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Image registration is present in many computer vision and computer graphics real-world applications.
Specifically, it plays a crucial role within the 3D digital model acquisition pipeline, in which the iterative
closest point (ICP) algorithm is considered the de facto standard for pair-wise alignment of range images.
Nevertheless, the success of ICP depends on several assumptions. A new family of registration techniques
have been recently proposed based on evolutionary computation paradigm to solve the common ICP
problems.

Unlike previous contributions, we propose a novel self-adaptive evolutionary image registration algo-
rithm able to search for the values of both the control and the problem solving parameters to achieve
accurate alignments, simultaneously. It combines two different population-based optimization
approaches that are concerned with the proper optimization of the control parameters and the image
alignments, respectively. The performance of our proposal is compared with several state-of-the-art
image registration methods.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Image registration (IR) (Zitová and Flusser, 2003) is a funda-
mental task in the computer vision (CV) and computer graphics
(CG) fields. It is aimed at finding either a spatial transformation
(e.g. rotation, translation, etc.) or a correspondence (matching of
similar image features) among two or more images acquired under
different conditions: at different times, using different sensors,
from different viewpoints, or a combination of them. IR aims to
achieve the best possible overlapping transforming those indepen-
dent images into a common one. Over the years, IR has been
applied to tackle many real-world problems ranging from remote
sensing to medical imaging, artificial vision, and computer-aided
design (CAD). Likewise, different techniques facing the IR problem
have been studied resulting in a large body of research. Several re-
cent contributions reviewing the state of the art on IR methods can
ll rights reserved.
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be found in (Santamarı́a et al., 2011; Salvi et al., 2007; Damas et al.,
2011; Zitová and Flusser, 2003).

In the last few years, there is a growing interest in techniques to
build high-quality 3D models of real-world objects and scenes ac-
quired by range scanners (Bernardini and Rushmeier, 2002). Fur-
thermore, such techniques should not require humans to
manually produce those models using laborious and error-prone
CAD-based approaches (Campbell and Flynn, 2001). Usually, the
iterative closest point (ICP) algorithm (Besl and McKay, 1992; Chen
and Medioni, 1992) is the de facto standard in pair-wise IR of range
images, also named pair-wise range IR (RIR). However, this sort of
methods are based on a classical optimization scheme (i.e. solution
estimation using the least squares approach) and they rely on
important assumptions to guarantee convergence to the optimal
solution. In particular, they assume a near-optimal pose estima-
tion1 is initially provided. Otherwise, the IR process will be likely
trapped in local optima (Rusinkiewicz et al., 2001).

Unlike the previous approaches, approximate or heuristic opti-
mization methods (also named as meta-heuristics (Glover et al.,
2003)) are able to achieve good quality outcomes for complex opti-
mization problems. This optimization paradigm has introduced an
1 In some acquisition scenarios, the object to be sensed is on a calibrated turn table
which allows an accurate alignment of adjacent images using ICP-based IR algorithms
(Campbell and Flynn, 2001).
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outstanding interest in the IR community in the last decade, in
which evolutionary computation (EC) (Bäck and Fogel, 1997) has
provided successful outcomes. Unlike ICP-based algorithms, the
latter variants do not require an accurate initial estimation of the
pose. A recent experimental review of evolutionary IR methods ap-
plied to 3D modeling is to be find in (Santamarı́a et al., 2011).

Nevertheless, one of the main shortcomings of evolutionary
algorithms (EAs) (Z. Michalewicz et al., 1996) is the need of a care-
ful tuning of their control parameters (e.g. probability of mutation
or crossover) in order to achieve the best (biased) performance.
Determining appropriate control parameters is a time-consuming
task that is usually carried out by hand in a trial-and-error way.
Hence, the automatic or self-adaptive tuning of the EA control
parameters is one of the most challenging problems in this field.
In the last few years, many self-adaptive proposals have been con-
tributed in the specific literature of EC (Eiben and Smith, 2011).
However, we found that there is a lack of work done in application
areas such as CV and CG. Thus, we propose a novel IR method
based on EAs which adopts a self-adaptive scheme of the control
parameters, we named StEvO. Our specific design of StEvO takes
advantage of the synergy between two recent EAs: differential evo-
lution (DE) (Storn, 1997) and artificial immune systems (AIS) (de
Castro et al., 2002). We will accomplish an experimental study
on the performance of this method facing the 3D reconstruction
of real-world objects acquired by laser range scanners. We will
compare our proposal with other state-of-the-art EAs using several
range image datasets from the well-known SAMPL repository.

The structure of this paper is as follows. First, Section 2 intro-
duces some basis on the IR problem of range data and the applica-
tion of evolutionary principles to tackle it. Our self-adapted EA is
described in Section 3. In Section 4, an experimental study is per-
formed considering our proposal and several evolutionary IR meth-
ods. Finally, some conclusions and future works are provided in
Section 5.
2. Evolutionary image registration

Range scanners are able to capture 3D images, named range
images, from different viewpoints of the sensed object. Every range
image shows a partial view of the complete geometry of the object
surface. Thus, it is necessary to consider a reconstruction technique
to perform the accurate integration of all the images by using RIR
algorithms in order to achieve a complete and reliable model of the
physical object. This framework is usually called 3D model recon-
struction (Bernardini and Rushmeier, 2002).

There is not a universal design for a hypothetical IR method,
since various considerations on the particular application must
be taken into account (Zitová and Flusser, 2003). However, IR
methods usually require the following four components: two input
Images named as Scene Is ¼ ~p1;~p2; . . . ;~pnf g and Model Im ¼
~p01;~p

0
2; . . . ;~p0m

� �
, with ~pi and ~p0j being image points; a Registration

transformation f, being a parametric function relating the two
images; a Similarity metric function F, in order to measure a qual-
itative value of closeness or degree of fitting between the trans-
formed scene image, noted f 0ðIsÞ, and the model image; and an
Optimizer that looks for the optimal transformation f inside the de-
fined solution search space.

Specifically, the optimizer is a crucial component for the success
of the IR method. Since the ICP algorithm was introduced, many
contributions have been proposed extending and partially solving
the shortcomings of the original method, e.g. convergence to local
minima (Feldmar and Ayache, 1996; Zhang, 1994; Rusinkiewicz
et al., 2001). Nevertheless, they still assume that an initial near-
optimal alignment of images is provided. Unlike the latter, EC-
based IR algorithms have demonstrated their ability tackling
complex optimization problems, e.g. in CV (Cordón et al., 2006;
Perez et al., 2010; Yang et al., 2010). In particular, there is an
increasing interest on applying EAs to the IR problem due to their
capability to scape from local optima solutions (Santamarı́a et al.,
2011; Damas et al., 2011).

As said, the 3D model reconstruction pipeline involves several
pair-wise RIR steps (Bernardini and Rushmeier, 2002). Therefore,
the application of every IR method aims to find the Euclidean mo-
tion that brings the scene view (Is) into the best possible alignment
with the model view (Im). Such an Euclidean motion is given by a
3D rigid transformation (f) determined by six or seven real-coded
parameters depending on using either Euler or axis plus angle rep-
resentation for rotation, respectively. Specifically, we used the lat-
ter scheme. Thus, we define the rigid transformation as: a rotation
R ¼ ðh; Axisx;Axisy;AxiszÞ and a translation~t ¼ ðtx; ty; tzÞ, with h and
~Axis being the angle and axis of rotation, respectively. The scene

view consists of n points that are transformed as follows:

f ð~piÞ ¼ Rð~piÞ þ~t; i ¼ 1; . . . ;nf g ð1Þ

Hence, pair-wise RIR can be formulated as an optimization problem
devoted to search for the Euclidean transformation f � achieving the
best alignment of both f ðIsÞ and Im:

f � ¼ arg min
f

FðIs; Im; f Þ s:t: : f �ðIsÞ ffi Im ð2Þ

according to the Similarity metric, F, being optimized. The median
square error (MedSE) is a typical F function in 3D modeling (Santa-
marı́a et al., 2011) due to its robustness in the presence of outliers.
MedSE can be formulated as follows:

FðIs; Im; f Þ ¼ MedSEðd2
i Þ; 8i ¼ 1; . . . ;nf g ð3Þ

where MedSEðÞ corresponds to the median value of all the squared
Euclidean distances, d2

i , between the transformed scene point,
f ð~piÞ, and its corresponding closest point, ~p0j, in the model view Im,
that is:

d2
i ¼ kf ð~piÞ �~p0jk

2
; j ¼ 1; . . . ;mf g ð4Þ

where m is the number of points of the Im image. In order to speed
up the computation of the closest point of every f ð~piÞ point, index-
ing structures as kd-trees (Silva et al., 2005) or the grid closest point
(GCP) transform (Yamany et al., 1999) are often used.

3. Self-adapted evolutionary image registration

This section is devoted to describe our novel contribution based
on an evolutionary optimization algorithm providing self-adaptive
capabilities of the control parameters for facing pair-wise RIR
problems.

3.1. Framework proposal

It is well-established in the EC community that the control
parameters (e.g. the mutation and crossover probabilities, the tour-
nament size of selection, etc.) have a strong influence on the
behavior of EAs. Thus, parameter tuning has a potential of adjust-
ing the optimization algorithm to the problem domain being
solved. However, the election of the appropriate parameter values
is a time-consuming task. Hence, the automatic control of the EA
parameters is one of the most challenging tasks in the community
of EC. In the last few years, many self-adaptive EA-based solutions
have been proposed. A deeper analysis of these algorithms is out of
the scope of this contribution and a broad study of this topic can be
found in (Eiben and Smith, 2011). Among these, we found that the
self-adaptive approach using the DE algorithm have shown im-
proved performance (Brest et al., 2007).



Fig. 1. First-level pseudo-code of the StEvO algorithm.

2 The source code of the method is available in the website of the Soft Computing
and Intelligent Information Systems Research Group (SCI2S, http://sci2s.ugr.es) of the
University of Granada.

J. Santamaría et al. / Pattern Recognition Letters 33 (2012) 2065–2070 2067
Despite the previous, we found that there is a lack of application
of this cutting-edge evolutionary techniques in real-world scenar-
ios from the CV and CG fields, e.g. in IR. Thus, our contribution is
twofold. On the one hand, we propose a new self-adaptive evolu-
tionary optimization (StEvO) method for tackling RIR problems.
On the other hand, we aim to achieve quality registration solutions
as those obtained by the best evolutionary RIR methods of the state
of the art. Thus, our proposed framework resembles the meta-GA
(Mercer and Sampson, 1978) approach, being inspired in the co-
operative design introduced in (Chunping and Xuefeng, 2009)
which makes use of the DE algorithm.

The algorithmic description of StEvO is presented in Fig. 1. It can
be structured in three main sections: stage-0 (lines 1–7), stage-1
(lines 8–22), and stage-2 (line 23). First, both the registration solu-
tions and the control parameters are randomly initialized using a
uniform distribution in stage-0. Next, in the evolutionary optimiza-
tion stage, stage-1, our new design of the DE algorithm searches for
near-optimal registration solutions. Finally, stage-2 makes use of
the AIS algorithm in order to provide near-optimal values of the
two control parameters of DE, i.e. .F and .CR (see Fig. 1). Then,
the two linked optimization stages, i.e. stage-1 and stage-2, itera-
tively co-operate using the same objective function (Eq. (3)).
Therefore, the more suitable the control parameters are, the more
accurate the registration solutions achieved will be.

At each iteration t of StEvO (see Fig. 1), each solution xi 2 C
(C ¼ fx1; x2; . . . ; xlg) is considered for possible replacement by a
trial solution xtrial generated by using the DE algorithm (line 10).
Unlike (Chunping and Xuefeng, 2009), our specific design makes
use of a self-adaptive approach as introduced in (Qin et al.,
2009). The proposed self-adaptive binary strategy (SaBS) considers
a more reduced set of mutation and recombination operators than
used in (Qin et al., 2009). Specifically, we followed the recommen-
dations in (Qing et al., 2009) (see Section 6.1.1.4) and SaBS learns
the best strategy between rand=1=bin and rand=1=exp. The learning
scheme runs a probabilistic rule using the success rates qrand=1=bin

and qrand=1=exp. These are accordingly updated (lines 21 and 22) pre-
vious to run stage-2 (line 23). The k parameter refers to the number
of times each strategy obtains an improved trial solution.

Initially, each 2-dimensional member .i ¼ h.F
i ;.CR

i i
(i ¼ f1; . . . ; lg) of both the antigens X ¼ f.1; . . . ;.lg and the anti-
bodies ! ¼ f.1; . . . ;.k¼2�lg are randomly generated (line 4) previous
to processing of stage-2 using a Gaussian distribution Nð0;1Þ and a
uniform distribution U½0;1�, respectively. At each iteration t of StE-
vO, the affinity score is computed in the stage-1 each time a new
improved trial solution is found. Otherwise the corresponding anti-
gen .i 2 X will be updated by 0 value (lines 12 and 15). Higher
affinity values mean that the CS principle implemented in the Tun-
ingSaBSControlParameters procedure of stage-2 obtained a better
immune response, then matching more adapted control parame-
ters with which stage-1 will achieve improved RIR solutions.

A preliminary experiment was carried out aiming to analyze the
robustness of StEvO using different values of the two AIS’ control
parameters: - and b. As expected, we obtained the results re-
ported in (Chunping and Xuefeng, 2009; Delibasis et al., 2011). In
such references, AIS was also applied for tackling two different
real-world optimization problems. In our study, both the AIS-based
stage-2 and the whole proposed framework (StEvO) achieved sig-
nificant stable optimization outcomes with respect to the latter
two control parameters for all the RIR problem instances consid-
ered. That behavior is not usual in the field of evolutionary IR
(Santamarı́a et al., 2011). Typically, every evolutionary contribu-
tion needs a careful selection of the control parameters in order
to achieve a successful performance. In this contribution, we con-
sidered the AIS’ values in (Chunping and Xuefeng, 2009):
- ¼ 0:25 and b ¼ 0:8.
4. Experimental results

This section aims to present a number of experiments to study
the robustness of the algorithms and the accuracy of the results ob-
tained by the proposed self-adaptive optimization framework. As a
benchmark, the results achieved by our StEvO-based RIR algorithm
will be compared against those obtained by four state-of-the-art IR
methods also using evolutionary approaches:

� Santamaria et al.’s proposal (Santamaria09) (Santamarı́a et al.,
2009), a recent contribution based on the scatter search (SS)
algorithm.
� de Falco et al.’s method (deFalco08) (de Falco et al., 2008),

which makes use of a basic implementation of the DE algorithm.
� Silva et al.’s contribution (Silva05) (Silva et al., 2005), in which a

steady-state GA variant is developed.
� Yamany et al.’s proposal (Yamany99) (Yamany et al., 1999),

where the authors considered a binary representation of the
transformation parameters and a canonical implementation of
GAs.

A detailed description of these methods can be found in (Sant-
amarı́a et al., 2011). The proposed algorithm2 (StEvO) and the four

http://sci2s.ugr.es


Fig. 2. Performance of the StEvO algorithm when facing the ‘‘Bird’’, ‘‘Dock’’, and ‘‘Bunny’’ datasets (forty degrees of overlapping RIR problem scenario) considering different
population sizes.

Table 1
Statistical results of StEvO considering thirty different runs tackling the most complex
scenario (forty degrees of overlapping). RateBest and Dev. columns show the
percentage of times the best solution is found and the deviation with respect to the
best mean fitness value achieved using 180 s, respectively.

Bird Dock Bunny
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compared RIR methods were implemented in C++ and compiled with
the GNU/g++ tool. We adapted all the tested methods by using the
same representation of the rigid transformation (f) and objective
function (see Eq. (3) in Section 2) in order to accomplish a fair com-
parison. Other similarity metrics can be also used as objective func-
tion depending on the application.
RateBest
(%)

Dev. RateBest
(%)

Dev. RateBest
(%)

Dev.

180 s 67 – 77 – 70 –
100 s 67 0 77 0 70 0
20 s 67 0.0008 47 0.0576 60 0.0185
4.1. Range image datasets and problem scenarios

In order to ease the comparison with the results reported in
other contributions in the field (Salvi et al., 2007; Silva et al.,
2005), our results correspond to a number of pair-wise RIR prob-
lem instances using different range datasets obtained from the
well-known public repository of the Signal Analysis and Machine
Perception Laboratory (SAMPL) of the Ohio State University. Specif-
ically, we used six range datasets also considered in (Silva et al.,
2005), named ‘‘Frog’’, ‘‘Bird’’, ‘‘Tele’’, ‘‘Lobster’’, ‘‘Angel’’, and ‘‘Bud-
dha’’. Their size range from 8 K to 15 K.

Besides, we have considered several pair-wise RIR problem sce-
narios using two different overlapping degrees between pairs of
adjacent images. Specifically, twenty and forty rotation degrees
of the turn table were considered. Instead of considering feature-
based approaches (Zitová and Flusser, 2003), we used a subsam-
pled version of each range image in order to speed-up the compu-
tation of the objective function (see Eq. (3) in Section 2). In
particular, five thousand points have been randomly chosen using
a uniform distribution. Similar approaches were followed in other
RIR proposals (Silva et al., 2005).
3 More information on the influence of the population size can be found in (Lobo et
al., 2006).
4.2. Parameter settings

In order to avoid execution bias, thirty different runs of each
evolutionary RIR algorithm were performed. Every method tackled
two kinds of problem scenarios: considering twenty and forty de-
grees of image overlapping. Moreover, all the tested algorithms
start from an initial population of random solutions. In each run
a rigid transformation is randomly generated using a uniform dis-
tribution and considering the following parameter ranges: each of
the three rotation axis parameters will be in the range ½�1;1�; the
rotation angle will range in ½0�;360��; and the range of three trans-
lation parameters is ½�40 mm;40 mm�. Such a random transforma-
tion is applied to the scene image frðIsÞ and the RIR method will
search for the optimal transformation f � between the proposed im-
age frðIsÞ and the model image Im. Note that this procedure provides
an objective measure of the performance of the method. It will be
based on the comparison of the transformation estimated by the
method with the ground-truth given by the original location of
the scene image, Is.

We considered a fixed CPU time as the common stop criterion.
All the methods were tested using different time limits in order to
determine as a good threshold allowing all the methods to con-
verge to good quality RIR solutions, and twenty seconds was the
choice. Table 1 remarks the outcomes achieved by StEvO consider-
ing 180, 100, and 20 s. We can see how a reduced cpu time will
achieve fast and accurate pair-wise RIR results.

All the pair-wise RIR methods were run on a PC with an Intel
Pentium IV 2.6 MHz processor and 2 GB RAM. We considered the
values of the control parameters of each of the four compared algo-
rithms (Santamaria09, deFalco08, Yamany99, and Silva05) as those
used in their original contribution. Regarding StEvO, we performed
some preliminary experiments using different population sizes for
the optimization procedure of the stage-1. Fig. 2 shows the perfor-
mance (mean fitness value of thirteen runs) of StEvO considering
twenty seconds run time and different population sizes. We found
that the more stable and accurate results are around a population
size of 50 solutions (l ¼ 50).

Nevertheless, it is known that stable results will depend on the
dimension of the optimization problem3.

4.3. Analysis of results

Tables 1–3 show statistical results of the objective function F
(see Eq. (3)) corresponding to the thirty runs carried out by each



Table 2
RIR results of the twenty degrees of overlapping problem scenario.

Dataset Algorithm Min. Max. Mean Sdev.

StEvO 0.2448 0.5269 0.2948 0.0887
Santamaria09 0.2448 0.9453 0.3185 0.1461

Angel deFalco08 0.2493 0.9462 0.6732 0.2209
Yamany99 0.2553 0.9531 0.5818 0.2792
Silva05 0.2495 0.9555 0.4179 0.2560

StEvO 0.1125 0.5977 0.1814 0.1569
Santamaria09 0.1132 0.8881 0.2075 0.2015

Bird deFalco08 0.1245 0.8429 0.4793 0.2157
Yamany99 0.1199 0.9180 0.4465 0.2725
Silva05 0.1152 0.9178 0.3506 0.3112

StEvO 0.1193 0.5308 0.1792 0.1337
Santamaria09 0.1194 0.8120 0.2029 0.1756

Frog deFalco08 0.1322 0.7345 0.4374 0.1615
Yamany99 0.1234 0.8311 0.5119 0.2162
Silva05 0.1249 0.8555 0.4329 0.2415

StEvO 0.0735 0.8647 0.1044 0.1414
Santamaria09 0.0736 0.7867 0.1639 0.2192

Tele deFalco08 0.0755 0.6578 0.3193 0.1819
Yamany99 0.0791 0.8958 0.3159 0.2531
Silva05 0.0750 0.9234 0.3728 0.3366

Table 3
RIR results of the forty degrees of overlapping problem scenario.

Dataset Algorithm Min. Max. Mean Sdev.

StEvO 0.3493 0.9436 0.4990 0.2175
Santamaria09 0.3498 0.9539 0.5271 0.2467

Angel deFalco08 0.3694 0.9599 0.7954 0.1499
Yamany99 0.3623 0.9687 0.7776 0.2057
Silva05 0.3527 0.9711 0.6790 0.2640

StEvO 0.2041 0.9168 0.3741 0.2655
Santamaria09 0.2052 0.9373 0.4626 0.3175

Bird deFalco08 0.2955 0.9350 0.7358 0.1852
Yamany99 0.2776 0.9407 0.7547 0.2070
Silva05 0.2159 0.9425 0.5795 0.3158

StEvO 0.2517 0.7717 0.3941 0.1856
Santamaria09 0.2548 0.7812 0.4700 0.2271

Frog deFalco08 0.3997 0.8000 0.6937 0.0876
Yamany99 0.2809 0.8964 0.7490 0.1220
Silva05 0.2735 0.9474 0.6923 0.1750

StEvO 0.1054 0.4708 0.1682 0.1226
Santamaria09 0.1062 0.8354 0.2217 0.2116

Tele deFalco08 0.1240 0.7722 0.4785 0.1520
Yamany99 0.1104 0.9230 0.4689 0.2686
Silva05 0.1077 0.8950 0.5354 0.2929

StEvO 0.3996 0.6873 0.5730 0.1103
Santamaria09 0.3978 0.7524 0.6300 0.1020

Buddha deFalco08 0.6705 0.9335 0.8105 0.0812
Yamany99 0.6080 0.9259 0.7704 0.0889
Silva05 0.5075 0.9506 0.7146 0.1126

StEvO 0.2522 0.8013 0.3816 0.1916
Santamaria09 0.2490 0.8056 0.4369 0.2231

Lobster deFalco08 0.3392 0.7917 0.6642 0.1020
Yamany99 0.3010 0.8846 0.6530 0.1756
Silva05 0.2665 0.9201 0.5727 0.2089
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of the five evolutionary RIR methods when facing the two RIR
problem scenarios, i.e. twenty and forty degrees of overlapping ra-
tio. In particular, each column of these tables refer to the range
dataset, the algorithm, and the minimum, maximum, mean, and
standard deviation values obtained for the F function. The algo-
rithm with the lowest minimum and mean results is accordingly
highlighted using bold-font.

As said, Table 2 corresponds to the less complex RIR scenario
(twenty degrees). Its analysis leads us to conclude that StEvO
achieves the lowest minimum, mean, and standard deviation val-
ues of F against the majority of the tested algorithms. Specifically,
it obtains the most accurate results (according to minimum value)
and the most robust ones (according to mean value) in all the con-
sidered problem instances compared to the best state-of-the-art
algorithm, Santamaria09.

The latter outstanding behavior of the StEvO approach is cor-
roborated in the most complex RIR scenario (forty degrees). In par-
ticular, the self-adaptive proposal obtains the most accurate results
facing the ‘‘Angel’’, ‘‘Bird’’, ‘‘Frog’’, and ‘‘Tele’’ datasets (see Table 3),
while Santamaria09 achieves more accurate outcomes in the
remaining two datasets: ‘‘Buddha’’ and ‘‘Lobster’’. In addition, StE-
vO achieves the best mean results in the six datasets. Fig. 3 shows
four different renderings of accurate RIR results of the StEvO pro-
posal when using the ‘‘Angel’’, ‘‘Frog’’, ‘‘Lobster’’, and ‘‘Buddha’’
datasets. Again, the high robustness achieved by StEvO in all the
addressed problems is remarkable.

Furthermore, Fig. 4 facilitates a deeper analysis of the robust-
ness of the two best evolutionary RIR methods facing the most
complex scenario. Box-plots are graphical tools for visually exam-
ining data distribution (in our case, from thirty runs). They are
Fig. 3. Best RIR results of the StEvO algorithm when facing the ‘‘Angel’’, ‘‘Frog’’, ‘‘Budd
described as follows: the bottom and top of the box are the 25th
and the 75th percentiles, respectively. The horizontal line in the
middle of the box corresponds to the 50th percentile, i.e. the med-
ian. Usually, data considered as outliers, if any, are plotted using
dots. Note that the upper bound of the StEvO box is always below
the upper bound of the Santamaria09 box in all the problems.
Therefore, 75% of the StEvO error distribution is lower than the
one achieved by Santamaria09. Moreover, we carried out a statis-
tical test to study the significance of the reported results using
the Mann–Whitney U test (also known as Wilcoxon ranksum test).
Our proposal achieves statistically significant results compared to
Santamaria09, considering a 5% level of confidence.

5. Concluding remarks and future works

IR is a very active research field. The large number of publica-
tions related to IR shows the relevance of this topic in CV and
CG. In the last few decades, evolutionary approaches have demon-
strated their ability to tackle the IR problem thanks to their robust
behavior as global optimization techniques.
ha’’, and ‘‘Lobster’’ datasets (forty degrees of overlapping RIR problem scenario).
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Fig. 4. Box-plots obtained from the thirty runs of the best RIR methods tackling the
most complex RIR problem scenario (forty degrees of overlapping).
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In this work, we proposed a self-adaptive evolutionary IR algo-
rithm as a novel contribution never contributed before in the spe-
cific field. Outstanding results have been obtained when
comparing the proposed algorithm (StEvO) with several state-of-
the-art evolutionary IR algorithms. Nevertheless, we plan to extend
these results considering other self-adaptive algorithms.
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