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Abstract In this paper, we address the optimization problem arising in some practical
applications in which we want to maximize the minimum difference between the labels
of adjacent elements. For example, in the context of location models, the elements can
represent sensitive facilities or chemicals and their labels locations, and the objective
is to locate (label) them in a way that avoids placing some of them too close together
(since it can be risky). This optimization problem is referred to as the antibandwidth
maximization problem (AMP) and, modeled in terms of graphs, consists of labeling
the vertices with different integers or labels such that the minimum difference between
the labels of adjacent vertices is maximized. This optimization problem is the dual of
the well-known bandwidth problem and it is also known as the separation problem
or directly as the dual bandwidth problem. In this paper, we first review the previous
methods for the AMP and then propose a heuristic algorithm based on the variable
neighborhood search methodology to obtain high quality solutions. One of our neigh-
borhoods implements ejection chains which have been successfully applied in the
context of tabu search. Our extensive experimentation with 236 previously reported
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instances shows that the proposed procedure outperforms existing methods in terms
of solution quality.

Keywords Metaheuristics · VNS · Layout problems

1 Introduction

In recent years there has been a growing interest in studying graph layout problems
where the main objective is to find a labeling of a graph in such a way that a specific
objective function is maximized or minimized. The Linear Arrangement (Rodriguez-
Tello et al. 2008), Bandwidth (Piñana et al. 2004), Cutwidth (Pantrigo et al. 2011) or
Vertex Separation (Duarte et al. 2012) fall into this class of optimization problems. In
this paper, we tackle the antibandwidth maximization problem (AMP), which consists
of labeling the vertices of a graph with distinct integers in such a way that the minimum
difference between labels of adjacent vertices is maximized.

To formulate the AMP in mathematical terms, we first define the labeling f of a
graph G. Given an undirected graph G(V, E), where V (|V | = n) and E (|E | = m)

represent the set of vertices and edges respectively, a labeling f of its vertices is a
one-to-one mapping from the set V to the set {1, 2, . . . n} where each vertex v ∈ V
has a unique label f (v) ∈ {1, 2, . . . , n}. Given the labeling f , the antibandwidth
AB f (G) of graph G can be computed as:

AB f (G) = min
{

AB f (v) : v ∈ V
}
,

where

AB f (v) = min {| f (v) − f (u) | : (v, u) ∈ E} .

The AMP consists of finding a labeling f that maximizes AB f (G). This is the dual
of the well-known bandwidth problem (Yixun and Jinjiang 2003), in which the value

max {| f (v) − f (u) | : (v, u) ∈ E}

is minimized over all f labelings (Piñana et al. 2004).
This NP-hard problem was originally introduced in Leung et al. (1984) in connec-

tion with multiprocessor scheduling problems. An important motivation appears in the
context of radio frequency assignment (Hale 1980). In particular, transmitters should
be assigned to different frequencies in such a way that the physically neighboring
transmitters have as different frequencies as possible (where frequency neighborhood
is given by a graph). Other applications include obnoxious facility location problems
(Cappanera 1999; Burkard et al. 2001) as they appear in the location of nuclear reac-
tors, garbage dumps, or water purification plants. In those applications, customers no
longer consider the facility desirable and try to have it as far as possible to their own
location.
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Variable neighborhood search with ejection chains 921

Fig. 1 a Graph example and b antibandwidth of G for a labeling f

Figure 1a shows an example of an undirected graph with eight vertices and nine
edges. The number close to each vertex represents the label assigned to it. For example,
the label of vertex A is f (A) = 1, the label of vertex B is f (B) = 5 and so on. Figure 1b
shows the antibandwidth of each vertex, calculated as the minimum difference between
the label of the corresponding vertex and all its neighbors’ labels. Computing the
minimum of these antibandwidth values we conclude that AB f (G) = 2.

The antibandwidth problem can be optimally solved for specific classes of graphs.
Raspaud et al. (2009) solved it for two dimensional meshes (cartesian product of two
paths), tori (cartesian product of two cycles), and hyper-cubes. Török and Vrt’o (2007)
extended these results to the case of three-dimensional meshes. Dobrev et al. (2009)
proposed an exact algorithm for Hamming graphs (Cartesian product of d-complete
graphs).

Recently, two heuristic procedures have been independently and simultaneously
presented for the AMP (and therefore they did not compare each other). Duarte
et al. (2011) presented two randomized greedy constructive procedures and a local
search algorithm based on exchanges. Combining these heuristics the authors derived
several GRASP methods. Additionally, a static and a dynamic path relinking post-
processing procedures were also proposed for search intensification. In the static
scheme, path relinking is performed once between all pairs of elite set solutions pre-
viously found with GRASP. In the dynamic scheme, after each GRASP local search
phase, path relinking is executed between the corresponding local maximum and a
solution selected at random from the elite set. The authors also proposed a GRASP
with evolutionary path relinking heuristic, EvPR, which periodically applies path
relinking between all pairs of solutions in the elite set. This later method obtains the
best results although it consumes longer running times than the other variants.

Bansal and Srivastava (2011) proposed a Memetic Algorithm, MA, for the AMP.
The algorithm starts by creating an initial population of solutions using a randomized
breadth-first search, BFS. This method produces a spanning tree in which adjacent
vertices belong to either same level or to adjacent levels. This ensures that the vertices
belonging to alternate levels are not adjacent. Non-adjacent vertices belonging to
alternative levels are labeled sequentially, and the remaining vertices are labeled in
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a greedy fashion. As it is customary in evolutionary methods, the initial population
evolves by applying three steps: selection, combination and mutation. The selection
strategy is implemented by means of a classical tournament operator. The combination
operator is implemented using a modified version of the BFS procedure, in which
a solution is obtained by copying part of its “father” (up to a random point) and
then completing it with the BFS constructive procedure. The mutation strategy is
implemented by swapping two positions of a solution. These three main steps are
repeated until a maximum number of iterations (generations) is reached.

In this paper, we propose a Variable Neighborhood Search procedure (Hansen
et al. 2010) for the AMP. Section 2 introduces the three neighborhood structures and
the associated local search methods. One of the neighborhoods implements ejection
chains (Glover and Laguna 1997) which have been successfully applied in the context
of tabu search. Section 3 is devoted to describe the VNS procedure itself, and how
the neighborhoods interact. Computational experiments are described in Sect. 4 and
concluding remarks are made in Sect. 5.

2 Neighborhood structures

Solutions to graph arrangement problems are typically represented as permutations,
where each vertex occupies the position given by its label. For example, the labeling
of the graph depicted in Fig. 1a,

f (A) = 1; f (B) = 5; f (C) = 2; f (D) = 3;
f (E) = 4; f (F) = 6; f (G) = 7; f (H) = 8,

can be expressed with the permutation f = (A, C, D, E, B, F, G, H). In short, the
first vertex in the permutation receives the label 1, the second vertex receives the
label 2, and so on. In this section, we define three neighborhood structures based
on permutations. Associated to each neighborhood a local search procedure can be
defined to visit the solutions in the search space. In the next section we will describe
how these three neighborhoods, and their associated local searches, interact within the
VNS methodology.

The first two neighborhoods, N1 and N2, implement classic moves in permutation-
based problems, general exchanges and consecutive swappings, respectively. Given a
solution f = (v1, . . . , vi , . . . , v j , . . . , vn), we define exchange( f, j, i) as exchang-
ing in f the vertex in position i with the vertex in position j , producing a new
solution f ′ = (v1, . . . , vi−1, v j , vi+1, . . . , v j−1, vi , v j+1, . . . , vn). For the sake of
simplicity we denote f ′ = exchange( f, j, i). The associated neighborhood N1 has
size n(n − 1)/2, which can be considered relatively large, so instead of an exhaus-
tive exploration, we apply candidate list strategies (Glover and Laguna 1997) for
its improved scan. In particular, we order the vertices according to their AB f -value
(where the vertex with the minimum antibandwidth comes first), and examine them in
this order. For each vertex vi , we search for the first position j resulting in an improv-
ing exchange( f, j, i) move. If we find it, we apply the move; otherwise we do not
change the current solution f . In any case we resort to the next vertex in the ordered
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list. When all the vertices have been examined and eventually some moves have been
performed, we re-compute the antibandwidth of all of them and update their order.
(Update key information only at certain points is considered an implementation of
the elite candidate list introduced in the context of tabu search by Glover and Laguna
1997.) This local search method finishes when all the vertices have been examined
and no improving move has been found.

The second neighborhood N2 is defined by means of two symmetric moves,
swap+( f, vi ) and swap−( f, vi ). The first one consists of removing the vertex vi

from its current position i in f and inserting it in position i + 1 (i.e., swapping vi and
vi+1 in f ). Symmetrically, the second move swaps vi and vi−1 in f . In mathematical
terms, given a solution f = (v1, . . . , vi−1, vi , vi+1 . . . , vn) we have that:

swap+ ( f, vi ) = (v1, . . . , vi−1, vi+1, vi . . . , vn),

swap− ( f, vi ) = (v1, . . . , vi , vi−1, vi+1 . . . , vn).

We explore the associated neighborhood N2 as we described above for N1 (i.e., vertices
are scanned in ascending order of their antibandwidth value and examined in search
for an improving move). Given a vertex vi , we first find its closest neighbor v j in terms
of labels (i.e., its adjacent vertex in which the antibandwidth of vi is reached):

AB f (vi ) = min {| f (vi ) − f (u) | : (vi , u) ∈ E} = | f (vi ) − f
(
v j

) |.

We want to change the label of vi to increase AB f (vi ), therefore if j > i we try
swap− ( f, vi ); otherwise, we try swap+ ( f, vi ). Without loss of generality consider
that we try swap− ( f, vi ). If it is an improving move the procedure performs it,
obtains the new solution f ′ = (v1, . . . , vi , vi−1, vi+1 . . . , vn) and tries the consecutive
swap: swap−

(
f ′, vi

)
. The procedure performs consecutive swaps until no further

improvement is possible or j = 1 (symmetrically j = n). At that point vertex vi is
discarded and the method resorts to the following vertex in the ordering list.

The third neighborhood N3 is based on the ejection chain methodology. This strat-
egy is often used in connection with tabu search (Glover and Laguna 1997) and consists
of generating a compound sequence of moves, leading from one solution to another
by means of a linked sequence of steps. In each step, the changes in some elements
cause other elements to be ejected from their current state. See for instance Martí et al.
(2009) and Rego (2001), for successful implementations of this strategy.

In the context of the AMP, suppose that we want to exchange the label f (u) of a
vertex u with the label f (v) of another vertex v because this exchange results in an
increment of the antibandwidth of u, but we found that it deteriorates the antiband-
width of v. We can therefore consider labeling u with f (v) but, instead of labeling
v with f (u), examine another vertex w and check whether the label f (u) may be
advantageously assigned to w and whether, to complete the process, the label f (w) is
appropriate to v. In terms of ejection chains, we may say that the assignment of f (v)

to u caused f (u) to be “ejected” from u to w (and concluding by assigning f (w) to
v). The outcome defines a compound move of depth two. We can repeat this logic to
build longer chains.
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To restrict the size of N3 and to reduce the computational effort we only scan a
subset W of the possible labels selected at random. As in the previous neighborhoods,
vertices are scanned in ascending order of their antibandwidth value. Let u be the
first vertex in the list, the chain starts by selecting the best label f (v) ∈ W for u and
evaluating the exchange of both labels ( f (v) and f (u)). If this is an improving move,
it is applied and the chain stops (with depth one). Otherwise, we search for a vertex
w with a label f (w) in W adequate for v. If the compound move of depth two is an
improving one, it is applied and the chain stops; otherwise the chain continues until the
compound move becomes an improving one or the length of the chain reaches the pre-
specified limit depth. This local search is therefore restricted by two parameters: the
size of W and the depth of the ejection chain, which control both the number of vertices
involved in the move and the distance between the labels. We consider a maximum
depth, depth, of compound moves that will be empirically adjusted in our experiments
(it represents a balance between computational effort and search intensification). If
none of the compound moves from depth 1 to depth is an improving move, no move
is performed and the exploration continues with the next vertex in the ordered list.

In the following section we define what we understand by an improving move. Con-
sidering that many vertices can have an antibandwidth equal to the graph’s antiband-
width, a straightforward definition of move value would result in a poor guided
local search method and therefore we propose an alternative, and richer, move value
definition.

3 Variable neighborhood search

VNS is a methodology for solving optimization problems based on changing neighbor-
hood structures. In recent years, a large amount of VNS variants have been proposed.
Just to mention a few: Variable Neighborhood Descent (VND), Reduced VNS (RVNS),
Basic VNS (BVNS), Skewed VNS (SVNS), General VNS (GVNS) or Reactive VNS.
We refer the reader to Hansen et al. (2010) for an excellent review of this methodology.

In this paper, we focus on the VND variant, in which a predefined set of neighbor-
hoods

{
N1, N2, . . . , Nkmax

}
is available and the change between them is performed in

a deterministic and sequential way. Our method (see Fig. 2) implements a multi-start

Fig. 2 Pseudo-code of the VND method

123



Variable neighborhood search with ejection chains 925

procedure where in each iteration we first construct an initial solution with a level
algorithm (Bansal and Srivastava 2011), and then apply an improvement method with
a VND strategy. The algorithm starts by constructing an initial solution f (step 2), and
then applies in step 5 a local search over the first neighborhood, LocalSearch( f, Nk)

with k = 1. If the resulting local optimum, f ′, does not improve upon f , we set
k = k + 1 (step 10) and apply again LocalSearch( f, Nk), but now with k = 2. We
proceed in this way until k reaches kmax or the resulting local optimum, f ′, improves
upon the initial solution. In the former case, we finish this step since f cannot be
improved with any of the neighborhoods considered. In the later case, we resort to
k = 1, update the current solution f (steps 7 and 8), and apply the local search with the
first neighborhood to the obtained solution. The VND method terminates when a max-
imum number of construction steps, Max I ter , is performed. It is worth mentioning
that when we compare two solutions in the step 6 of Fig. 2, we do not restrict our atten-
tion to the objective function, but we also consider additional evaluators (described in
the next subsections).

3.1 Constructive method

Level algorithms (Díaz et al. 2002) are constructive procedures based on the partition
of the vertices of a graph in different levels, L1, . . . , Ls , such that the endpoints of
each edge in the graph are either in the same level Li or in two consecutive levels,
Li and Li+1. This level structure guarantees that vertices in alternative levels are not
adjacent. Level structures are usually constructed using a BFS method, providing a
root of the corresponding spanning tree and an order in which the vertices of the graph
are visited.

Bansal and Srivastava (2011) applied a level procedure to the AMP. Specifically,
they proposed a randomized breadth-first search wherein the spanning tree is con-
structed by selecting the root vertex (in level 1) as well as the neighbors of the visited
vertices at random. Starting from an odd level (even level) the constructive proce-
dure labels all the non-adjacent vertices of odd levels (even levels) sequentially. The
remaining vertices are labeled using a greedy approach in which a vertex v is labeled
with the unused label that produces the minimum increasing of its antibandwidth value
AB f (v). Figure 3a shows a spanning tree of the graph introduced in Fig. 1a. Figure 3b
depicts vertices in odd levels labeled sequentially. Finally, Fig. 3c shows the entire
labeling, where the unlabeled vertices have been labeled in a greedy fashion.

3.2 Local search

In the AMP there may be many different solutions with the same objective func-
tion value. We could say that the solution space presents a “flat landscape”. In this
kind of problems, such as the min–max or max–min, local search procedures typi-
cally do not perform well because most of the moves have a null value. In the AMP
there may be multiple vertices with an antibandwidth value equal to AB f (G). Then,
changing the label of a particular vertex u to increase its antibandwidth AB f (u),
does not necessarily imply that AB f (G) also increases. We therefore consider that
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Fig. 3 a Spanning tree, b sequential labeling of odd levels, and c greedy labeling of remaining nodes

a move improves the current solution if the number of vertices with a relative small
antibandwidth value is reduced (even if the objective function is not improved). With
this extended definition of “improving” we overcome the lack of information pro-
vided by the objective function. Specifically, we classify the vertices in the sets
Si for i = 1 to max AB where set Si contains the vertices with antibandwidth i .
In mathematical terms, Si = {v ∈ V |AB f (v) = i}. For example, considering
the graph depicted in Fig. 1a and the corresponding labeling f , we obtain the sets
S1 = ∅, S2 = {A, D}, S3 = {B, C, E, G, H}, and S4 = {F}.

We consider that a move changing the label of a vertex v improves the current
solution if it reduces the cardinality of any set Si with i ≥ AB f (v) without increasing
the cardinality of any set Sk with k ≤ i . We have empirically found that this criterion
allows the local search procedure to explore a larger number of solutions than a typical
implementation that only performs moves when the objective function is improved.
Figure 4a shows an improving move for the labeling of Fig. 1a. The move consists
of exchanging the labels of vertices A and H , obtaining a new solution f ′. In the
new labeling, vertex A is removed from set S2 and included in set S3. It means that
the antibandwidth value of vertex A is increased by one unit (from 2 to 3). On the
other hand vertex H remains in set S3. This move does not increase the antiband-
width of the graph, but we reduce the number of vertices with a small antibandwidth
value.

Considering the graph shown in Fig. 1a if we now exchange the labels of vertices
G and H (see Fig. 4b) vertex G is removed from set S3 and included in set S4 (i.e.,
its antibandwidth is improved by one unit), but vertex H is removed from set S3 and
included in set S2. We then consider that this move does not improve the incumbent
solution.
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Fig. 4 a Improving move and b non-improving move

4 Experimental results

This section describes the computational experiments that we performed to compare
our procedure with the state-of-the-art methods for solving the AMP. The VNS proce-
dure described in Sect. 3, the Memetic Algorithm (Bansal and Srivastava 2011), and
the Evolutionary Path Relinking (Duarte et al. 2011) were run on the same personal
computer to perform a fair comparison. Specifically, we used an Intel Core 2 Quad
CPU Q 8300 with 6 GiB of RAM and Ubuntu 9.04 64 bits OS. We have considered 10
sets with a total of 236 instances classified in two groups: 164 instances with known
optimum, and 72 instances with unknown optimum. All these instances are available at
http://www.optsicom.es/abp/. A detailed description of each set of instances follows.

Instances with known optimum

• Paths This data set consists of 24 graphs constructed as a linear arrangement of
vertices such that every vertex has a degree of two, except the first and the last
vertex that have a degree of one. The size of these instances ranges from 50 to
1000. For a path Pn with n vertices, Yixun and Jinjiang (2003) proved that the
optimal antibandwidth is

⌊ n
2

⌋
.

• Cycles This data set consists of 24 graphs constructed as a circular arrangement
of vertices such that every vertex has a degree of two. The size of these instances
ranges from 50 to 1000. For a cycle Cn with n vertices the optimal antibandwidth
is

⌊ n−1
2

⌋
, as shown in Bansal and Srivastava (2011).

• Grids This data set consists of 24 graphs constructed as the Cartesian product of
two paths Pn1 and Pn2 (Raspaud et al. 2009). The size of these instances ranges
from 81 to 1170. They are also called two dimensional meshes. For a grid Pn1 ×Pn2

witn n = n1n2 vertices the optimal antibandwidth is
⌈

(n1−1)n2
2

⌉
with n1 ≥ n2 ≥ 2.

• Toroidal grids (Tori) This data set consists of 37 graphs constructed as the Cartesian
product of two cycles (i.e., Cn × Cn). The size of these instances ranges from 16
to 1600. The optimal antibandwidth is (n−2)n

2 if n is even, and (n−2)(n+1)
2 if n is

odd (see Raspaud et al. 2009).
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• Hypercubes This data set consists of seven hypercubes Qd . Each vertex is repre-
sented as a binary vector of length d. Two vertices are adjacent if their associated
binary vectors only differ in one element. A hypercube is a graph with n = 2d ver-

tices and m = d ∗ 2d−1 edges. The optimal antibandwidth is 2n−1 −
n−2∑

j=0

(
j⌊
j
2

⌋
)

as shown in Wang et al. (2009).
• Complete binary trees (CBT) This data set consists of 24 trees, where every tree-

level is completely filled except possibly the last level and all nodes are as far
left as possible. The size of these instances ranges from 30 to 950. The optimal
antibandwidth is

⌊ n
2

⌋
(see Miller and Pritikin 1989).

• Hamming graphs This data set consists of 24 graphs constructed as the Cartesian
product of d complete graphs Knk , for k = 1, 2, . . . , d (Dobrev et al. 2009). The
size of these instances ranges from 80 to 1152. The vertices in these graphs are
d-tuples (i1, i2, ..., id ), where ik ∈ {0, 1, ..., nk−1}. Two vertices (i1, i2, . . . , id )
and ( j1, j2, . . . , jd ) are adjacent if and only if the two tuples differ in exactly one
coordinate. These graphs are referred to as Hamming graphs. It is shown in Dobrev
et al. (2009) that if d ≥ 2 and 2 ≤ n1 ≤ n2 ≤ · · · ≤ nd , then the optimal solution
of the antibandwidth problem for this type of instance is given by:

AB

(
d∏

k=1

Knk

)

=
⎧
⎨

⎩

n1n2 . . . nd−1 if nd−1 �= nd

n1n2 . . . nd−1 − 1 if nd−1 = nd and d ≥ 3

Instances with unknown optimum

• Caterpillars This data set consists of 40 graphs. Each caterpillar, Pn1n2 is con-
structed using the path Pn1 and n1 copies of the path Pn2 (usually referred to as
“hairs”), where each vertex i in Pn1 is connected to the first vertex of the i-th copy
of the path Pn2 . The size of these instances ranges from 20 to 1000.

• 3D grids This data set consists of 8 graphs constructed as the Cartesian product
of three paths Pn1, Pn2 and Pn3 (Raspaud et al. 2009). The size of these instances
ranges from 27 to 1000. They are also called three dimensional meshes or cuboidal
meshes. For a 3D grid Pn1 × Pn2 × Pn3 with n = n1n2n3 vertices, the optimal

antibandwidth is lower than or equal to the upper bound UB = k3

2 − 2k2

8 , where
k = n1 = n2 = n3 and k ≥ 3 (see Török and Vrt’o 2007).

• Harwell-Boeing We derived 24 matrices from the Harwell-Boeing Sparse Matrix
Collection (Harwell-Boeing 2011). The size of these instances ranges from 30
to 900. This collection consists of a set of standard test matrices arising from
problems in linear systems, least squares, and eigenvalue calculations from a wide
variety of science and engineering. The problems range from small matrices, used
as counter-examples to hypotheses in sparse matrix research, to large matrices
arising in practical applications. Graphs are derived from these matrices as follows.
Let Mi j denote the element of the i-th row and j-th column of the n × n sparse
matrix M . The corresponding graph has n vertices. Edge (i, j) exists in the graph
if and only if Mi j �= 0.
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Table 1 Width of the ejection
chain procedure

|W | Dev. (%) Score Time

0.1n 25.27 67 78.72

0.2n 24.37 50 120.26

0.3n 23.42 37 159.92

0.4n 22.10 18 198.34

0.5n 21.73 25 236.43

We have divided our experimentation into two parts: preliminary experimentation and
final experimentation. The preliminary experiments were performed to set the values
of the key search parameters of our heuristic method as well as to show the merit
of the proposed search strategies. We consider a representative subset of instances
(12 Harwell-Boeing, 12 Grids and 12 Hamming instances with different densities and
sizes).

In our preliminary experimentation, we first consider the ejection chain method
implemented in neighborhood N3 (see Sect. 2). In particular, the first experiment
is devoted to adjust the size of the set W of candidate labels of the ejection chain
(EC) procedure. To do that, we generate a set of 100 solutions with the constructive
procedure described in Sect. 3.1 and apply to them the EC method with different
values of |W | ∈ {0.1n, 0.2n, 0.3n, 0.4n, 0.5n}. Table 1 shows the average percentage
deviation (Dev.) between the best solutions found and the best known value (which in
the case of the Grids and Hamming instances are the optimal values). We also report
the so-called Score associated with each method (Resende et al. 2010). This statistic
is based on the nrank of each algorithm over each instance. The nrank of algorithm A
is defined as the number of methods that found a better solution than the one found
by A. In the event of ties, the methods receive the same nrank, equal to the number
of methods strictly better than all of them. The value of Score is the sum of the nrank
values for all the instances in the experiment, thus, the lower the Score the better
the method. Finally, for each value of |W | we show the CPU time in seconds (Time)
needed to construct and improve 100 solutions.

Table 1 shows that size of W has an important effect in both the quality of the
solution obtained and the running time. As it was expected, the larger the |W |, the
lower the deviation (and the larger the CPU time). Taking into account that the EC
method is part of a master procedure, we set W = 0.3n as a compromise selection for
the rest of our experimentation.

In the second preliminary experiment, we adjust the depth parameter of the ejection
chain method. We again construct 100 solutions and improve them with the EC method
considering W = 0.3n and depth ∈ {1, 10, 25, 0.1n, 0.05n}, where the last two values
(0.1n and 0.05n) are linearly dependent with the instance size. Table 2 shows the same
statistics than above.

Table 2 shows that the value of depth has a large impact on the behaviour of the
method in both, running time and average deviation. Specifically, average deviation
ranges from 29.44 % (with depth = 1, indicating that we restrict the search to single
moves and there is no chained move), to 21.75 % (with depth = 25 chained moves).
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Table 2 Depth of the ejection
chain procedure

Depth Dev. (%) Score Time

1 29.44 112 18.16

10 22.37 62 32.41

25 21.75 43 42.56

0.1n 21.88 46 85.14

0.05n 22.42 51 56.44

Table 3 Comparison of
different neighborhoods

Method Dev. (%) Score Time

LS1 11.97 21 58.98

LS2 16.11 44 123.00

LS3 24.87 67 55.62

VNS 9.32 2 122.88

We therefore set depth = 25 for which the method exhibits the best performance
(lower deviation and moderate CPU time).

In our third preliminary experiment, we study the contribution of each neighborhood
to the VNS method. Specifically, we study the quality that each neighborhood is able
to obtain when it works in isolation (implemented in a local search) and when they all
work in combination within the VNS. We compare the LS1 local search procedure (in
which we apply neighborhood N1 until no further improvement is possible), with the
LS2 (that applies N2) and LS3 (that applies N3). As in the previous experiments, we
construct 100 solutions with the aforementioned procedure and improve them with any
of the three variants as well as with the VNS method (based on the three neighborhoods
as described in Sect. 3). Table 3 summarizes the results of these four methods.

Results in Table 3 confirm that the VNS procedure compares favorably with sim-
ple local search methods. Specifically, VNS achieves the lowest deviation (9.32 %)
compared with the three local search methods tested (11.97 %, 16.11 % and 24.87 %,
for LS1, LS2, and LS3, respectively). Additionally, the score value of VNS is 2 which
means that VNS was only outperformed twice while the second best method (LS1) was
outperformed in 21 times. On the other hand, the CPU time of LS2 and VNS is signif-
icantly larger than the one invested by LS1 and LS3. To complement this information,
we show in Fig. 5 how the average deviation value of these four methods improves
over time (we consider a time horizon of 150 s reporting values every second).

The time-profile depicted in Fig. 5 shows that VNS clearly outperforms LS2 and
LS3 and presents a marginal improvement with respect to LS1 (this improvement is
consolidated as the search progresses). Note that the AMP is a max–min problem,
where the objective function consists of maximizing a minimum value. As it is well
documented, this kind of problems presents a “flat landscape” in which simple local
search methods usually get trapped (because the associated moves have a null value).
In this context, the VNS turns to be a good option since the change of the neighborhood
can help to disclose which are the “good” moves. Although not shown in this figure, it
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is worth mentioning that even if we run LS1 for longer running times (up to 1800 s),
it is not able to reach the objective function values found by VNS in the first 100 s in
8 out of 36 instances.

Considering that the differences between LS1 and VNS are relatively small, we
have applied two statistical tests for pairwise comparisons, the Wilcoxon test and the
Sign test. The former test computes if the two samples (the solutions of both methods)
come from different populations, while the latter computes the number of instances
on which an algorithm improves upon the other. The resulting p values of 0.000 and
0.001 respectively, indicate that there are significant differences between the results
of both methods, resulting VNS as the best method of this experiment.

In the final experimentation, we compare our VNS method with the best previous
methods. As described in Sect. 1, they are the Memetic Algorithm, MA, proposed
by Bansal and Srivastava (2011) and the Evolutionary Path Relinking, EvPR, due
to Duarte et al. (2011). Table 4 presents the performance of each algorithm over the
group of 164 instances with known optimum. Each main row reports the results on each
group of instances. In particular, we compute the average deviation (Dev.), number
of optimum (#Opt) and score of the best solutions found with each method on each
group of instances. The three methods are run for a similar running time (150 s) on
the same computer. Small differences on running times are due to the stopping criteria
(based on the number of iterations of each method). It is important to note that the three
methods considered are able to find most of the optima if they run for long CPU times.
However, in the context of heuristic optimization, the ability to find good solutions in
short running times is a key factor. In order to find significant differences among the
methods and test this ability, we limit the CPU time to 150 s.

Results in Table 4 show that the VNS obtains the best solutions in four sets of
instances (in terms of number of optima and average deviation). In particular, it is
able to match the optima in the 24 instances in the Paths set, 16 optima (out of 24)
and 0.84 % average deviation in the Cycles set, 1 optimum (out of 24) and 3.92 %
average deviation in the CBT set, and 1 optimum (out of 24) and 17.06 % average
deviation in the Hamming set, which compare favorably with the results obtained with
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Table 4 Comparison of best
methods on the 164 instances
with known optimum

Dev. (%) # Opt Score Time (avg)

Paths

MA 0.04 21 3 175.69

EvPR 1.88 4 40 160.23

VNS 0.00 24 0 150.08

Cycles

MA 0.88 16 2 171.28

EvPR 2.46 4 32 158.70

VNS 0.84 16 1 150.08

Grids

MA 0.13 11 0 154.18

EvPR 3.02 3 38 366.32

VNS 0.92 5 17 150.83

Tori

MA 38.59 11 51 191.44

EvPR 5.48 21 3 201.25

VNS 6.94 20 8 150.65

Hypercubes

MA 0.00 7 0 218.01

EvPR 1.35 4 5 174.06

VNS 1.15 5 3 150.29

CBT

MA 18.79 0 46 150.66

EvPR 3.94 1 7 152.27

VNS 3.92 1 4 150.05

Hamming

MA 57.99 0 42 173.11

EvPR 30.80 0 26 416.12

VNS 17.06 1 0 150.25

MA and EvPR in these sets. On the other hand, the MA obtains the best results in
Grids and Hypercubes, and the EvPR in the Tori. Overall, VNS obtains 56 optima,
out of 164 instances, while MA and EvPR obtain 50 and 33 optima, respectively. The
score statistic also indicates that VNS systematically ranks in the first positions when
comparing the three methods, since it exhibits a value of 33 when considering the 164
instances, while MA and EvPR present 144 and 151 respectively. In line with these
values, we have performed a non-parametric statistical comparison, the Friedman test,
also based on ranks (where rank 3 is assigned to the best method and rank 1 to the
worst one). The resulting p value of 0.000 obtained in this experiment clearly indicates
that there are statistically significant differences among the three methods tested and
the rank values produced by this test are 2.41 (VNS), 1.80 (MA), and 1.79 (EvPR),
confirming the previous results.
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Table 5 Comparison of best
methods on the 72 instances
with unknown optimum

Dev. (%) # Best Score Time (avg)

3D grids

MA 0.00 8 0 223.08

EvPR 1.17 2 7 154.30

VNS 0.92 3 5 150.50

Caterpillars

MA 3.68 0 80 201.99

EvPR 0.02 38 2 155.12

VNS 0.05 38 2 150.10

HarwellBoeing

MA 48.10 3 42 152.02

EvPR 0.94 16 9 156.30

VNS 0.21 20 4 150.04

We conduct the same study over the group of instances with unknown optima
(72 instances) and present the associated results in Table 5. In this case, the aver-
age deviation, Dev., is computed with respect to the best known solution and #Best
indicates the number of times that each method matches the best known solution.
We include in the Appendix Tables 6, 7, and 8 where we report, for each instance
with unknown optimum, the best known value, the tightest upper bound (Yixun
and Jinjiang 2003), the relative deviation (in percentage) between the best known
value and the upper bound, and the heuristic method (or methods) achieving these
results.

Table 5 shows that MA obtains the best results in the 3D grids set, and the worst ones
in the Caterpillars and HarwellBoeing sets. On the other hand, VNS obtains the best
results in the HarwellBoeing set and ranks second in the other two sets. Overall results
on the 72 instances show that VNS presents an average percentage deviation of 0.39 %
and 61 best-known values, followed by EvPR (with 0.71 % and 56 respectively), and
MA (with 25.89 % and 11). The resulting p value of 0.000 obtained with the Friedman
test in this experiment certifies that there are differences among these three methods,
and the associated rank values of 2.42 (VNS), 2.33 (EvPR) and 1.26 (MA) are in line
with the pattern shown above.

In order to evaluate the behavior of these methods over a long-term time horizon,
we run MA, EvPR and VNS for 30 min, reporting the average deviation of the best
found solution every minute. We consider the set of 36 representative instances used
in the preliminary experimentation. Figure 6 shows the corresponding average time
profile, in which we can see that VNS consistently produces better results than its
competitors although the three of them are able to produce good results. Specifically,
the three methods quickly improve its average deviation in the first two minutes in
which VNS clearly establishes its superiority. From this point, the methods are only
able to produce a marginal improvement (around 1 %), which on the other hand is a
difficult task considering the max–min of this optimization problem.
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To finish our experiments, we consider a time-to-target plot (Aiex et al. 2002). We
ran the three competing methods 100 times on a representative instance, Hamming
5×6×6, stopping when a solution with objective value equal to the best known for
this instance, 16, was found. For each run we recorded the running time. Each run
was independent of the other, using a different initial seed for the random number
generator. With these 100 running times, we plot the time-to-target plots (run time
distributions), which is depicted in Fig. 7. This figure shows that VNS is able to
find the target solution faster than the other two methods. Moreover, this experiment
illustrates the exponential runtime distribution for these methods. Therefore, linear
speed is expected if they are implemented in parallel.

123



Variable neighborhood search with ejection chains 935

5 Conclusions

In this paper, we report our research on the use of different neighbours and candidate list
strategies that allows us to cope with a computationally expensive objective function
evaluation within a VNS procedure with ejection chains. Our procedure selects moves
from a candidate list of moves whose move values are not updated after every iteration.
The list follows the tabu search principle that the values of a set of elite moves do not
drastically change from one iteration to the next and therefore it is not necessary to
update them after the execution of every move. In addition to the application of this
candidate list strategy, our procedure employs an unconventional definition of move
value, which is not based on the change of the objective function value to direct the
search. In this way, our move value definition conveys information that is not available
when the change in the objective function value is calculated.

The performance of the procedure has been assessed using 236 problem instances
of several types and sizes. Our preliminary experimentation clearly proves the merit of
combine neighborhoods, as VNS does, in the context of max–min problems. Moreover,
the procedure has been shown robust in terms of solution quality within a reasonable
computational effort. The proposed method was compared with two recently developed
procedures due to Duarte et al. (2011) and Bansal and Srivastava (2011) respectively.
The comparisons favor the proposed variable neighborhood search implementation.

According to our experimentation, the Paths, Cycles, Grids and Hypercube
instances can be considered “easy to solve”. On the contrary, the CBT, Hamming
and HarwellBoeing instances are actually a challenge for modern heuristic methods.

Acknowledgements This research has been partially supported by the Ministerio de Ciencia e Inno-
vación of Spain within the OPTSICOM project (http://www.optsicom.es/) with grant codes TIN2008-05854,
TIN2009-07516, TIN2012-35632, and P08-TIC-4173.

Appendix

Tables 6, 7 and 8 report the comparison of the state-of-the-art methods over the set
of instances with unknown optimum. We consider a time limit of 150 s per instance.
Each table shows for each instance the best known value, Best val., the tightest upper
bound (Yixun and Jinjiang 2003), UB, the relative deviation (in percentage) between
the best known value and the upper bound, Dev, and finally the heuristic method (or
methods) achieving these results.
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Table 6 Best values, best
methods and upper bounds per
instance for Harwell-Boeing
matrices

Best val. UB Dev Method

ash85.mtx.rnd 21 42 50.0 VNS

bcspwr01.mtx.rnd 17 19 10.5 VNS, EvPR

bcspwr02.mtx.rnd 21 24 12.5 VNS, EvPR

bcspwr03.mtx.rnd 39 59 33.9 VNS, EvPR

bcsstk01.mtx.rnd 8 22 63.6 VNS, EvPR

pores_1.mtx.rnd 6 13 53.8 VNS, MA, EvPR

will57.mtx.rnd 13 28 53.6 VNS, EvPR

curtis54.mtx.rnd 13 26 50.0 VNS

dwt__234.mtx.rnd 50 58 13.8 VNS, EvPR

ibm32.mtx.rnd 9 15 40.0 VNS, EvPR

impcol_b.mtx.rnd 8 29 72.4 VNS, EvPR

nos4.mtx.rnd 34 50 32.0 VNS, EvPR

494_bus.mtx.rnd 227 247 8.1 VNS

662_bus.mtx.rnd 220 331 33.5 VNS

685_bus.mtx.rnd 136 342 60.2 VNS, EvPR

can__445.mtx.rnd 82 221 62.9 VNS

can__715.mtx.rnd 115 357 67.8 EvPR

bcsstk06.mtx.rnd 32 210 84.8 EvPR

bcsstk07.mtx.rnd 31 210 85.2 VNS, EvPR

dwt__503.mtx.rnd 53 250 78.8 VNS, EvPR

dwt__592.mtx.rnd 113 295 61.7 VNS

impcol_d.mtx.rnd 103 212 51.4 VNS, EvPR

nos6.mtx.rnd 329 337 2.4 MA

sherman4.mtx.rnd 261 272 4.0 MA

Table 7 Best values, best
methods and upper bounds per
instance for 3D grids

Best val. UB Dev. (%) Method

3dmesh_3.txt 9 12 25.0 VNS, MA, EvPR

3dmesh_4.txt 25 31 19.4 VNS, MA, EvPR

3dmesh_5.txt 51 61 16.4 VNS, MA

3dmesh_6.txt 92 107 14.0 MA

3dmesh_7.txt 149 170 12.4 MA

3dmesh_8.txt 228 255 10.6 MA

3dmesh_9.txt 328 363 9.6 MA

3dmesh_10.txt 454 499 9.0 MA
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Table 8 Best values, best
methods and upper bounds per
instance for Caterpillars

Best val. UB Dev. (%) Method

caterpillar_5_4.txt 10 10 0.0 VNS, EvPR

caterpillar_5_5.txt 12 12 0.0 VNS, EvPR

caterpillar_5_6.txt 15 15 0.0 VNS, EvPR

caterpillar_5_7.txt 17 17 0.0 VNS, EvPR

caterpillar_9_4.txt 18 18 0.0 VNS, EvPR

caterpillar_9_5.txt 22 22 0.0 VNS, EvPR

caterpillar_9_6.txt 27 27 0.0 VNS, EvPR

caterpillar_9_7.txt 31 31 0.0 VNS, EvPR

caterpillar_10_4.txt 20 20 0.0 VNS, EvPR

caterpillar_10_5.txt 25 25 0.0 VNS, EvPR

caterpillar_10_6.txt 30 30 0.0 VNS, EvPR

caterpillar_10_7.txt 35 35 0.0 VNS, EvPR

caterpillar_15_4.txt 30 30 0.0 VNS, EvPR

caterpillar_15_5.txt 37 37 0.0 VNS, EvPR

caterpillar_15_6.txt 45 45 0.0 VNS, EvPR

caterpillar_15_7.txt 52 52 0.0 VNS, EvPR

caterpillar_20_4.txt 40 40 0.0 VNS, EvPR

caterpillar_20_5.txt 50 50 0.0 VNS, EvPR

caterpillar_20_6.txt 60 60 0.0 EvPR

caterpillar_20_7.txt 69 70 1.4 VNS, EvPR

caterpillar_20_10.txt 99 100 1.0 VNS, EvPR

caterpillar_20_15.txt 148 150 1.3% VNS, EvPR

caterpillar_20_20.txt 197 200 1.5 VNS, EvPR

caterpillar_20_25.txt 247 250 1.2 EvPR

caterpillar_25_10.txt 124 125 0.8 VNS, EvPR

caterpillar_25_15.txt 185 187 1.1 VNS, EvPR

caterpillar_25_20.txt 247 250 1.2 VNS, EvPR

caterpillar_25_25.txt 309 312 1.0 VNS

caterpillar_30_10.txt 149 150 0.7 VNS, EvPR

caterpillar_30_15.txt 222 225 1.3 VNS, EvPR

caterpillar_30_20.txt 297 300 1.0 VNS, EvPR

caterpillar_30_25.txt 371 375 1.1 VNS, EvPR

caterpillar_35_10.txt 174 175 0.6 VNS, EvPR

caterpillar_35_15.txt 260 262 0.8 VNS

caterpillar_35_20.txt 347 350 0.9 VNS, EvPR

caterpillar_35_25.txt 433 437 0.9 VNS, EvPR

caterpillar_40_10.txt 199 200 0.5 VNS, EvPR

caterpillar_40_15.txt 297 300 1.0 VNS, EvPR

caterpillar_40_20.txt 397 400 0.8 VNS, EvPR

caterpillar_40_25.txt 496 500 0.8 VNS, EvPR
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