is needed to apply MOEP-SO efficiently and effectively in such scenarios. 
This problem of redundancy is somewhat also observed on synthetic datasets random1 and random2. Note that, in the real- 
world scientogram datasets, a parent subgraph has no repetitive instances in a graph of the dataset and thus there is no such 
additional redundancy in the mutation operation for a child generation. As a result, on the scientogram datasets, the MOEP 
methods have produced consisten tly superior performanc e. 

In this work, MOEP-based GBDM has been applied on sets of connected relational graphs with or without cycles and di- 
rected or undirected edges. In the multiobject ive GBDM problem formulation, the support of a subgraph is evaluated on a set 
of graphs and the maximum support of the subgraph is estimated to be equal to the number of graphs in the dataset. Even so, 
the proposed MOEP framework can easily be applied on a single huge graph to find the nondomi nated subgraph s by just 
changing the support definition (without requiring any change in the solution methodol ogy). This is because an individua l
in the MOEP population is a subgraph with all its instances in the graph data of a single huge graph or a set of graphs. 
Table 4
p-values for different pairs of the three best algorithms. 

(A, B) (B, A) (A, C) (C, A) (B, C) (C, B)

random1 1.0000 1.0000 0.0840 0.9362 0.0008 0.9994 
random2 1.0000 1.0000 0.0840 0.9362 0.0168 0.9873 
shapes 7.969e�06 1.0000 1.0000 1.0000 1.0000 7.969e �06
www1 0.5290 0.5290 1.0000 7.969e �06 1.0000 7.969e �06
www2 0.9998 0.0002 0.0002 0.9999 5.1704e �05 1.0000 
US 0.0071 0.9943 0.1290 0.8867 0.6764 0.3541 
UK 0.0032 0.9975 0.0029 0.9977 0.8985 0.1164 
Japan 0.0558 0.9525 0.0015 0.9988 0.0725 0.9383 
Germany 0.0029 0.9978 0.0074 0.9944 0.8643 0.1841 
scientograms73 1.0000 1.0000 0.0840 0.9362 1.0000 1.0000 

A = MOEP-SO, B = MOSubdue-II, and C = MOEP-NS algorithms. 
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The existing subgraph mining approaches operate by using simple user-defined thresholds on the mined subgraphs. 
However, not all the subgraph s uncovere d by this approach are important, especially when mined at high support threshold 
resulting into many uninteres ting small size subgraphs. Facilitating the use of such simple constrain ts make it difficult for 
the user to discover any tradeoff between the support and the size of mined subgraphs to call them interesting patterns. As 
against, a new multiobject ive subgraph mining approach based on EP is proposed here to support the user specified prefer- 
ences (or objectives) regarding the characteri stics of the mined subgraphs. The extracted subgraphs subject to the tradeoff 
between the objectives facilitate the user to select the important patterns. 

Finally, we have also applied gSpan 6 [65], an existing exact subgraph mining algorithm, on the datasets given in Table 2. The 
gSpan algorithm was very fast to completel y mine the first three datasets (random1, random2, and shapes) in Table 2 containin g
small size graphs with the average size of 25 nodes and 6 unique node labels. Neverth eless, the algorithm failed to perform a
complete search on the remaining seven datasets even after spending over two days on each dataset. For example, gSpan’s 
aborted run with 10% of frequency threshold has mined over 5 millon subgraphs on scientograms7 3 dataset of 73 graphs and 
average graph size of 264 nodes. The biggest mined subgraph was of size 28 and support of seven, which is dominated by 
the solutions obtained all the MOEP and MOSub due methods. This experimen tation clearly highlights that MOEP is useful 
for domains where complete subgraph search is not feasible, and in cases where the number of possible maximal subgraphs 
is relatively large. 

5. Conclusions and future work 

We have successfully shown the application of MOEP for multiobject ive subgraph mining. To our knowled ge, this is the 
first inclusive study of evolutionary search for this data mining task. The need of global search in the multiobject ive subgraph 
lattice space and the obtained experimental results highlight the suitability of the proposed framewor k for producing good 
PF approximation s. Three different MOEP methods have been implemented . Comparing to single-objective Subdue and EP- 
Subdue, and MOSubdue methods on the 10 different datasets considered, the three MOEP methods have shown a good per- 
formance and two of them have achieved a substantial performanc e gain. This is because the use of a population allows us to 
explore different regions of the multiobject ive subgraph lattice in a single run. Overall, the MOEP-SO algorithm has been the 
best performer in the developed experime nts. 

Different lines for future works arise from this contribution. The present MOEP approach has shown very good perfor- 
mance on different datasets overall, but has faired marginally inferior in the case of synthetic datasets and somewhat poorly 
in the case of www2 dataset. To this end, a new definition of the support objective is required to handle the subgraph selec- 
tion pressure in the presence of subgraphs with repetitive instances in a graph of the input dataset. 

Further, in a future study, we consider building a more general EMO framework by developing a crossover operator for 
subgraph generation. For child creation, the crossover operation involves information sharing by parent individuals which 
helps the co-operative evolution of the population. We will explore an approach that joins two size- k frequent subgraph s
when they have the same size-(k � 1) subgraph. Here, graph size means the number of nodes in a graph. This will generate 
two candidate subgraphs with the common size-(k � 1) subgraph and the additional two nodes from the two size- k patterns.
A similar approach has been applied in apriori-based algorithms [28,34] with edge (or node)-based candidat e generation 
strategy. However , this approach has considerable overhead when two size- k frequent subgraphs are joined to generate 
size-(k + 1) subgraph candidat es [28,34]. Thus, obtaining a good design for a subgraph crossover operator is an open 
challenge.

In addition, the proposed MOEP framework is based on a pure general purpose multiobject ive subgraph search. Thus, it is 
able to deal with several objectives (two in this contribution) which could be generically customiz ed by the user to deal with 
different GBDM tasks as long as they can be formulated in a simple way [58].
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Appendix A

In the case of multiobject ive optimizati on, comparing the results obtained by two algorithms is substantially more com- 
plex than in single-obj ective optimization. To do so, we should compare two sets of solutions where some solutions in either 
set may be dominated by solutions in the other set, while others may be incomparab le. Several unary and binary perfor- 
mance indicators are proposed in the EMO literature [9,15,70,71] in order to compare the outcomes of multiobjective opti- 
mizers in a quantitat ive and qualitative manner. It is widely recomme nded to consider the use of both unary and binary 
indexes.
6 http://www.cs.ucsb.edu /xyan/software/gSpan.htm .

http://www.cs.ucsb.edu/xyan/software/gSpan.htm


134 P. Shelokar et al. / Information Sciences 237 (2013) 118–136
Hypervolume is a unary index that measures the volume enclosed by the PF approximat ion X0 with respect to a reference 
point. For a two-dimens ional objective vector, hypervolume is the summation of the area covered by each member of the 
Pareto front. In the case of a maximiz ation problem, as ours, we define a reference point as (0, 0). In our experiments , we 
have used the hypervolume ratio (HVR) [9]. HVR measures both diversity and closeness of X0 to the true Pareto set and it 
is calculated as: 
HVR ¼ H1

H2
ð15Þ
where H1 and H2 are the volume of the Pareto set approximat ion X0, and of the true Pareto set (or the pseudo-optima l Pareto 
set in case the latter is not known), respectively . A pseudo-optima l Pareto set, i.e. an estimation of the true Pareto set, is ob- 
tained by fusing all the Pareto sets generated for the problem by any algorithm in any run. A value of HVR equal to one rep- 
resents that the PF approximat ion and the true PF are equal. 

The unary indexes allow us to determine the absolute, individual quality of the approximation , but they cannot be used 
for direct comparis on purposes. Alternatively, binary indexes have been proposed for comparing the Pareto set approxima- 
tions obtained by different multiobject ive algorithms. In this work, we have used the following binary metric. 

The set coverage (or C-metric) compare s a pair of nondomi nated sets by computin g the fraction of each set that is covered 
by the other [70]:
CðX0;X 00Þ ¼ jf8S00 2 X00;9S0 2 X0 : S0 � S00gj 
jX 00j

ð16Þ
where S0 � S00 indicates that the subgraph S0 dominates or cover the subgraph S00 in a maximizatio n problem. A value of C(X0,
X00) = 1 means that all the subgraphs in X00 are dominated or covered by the subgraphs in X0.

The statistical test in [54] is applied to test if there is significant differenc e in the PF approximation s of two algorithms 
when compared in pairs. For this purpose, all the executions of both algorithms are compare d using the binary I�(A, B)-metric
[71]. Let the probability pA(B) is 1 if (I�(A, B) P 1 and I�(B, A) < 1) otherwise 0. For 10 different executions of the algorithms A
and B, the full set of comparisons produce two vectors CA and CB:
pA jðBÞ ¼
X10

i¼1

pAðBiÞ; j ¼ 1; . . . ;10

pB jðAÞ ¼
X10

i¼1

pBðAiÞ; j ¼ 1; . . . ;10

ð17Þ

CA ¼ pA1ðBÞ; pA2ðBÞ; . . . ;pA10ðBÞ
CB ¼ pB1ðAÞ; pB2ðAÞ; . . . ;pB10ðAÞ

ð18Þ
CA and CB can be seen as samples of a random variable and can be used to get the fraction of times the outputs of one algo- 
rithm dominates the other. With this, we can estimate the outputs of two algorithms are significantly different, i.e., the 
expectation of the algorithm A is greater than the algorithm B (E(CA) > E(CB)), and vice versa against the assumption that 
the outputs of A and B are the same, i.e., (E(CA) = E(CB)). CA and CB values have nonGaus sian distribution therefore we apply 
a Wilcoxon test setting a null hypothes is (E(CA) = E(CB)) and an alternate hypothesis (E(CA) > E(CB)).
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