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Abstract—Image registration (IR) – the task of aligning dif-
ferent images having a common content – is a fundamental
problem in computer vision. In particular, IR is one of the
key steps in medical imaging, with applications ranging from
computer assisted diagnosis to computer aided therapy and
surgery. As IR can be formulated as an optimization problem,
a large family of metaheuristics methods can be used to im-
prove the results obtained by classic gradient-based, continuous
optimization techniques. In this work, we extend our previous
intensity-based image registration (IR) technique based on a real-
coded genetic algorithm with a more appropriate design. The
performance evaluation of an heterogeneous group of state-of-
the-art IR techniques is also extended to two experimental studies
on both synthetic and real-word medical IR problems. The results
prove the accuracy and applicability of our new method.

I. INTRODUCTION

A large number of applications in image processing require

the integration of information from multiple images of the

same or similar subjects obtained under different conditions

(time, viewpoint, sensor or any combination of the latter).

Hence, the images need to be properly aligned in order

to put in correspondence the common content. This task is

called image registration (IR) [1]: given two images, image

registration aims to find the geometric transformation leading

to the best possible overlapping.

IR approaches usually fall into two categories: intensity-
based (or voxel-based) and feature-based methods. The former

make use of the entire images while the latter employ only

salient, distinctive objects such as lines, corners and contours,

detected in a preprocessing step. Feature-based techniques are

faster, as they use only a fraction of the imaging data, but

usually suffer from inevitable errors in the feature detection

process. Independently of their nature, IR techniques involve

an iterative optimization procedure that explores the space

of possible transformations. Registration approaches based on

evolutionary algorithms (EAs) have proven to be a promising

solution to overcome the drawbacks of traditional gradient-

based algorithms [2]–[6]. In fact, they are considered global

optimization approaches able to perform a robust search in

complex search spaces like those arising in IR. In particular,

evolutionary methods have successfully tackled feature-based

medical IR [7].

In [8] we introduced an intensity-based IR method based on

Genetic Algorithms. Although the proposal was competitive

with other approaches, the algorithm exhibited convergence

issues that occasionally led to low quality solutions. In this

work, we address those issues with a new design of the

optimizer component. Also, we extend the experimental com-

parison of a number of IR methods by including a second

medical IR task and a statistical analysis of the results.

The paper is structured as follows. Section II introduces

the IR problem in detail. Section III describes the proposed

approach, while Section IV introduces the experimental com-

parison, the test problems and the analysis of their results.

Finally, Section V provides conclusions and directions for

future work.

II. IMAGE REGISTRATION

In a typical problem instance we are provided with two

images: a reference image, the model, and the image that will

be transformed to reach the model geometry, called scene [1].

We will denote these two images by IM and IS respectively.

The result of the registration process is a transformation f
such that the model IM and the transformed scene f(IS) are

as similar as possible.

IR methods can be characterized by their three main com-

ponents: the transformation model, the similarity metric and

the optimization process. The transformation model determines

what kind of transformation is used to align the images. For

instance, a rigid transformation is a combination of translation

and rotation operations, while similarity transformations also

allow scaling. Their degrees of freedom for 3-D images are 6

and 7, respectively. B-splines and thin-plate splines are instead

examples of elastic (or non-rigid) transformations models,

able to represent local deformations (warping). In applications,

the appropriate transformation model depends on both the

nature of the images and the particular application involved.

A similarity metric is a function F that measures the quality

of a solution of an IR problem. The final performance of

any IR method depends on the accurate estimation of the

alignment of the images, therefore the similarity metric is

considered a crucial component [9]. To evaluate a solution

f , the scene image IS is transformed according to f and

then the degree of resemblance between the transformed scene

image f(IS) and the model image IM , denoted by Ψ, is

computed, so F (IM , IS , f) = Ψ(IM , f(IS)). Several choices

for Ψ can be found in the literature, depending on the nature
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of the considered images. In feature-based approaches, metrics

are usually based on the distance between corresponding

geometric primitives [10], such as mean square error (MSE),

which is the average square distance between corresponding

feature (in this case points) in the scene and the model images.

To compute the MSE, each point of the model is assigned

to the closest point in the transformed scene, regardless of

whether the latter had been already assigned to another model

point. That is, MSE = 1
r

∑r
i=1 ‖xi − ci‖2 where ci is the

point of f(IS) that is closest to xi.
In intensity-based approaches, common choices are sum of

squared differences, normalized correlation (NC) and mutual

information (MI) [11]. In particular, MI is specially suited

for multi-modal registration and other scenarios in which the

images have different intensity distributions. It is defined as

MI =
∑

s∈LS ,m∈LM

p(m, s, f) log2
p(m, s, f)

pM (m) pS(s, f)

where LM and LS are sets of regularly spaced intensity bin

centers, p is the discrete joint probability and pM , pS are the

marginal discrete probabilities of the model and scene image.
Finally, the optimization procedure is the component re-

sponsible for finding an appropriate transformation to carry

out the registration. Figure 1 shows the flow chart of the whole

registration process. The search strategy adopted depends on

the nature of the algorithm. In matching-based algorithms,

once the images features have been detected, the optimizer

looks for a matching between them and the transformation

parameters are derived from the match. The process is iterated

until reaching convergence within a tolerance threshold of the

concerned similarity metric.

Figure 1. The interactions among the components of a registration technique.

Instead, in parameters-based methods the search is per-

formed directly in the transformation parameters space. Clas-

sic numerical optimization algorithm like gradient descent,

Newton’s method, Powell’s method and discrete optimiza-

tion [12] are among the most common choices, together with

approaches based on EC and other meta-heuristics [2]–[6],

[13]–[15]. It is common to start the registration process using

a “simpler” version of the images obtained through smoothing

and downsampling. The registration is divided in multiple

stages, called resolutions, in which increasingly larger and

more detailed versions of the input images are used.

III. GENETIC ALGORITHMS FOR IMAGE REGISTRATION

This section describes the methodology proposed in this

work, named r-GA. Following the intensity-based approach,

our method tackles IR using the images in their whole, rather

than considering only some of their features. The registration

is carried out through a search in the space of transformation

parameters, therefore an individual encodes a transformation

directly.

The design of the algorithm can be trivially adapted to

different kind of transformations. Let us consider a 3D simi-

larity transformation as an example. Such transformation has

a rotation, a translation and a scaling component, so it can be

represented by seven real numbers: three to specify the versor

of the rotation v, three for the translation t and one for the

scaling factor s. An individual of the GA is a real vector with

seven elements. Valid solutions require vx, vy, vz ∈ [−1, 1]
and s > 0. Note that the translation component is specified

in spatial units (e.g, millimeters), rather than in number of

voxels.

The operators used in our method are common choices for

real-coded genetic algorithms: blend crossover (BLX-α) [16]

and random mutation [17]. The random mutation operator

randomly picks one the of individual genes and replace it

with a random value in the gene’s range. Both random choices

are made using uniform probability. Blend crossover is more

complex. Given to two individuals x and y, called “parents”,

for each position i of the parents’ coding, the algorithms

computes the value d = |xi−yi| and then randomly generates

two values a, b in the interval

[ min(xi, yi)− αd, max(xi, yi) + αd ]

with uniform probability. The values a and b are assigned

to the i-th positions of the two offspring. The value α is a

positive value controlling the width of the ranges in which the

new genes’ values are drawn. The fitness value of a solution

f is simply the similarity between the two input images when

registered using f , i.e. f → Ψ(IM , f(IS)), where Ψ is a

similarity metric (e.g. MI) and IM , IS are the scene and the

model images.

In addition to the GA-based optimizer, r-GA makes use of

multiple resolutions and a restart mechanism. The algorithm

performs the search in two resolutions. In the first one,

the algorithm uses a small, low-detail version of the input

images that allow the algorithm to quickly obtain a coarse

approximation of the desired transformation. In the second

one, this approximation is refined using the high-detail input

images. The motivation behind the use of restart is simple. At

the end of the first resolution, the algorithm might have found a

very low-quality transformation. Refining such transformation
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is unlikely to produce a good final solution, therefore is more

appropriate to perform again the search for a suitable initial

registration by restarting the algorithm. The check whether

the best solution obtained at the end of the first resolution

is acceptable or not, one might consider to set a threshold

on its fitness value (i.e. its similarity metric value). This is the

approach we used with the original algorithm presented in [8].

However, the fitness value of a good solution depends on the

actual content of the input images and it is hard to predict.

In this work, we propose an alternative approach. The first

resolution is performed a fixed number of times, independently

of its outcome. At the end of this process, the best solutions

found are considered for the second resolution. As the first

resolution deals with a low-resolution version of the input

images, this stage of the registration is cheap in terms of the

total computational effort.

A second improvement is obtained altering the search space

in the second resolution. As this phase is meant to be a

refinement phase, we focus the search by restricting the search

space around the parameters value of the best solution found

in the first resolution. For each transformation parameter , the

original range [ l, u ] is replaced by [ b − (b − l)/h, b +
(u− b)/h ], where b is the value of the parameter in the best

solution and h is the shrinking factor. This ensures the search

is performed in an area of high quality solutions.

IV. EXPERIMENTAL STUDY

The aim of the experimentation is to carry out an objective

comparison of the r-GA proposal and other state-of-the-art

IR methods. As competitors, we considered an heterogeneous

group of algorithms to represent a wide range of approaches to

the IR problem, including our recent method GA+ introduced

in [8]. They are listed in Table I. Note that the algorithms

differ in nature (feature- or intensity-based) as well as in

the search strategy (based on matching or transform param-

eters). Also, different kind of optimization process are used:

classic gradient-based techniques, evolutionary computation,

metaheuristics.

Table I
THE IR ALGORITHMS INCLUDED IN THE EXPERIMENTAL STUDY.

Nature Strategy Optimizer Ref.

I-ICP feature matching Gradient Descent [18]
Dyn-GA feature parameters Genetic Algorithms [2]

SS* feature matching Scatter Search [19]
ASGD intensity parameters Gradient Descent [20]
GA+ intensity parameters Genetic Algorithms [8]

We designed two experiments involving synthetic and real-

world medical images. To make the comparison as objective

as possible, the effectiveness of each method is assessed using

a quantitative validation measure specific to each experiment.

Furthermore, as most of the algorithms involved are of non-

deterministic nature, we carried out a number of independent

runs on each scenario. Our analysis investigate several aspects

of the results. First, we measure the performance of the

algorithms on each scenario by computing mean and standard

deviation of the validation measure and ranking the algorithms

accordingly. Next, we assess the overall performance of the

algorithms in two ways: by computing the per-scenario mean

rank of each algorithm and by counting the number of scenar-

ios in which one outperforms another, called wins.

In the last part of the analysis, statistical tests are performed

to determine which results are significantly different. We

used the tests and the procedures recommended in [21] for

comparing algorithms over multiple problems. We used non-

parametric tests to avoid making (or testing) any assumption

about the distribution of the results. The performance of r-

GA is compared with that of the remaining algorithms (i.e.,

a multiple comparison against a control method), a procedure

that has more power than a pairwise comparison of all algo-

rithms. The test we used is Nemenyi’s test [22], which is a

post hoc procedure of Friedman’s rank sum test [23] and is

based on the ranks of the algorithms. As multiple comparison

are performed, the p-values of the tests have been adjusted

using Holm’s method [24] in order to control the family-wise

error rate.

For all algorithms, we used the original implementation by

the authors. r-GA has been written in C++ and integrated

in Elastix [25], a toolbox for intensity-based medical image

registration. Elastix is free, open-source and it has been used

in over one hundred publications in medical imaging [26]. The

software is built on top of the popular Insight Segmentation

and Registration Toolkit (ITK) [27].

A. First experiment: registration of simulated brain MRIs

The first experiment is similar to the ones carried out

in [8], [19]; the current proposal extends the study of feature-

and intensity-based methods performed in the two previous

publications. For this experiment we used four simulated brain

magnetic resonance images (MRIs) from a public database. A

total of sixteen registration scenarios were artificially created

by applying to the images a set of four large transformations.

On those IR instances, we performed a comparison considering

a large, heterogeneous group of IR algorithms.

1) Setup:
a) Images: The images used in this experiments were ob-

tained from the BrainWeb database at McGill University [28].

BrainWeb provides simulated brain MRI along with ground-

truth data, therefore it can be easily used to evaluate the perfor-

mance of various image analysis methods. Indeed, Brainweb

has been frequently used by the IR research community [29].

To create scenarios with different difficulties, we added noise

and multiple sclerosis lesions to some of the images, as

detailed in Table II. The images are shown in Figure 2; each

image has size 60× 181× 217 voxels.

This experiments compares both feature- and intensity-

based algorithms, thus some features need to be extracted from

the images to provide an input for feature-based algorithms. In

the original comparison, the authors computed the isosurfaces

and extracted the crest line points with relevant curvature infor-

mation [30]. It is important to remark this difference: while the

input of intensity-based methods consists of the whole images
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Table II
THE NOISE LEVEL AND THE PRESENCE OF LESION IN THE FOUR BRAIN

MRI IMAGES USED IN THE EXPERIMENTAL STUDY. THE NUMBER OF

CREST LINE POINTS, USED AS FEATURES, IS ALSO REPORTED.

Image Lesion Noise # of features

I1 No None 583
I2 No 1% 393
I3 Yes 1% 348
I4 Yes 5% 248

(a) I1

(b) I4

Figure 2. Two MRI brain images (left) used in the first experiment, along
with the corresponding crest line points with relevant curvature information
(right).

data (in case, two images made of 60×181×217 = 2356620
voxels having an 8-bit intensity value), that of feature-based

approaches is a set of just a few hundred of points (Table II).

b) Registration scenarios: Sixteen IR problem instances

were created by choosing pairs of different images among

the four available and applying one of the four similarity

transformations shown in Table III. Similarity transformations

involve rotation, translation, and uniform scaling. The param-

eters values of the transformations were chosen to obtain large

changes in the object location, orientation and scale. Changes

of such magnitude are usually challenging for IR algorithms.

The scenarios we considered in the experiments are I1 versus

Ti(I2), I1 versus Ti(I3), I1 versus Ti(I4) and I2 versus Ti(I4),
for i = 1, 2, 3, 4.

Table III
PARAMETERS OF THE SIMILARITY TRANSFORMATIONS WE USED IN THE

EXPERIMENTS: ROTATION ANGLE (λ), ROTATION AXIS (ax, ay , az ),
TRANSLATION VECTOR (tx, ty , tz ) AND UNIFORM SCALING FACTOR s.

λ ax ay az tx ty tz s

T1 115 -0.863 0.259 0.431 -26 15.5 -4.6 1
T2 168 0.676 -0.290 0.676 6 5.5 -4.6 0.8
T3 235 -0.303 -0.808 0.505 16 -5.5 -4.6 1
T4 276.9 -0.872 0.436 -0.218 -12 5.5 -24.6 1.2

c) Algorithms and parameters settings: In order to pro-

vide a uniform comparison of r-GA with respect to our recent

results [8], we considered the same algorithms: GA+, ASGD,

SS*, I-ICP and Dyn-GA. The parameter settings we used for

these methods are the ones corresponding to the best configu-

rations of our previous study. As for r-GA, the registration is

performed in two resolutions; at the first resolution the images

are smoothed (Gaussian smoothing, σ = 4) and downsampled

by a factor of 4 in each dimension. The first resolution is

repeated five times (i.e. four restart) independently of the

results. The population was evolved for 50 generations in

the first resolution and 25 in the second. The rest of the

configuration was the same configuration in both resolutions:

population size of 500 individuals, mutation probability of

0.1, crossover probability of 0.5, blend factor (α) 0.3 and

tournament size equal to 3.

For all algorithms, the transformation model is similar-

ity transform, and the transformation parameters ranges are

[−30, 30] for the translation component and [0.75, 1.25] for

the scaling factor. No restriction was applied to the rotation

axis or to its magnitude. The stopping criteria needs some

discussion. It is challenging to design a fair comparison

between algorithms having different inputs, in particular inputs

with very different size. In [8] the algorithms were allowed to

run for a fixed amount of time: 20 seconds for feature-based

algorithms and 20 minutes for intensity-based one. The two

amounts of time match the proportion between the size of the

inputs for the two kinds of algorithms: the number of voxels

in the images is roughly 60 times the number of features.

d) Validation procedure: As in previous works with

this dataset, for each registration scenario we performed 15

independent runs of each algorithm. Since we are dealing with

algorithms of different natures, and in particular algorithms

with different similarity metrics, we cannot simply contrast

their values. Instead, we have to agree on a common measure

to evaluate all solutions. We used the MSE over the crestline

points. For the feature-based algorithms in the comparison,

this is simply the similarity metric used by the algorithms. The

solutions found by intensity-based algorithms were evaluated

in the same way, i.e. by applying the obtained transformation

to the scene’s features and computing the MSE with respect

to the model’s features. We expect this choice to introduce a

small bias in favor of feature-based algorithms. However, using

a similarity metric based on intensities might favor intensity-

based methods, therefore as we are proposing an algorithm

from the latter class, it seems more appropriate to favor the

competitors rather than our approach.

2) Analysis of results: Table IV reports the results of

the first experiment. For each scenario, we reported mean

and standard deviation of the MSE values obtained by the

algorithms along with their ranks. The average ranks (Table V)

and the count of wins (Table VI) provides another view of the

results of the comparison.

From the highest to the lowest average rank is ASGD, I-ICP,

Dyn-GA, SS*, GA+ and r-GA. ASGD scored the largest MSE

values in all but one of the scenarios. Its performance varies
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Table V
FIRST EXPERIMENT: RESULT OF NEMENYI’S TEST COMPARING R-GA

WITH THE REMAINING ALGORITHMS. THE TABLE REPORTS THE AVERAGE

RANKINGS OF THE ALGORITHMS AND THE ADJUSTED P-VALUE FOR EACH

COMPARISON.

Algorithm Mean Rank p-value

r-GA 1.31
GA+ 2.56 0.0285
SS* 2.75 0.0033

Dyn-GA 3.62 0.0000
I-ICP 4.81

ASGD 5.94

Table VI
FIRST EXPERIMENT: THE NUMBER OF SCENARIOS IN WHICH THE

ALGORITHM ON THE ROW HAS A BETTER MEAN MSE VALUE THAN THAT

ON THE COLUMN.

ASGD Dyn-GA r-GA GA+ I-ICP SS*

ASGD - 0 0 0 1 0
Dyn-GA 16 - 0 5 16 1

r-GA 16 16 - 11 16 16
GA+ 16 11 5 - 12 11
I-ICP 15 0 0 4 - 0
SS* 16 15 0 5 16 -

greatly depending on the scenario, but in general the mean

MSE is at least one order of magnitude away from the best

solutions. I-ICP delivered a better, more steady performance,

but still with very large MSE values. Dyn-GA scored better

than I-ICP in all scenarios, with less variability between

different scenarios, but the gap with the best results is large

nevertheless. SS* scored constantly quite close to the best

results, ranking third or second in 15 over 16 scenarios.

GA+ exhibits an inconsistent behavior. In 11 scenarios, it

either scored best or extremely close to the best, while in

the remaining 5 scenarios the mean MSE value is really large

(>1000). As shown in Figure 3, the high average MSE is due

to a few solutions having extremely high MSE. This points to

the convergence problems we addressed with the new restart

mechanisms in r-GA. Indeed, r-GA consistently got either the

best mean MSE (11 scenarios) or came really close (i.e. less

than 1.0 from the best one). Also, the standard deviation values

is always less than 3.0, confirming r-GA is robust and no run

of the algorithm has produced a low quality solution.
Table V reports the p-value of Nemenyi’s test comparing

r-GA against GA+, SS* and Dyn-GA. We included only the

best ranking algorithms to avoid lowering the power of the

test. In all three cases the test confirms the performance of r-

GA is significantly better than those of the competitors, with

the highest p-value being that of GA+, 0.0285.

B. Second experiment: atlas-based segmentation of real-world
MRIs

In the second experiment we used real brain MRI im-

ages without applying any transformation. The registration

is used to perform atlas-based segmentation of deep brain

structures [31]. The quality of the segmentation obtained in

this phase is used to assess the effectiveness of the registration

methods.

r-GA GA+

1
0

1
0

0
1

0
0

0
1

0
0

0
0

Figure 3. First experiment: boxplots of the results in the third scenario. While
the majority of GA+’s results are in an acceptable range, some solutions have
very high MSE, explaining the high average MSE (the thick line) scored by
the algorithm.

Figure 4. A slice of a 3D MRI brain image used in the second experiment
(left) and the corresponding deep brain structure (right).

Atlas-based segmentation is a procedure that aims to au-

tomatically delineate a region of an image using an atlas (or

an “average” image) of a similar subject in which the desired

region has been already segmented. The first step is to register

the input image (the scene) to the atlas (the model). The

transformation resulting from this phase is then used to overlap

the segmented region of the atlas to the scene. The region of

the scene that overlaps with the segmented region of the atlas

is the result of the segmentation process. Often, atlas-based

segmentation is used as preliminary step in a more complex

segmentation approach.

1) Setup:

a) Images: Thirteen T1-weighted brain MRI were re-

trieved from the NMR database [32]. The deep nuclei struc-

tures in each image have been manually delineated by an

expert in order to create the ground-truth data used to evaluate

the registration. Figure 4 shows one of the images along with

the corresponding deep nuclei.

b) Registration scenarios: Nine registration scenarios

were created by selecting a pair of different images at random.
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Table IV
DETAILED RESULTS OF THE FIRST EXPERIMENT. FOR EACH SCENARIO, THE TABLE REPORTS THE AVERAGE MSE, STANDARD DEVIATION AND RANKING

OF THE ALGORITHMS IN THE COMPARISON.

Algorithm
MSE

Rank
mean sd

1

ASGD 61816.4 795.7 6
Dyn-GA 194.9 50.5 4

r-GA 36.3 0.5 1
GA+ 36.4 0.3 2
I-ICP 344.4 5
SS* 37.0 1.5 3

2

ASGD 34773.9 238.0 6
Dyn-GA 107.5 52.1 4

r-GA 36.5 0.5 1
GA+ 36.7 0.4 2
I-ICP 130.7 5
SS* 43.4 3.6 3

3

ASGD 111870.0 154.6 6
Dyn-GA 211.0 137.3 3

r-GA 41.7 1.6 1
GA+ 1736.5 6216.7 5
I-ICP 894.3 4
SS* 63.2 2.9 2

4

ASGD 1233.3 166.8 6
Dyn-GA 302.0 121.4 4

r-GA 32.7 0.1 1
GA+ 32.7 0.2 2
I-ICP 631.7 5
SS* 53.9 2.6 3

5

ASGD 61063.5 309.1 6
Dyn-GA 299.3 144.1 4

r-GA 51.1 0.5 1
GA+ 51.4 0.2 2
I-ICP 517.7 5
SS* 112.2 12.4 3

6

ASGD 34796.2 223.8 6
Dyn-GA 154.0 114.2 4

r-GA 43.7 0.3 1
GA+ 43.8 0.2 2
I-ICP 330.3 5
SS* 56.7 4.5 3

7

ASGD 110131.2 1022.7 6
Dyn-GA 326.5 174.0 3

r-GA 56.6 0.7 1
GA+ 1091.8 4965.8 5
I-ICP 437.8 4
SS* 63.8 46.2 2

8

ASGD 1017.4 252.7 6
Dyn-GA 354.3 146.9 4

r-GA 45.2 0.1 2
GA+ 44.5 0.3 1
I-ICP 478.0 5
SS* 122.7 8.2 3

Algorithm
MSE

Rank
mean sd

9

ASGD 58146.8 661.0 6
Dyn-GA 255.4 228.2 4

r-GA 53.1 0.2 2
GA+ 52.9 0.3 1
I-ICP 704.3 5
SS* 183.6 33.0 3

10

ASGD 35695.3 2465.3 6
Dyn-GA 163.1 57.5 3

r-GA 46.5 0.2 1
GA+ 476.4 3648.3 4
I-ICP 1493.2 5
SS* 89.2 40.8 2

11

ASGD 111384.4 574.2 6
Dyn-GA 224.9 87.3 3

r-GA 58.6 2.4 1
GA+ 2823.9 7863.5 5
I-ICP 951.3 4
SS* 82.2 45.1 2

12

ASGD 885.8 356.7 6
Dyn-GA 414.8 258.2 4

r-GA 47.7 0.2 2
GA+ 47.3 0.4 1
I-ICP 416.6 5
SS* 153.9 86.1 3

13

ASGD 56932.0 568.6 6
Dyn-GA 179.8 59.5 3

r-GA 35.5 0.3 2
GA+ 35.0 0.2 1
I-ICP 237.6 5
SS* 193.1 62.0 4

14

ASGD 31521.1 6.6 6
Dyn-GA 105.7 50.8 4

r-GA 30.5 0.2 1
GA+ 30.7 0.3 2
I-ICP 341.3 5
SS* 74.9 41.1 3

15

ASGD 112134.4 1027.4 6
Dyn-GA 192.2 115.8 3

r-GA 40.7 1.2 1
GA+ 1104.8 5128.7 5
I-ICP 608.8 4
SS* 103.8 66.6 2

16

ASGD 512.8 233.2 5
Dyn-GA 298.1 144.8 4

r-GA 29.7 0.1 2
GA+ 29.5 0.3 1
I-ICP 1587.8 6
SS* 150.2 78.3 3

No transformation was applied on the images; however, the

location of the brain in each image is different due to the

variability in the pose of the patient during the acquisition of

the images.

c) Algorithms and parameters settings: Given the na-

ture of this experiment, we compare only intensity-based

algorithms, i.e. r-GA, GA+ and ASGD. The transformation

model is affine transform, which involves rotation, translation,

scaling and shearing, and it can be represented using 12 real

parameters. Affine transform is a popular choice in registration

of medical images [33]. It is flexible enough to present a wide

range of transformations and it does not produce anatomically

unrealistic results, as it could happen with deformable models.

In this experiment we have ground-truth data to evaluate the

registration, but we do not know the concrete parameters val-

ues of the optimal registration transformations. Therefore, we

estimated parameters values intervals considering a big enough

range to include all registration solutions for this application.

We allowed rotations between -90 and 90 degrees, scaling in

the range [0.9, 1.1], shearing in the interval [−0.1, 0.1] and
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translations between -15 and 15 centimeters.

For r-GA, we kept the same configuration used in the first

experiment. For ASGD we tested several configuration varying

the number of resolutions (2, 3 and 4) and iterations (500,

1000 and 2000). In what follows we report only the results

obtained with the best configuration, which uses 4 resolutions

and 1000 iterations. The stopping criteria is again time; as the

magnitude of the transformations involved is smaller than in

the previous experiment, the time limit was set to 10 minutes.

p

d) Validation procedure: The quality of atlas-based seg-

mentation depends closely on the accuracy of the registration

step, although the anatomical variability of the target region

can limit its effectiveness. In this experiment we validate

the results of the registration algorithms by carrying out

atlas-based segmentation of deep nuclei. For each scenario

we performed 32 independent runs of each algorithm. The

model image is used as atlas, while the scene is employed

as input image. The segmented region obtained from the

registration VR is then compared with the ground-truth VGT.

The overlapping of the two regions is commonly measured

using the Dice’s coefficient [34], given by Dice(VR, VGT) =
2|VR∩VGT|/(|VR|+ |VGT|) where | · | is the number of voxels.

A value of 1 means perfect overlapping, while 0 means the

two regions do not overlap at all.

2) Analysis of results: The results of the second experiment

are reported in Table VII. We computed the mean and standard

deviation of the overlap for each scenario. Table IX shows the

count of wins for the algorithms in the comparison.

The overlap values can differ considerably across the sce-

narios, reflecting the fact that the effectiveness of this kind of

segmentation can vary depending on the concrete anatomy of

the patients. ASGD and GA+ had a similar performance. They

have almost identical mean rank values (2.33 and 2.44) and a

similar number of wins against each other (5 and 4). Again,

GA+ occasionally has quite large standard deviation values

compared to the others, e.g. scenario number 2. r-GA ranked

first in 8 out of 9 scenarios and came second in the last one,

delivering the best performance both in terms of ranking and

number of wins. The results Nemenyi’s test (Table VIII) show

the advantage of r-GA over the other algorithms is statistically

significant. The adjusted p-values of the tests are both 0.019.

V. CONCLUSIONS

In this work, we extend our previous intensity-based IR

technique based on genetic algorithms. Our method uses a

modern, real-coded design for solutions and genetic operators,

as well as a multi-resolution strategy, allowing the registration

to be performed in multiple stages with increasing complexity.

By improving the restart mechanism and focusing the search

to the right area of the search space, we overcame the

convergence problems experienced by the original method

while improving the precision of the algorithm.

The merit of this new approach is proved experimentally

in two separate studies involving synthetic and real-world

medical images. Each study included a comparison with other

Table VII
DETAILED RESULTS OF THE SECOND EXPERIMENT. FOR EACH SCENARIO,
THE TABLE REPORTS THE AVERAGE OVERLAP, STANDARD DEVIATION AND

RANKING OF THE ALGORITHMS IN THE COMPARISON.

Algorithm
Overlap Rank

mean sd

1
ASGD .742 .001 3
r-GA .755 .012 1
GA+ .751 .010 2

2
ASGD .616 .005 2
r-GA .618 .007 1
GA+ .615 .033 3

3
ASGD .677 .003 2
r-GA .679 .008 1
GA+ .676 .012 3

4
ASGD .691 .001 3
r-GA .706 .016 1
GA+ .698 .011 2

5
ASGD .756 .010 2
r-GA .760 .009 1
GA+ .755 .009 3

6
ASGD .738 .003 2
r-GA .739 .005 1
GA+ .734 .011 3

7
ASGD .686 .009 3
r-GA .729 .004 1
GA+ .717 .015 2

8
ASGD .741 .001 3
r-GA .750 .007 2
GA+ .751 .020 1

9
ASGD .754 .004 1
r-GA .749 .014 2
GA+ .745 .017 3

Table VIII
SECOND EXPERIMENT: RESULT OF NEMENYI’S POST-HOC PROCEDURE

WHEN COMPARING R-GA WITH THE REMAINING ALGORITHMS. THE

TABLE REPORTS THE AVERAGE RANKINGS OF THE ALGORITHMS AND THE

ADJUSTED P-VALUE FOR EACH COMPARISON.

Algorithm Mean Rank p-value

r-GA 1.22
ASGD 2.33 0.0190
GA+ 2.44 0.0190

Table IX
SECOND EXPERIMENT: THE NUMBER OF SCENARIOS IN WHICH THE

ALGORITHM ON THE ROW HAS A BETTER MEAN OVERLAP VALUE THAN

THAT ON THE COLUMN.

ASGD r-GA GA+

ASGD - 1 5
r-GA 8 - 8
GA+ 4 1 -
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state-of-the-art IR methods using a wide range of approaches

to the problem. In both studies, our approach delivered an

excellent performance and it was able to outperform all other

algorithms in almost all the scenarios.

The most natural extension to the current work is to tackle

deformable registration. This is still an area of on-going

research. On one hand, there is an increasing interest in such

technology for clinical applications; on the other, automated

solutions have not yet reached the same degree of maturity as

for rigid or affine registrations.
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