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Abstract. From the definition of fuzzy sets by Zadeh in 1965, fuzzy logic has be-
come a significant area of interest for researchers on artificial intelligence. In partic-
ular, Professor Mamdani was the pioneer who investigated the use of fuzzy logic for
interpreting the human derived control rules, and therefore his work was considered
a milestone application of this theory.

In this work, we aim to carry out an overview of the principles of fuzzy mod-
eling given by Mamdani and its application to different areas of data mining that can
be exploited such as classification, association rule mining or subgroup discovery,
among others. Specifically, we present a case of study on classification with highly
imbalanced data-sets in which linguistic fuzzy rule based systems have shown to
achieve a good behaviour among other techniques such as decision trees.

Keywords: Mamdani Fuzzy Rule Based Systems, Fuzzy Logic, Linguistic fuzzy
partitions, Data Mining, Classification, Association rule mining, Subgroup discov-
ery, Imbalanced data-sets.

1 Introduction

Fuzzy systems are one of the most important areas for the application of the Fuzzy
Set Theory [Zadeh, 1965]. Usually it is considered a model structure in the form
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of fuzzy rule based systems (FRBSs) [Yager and Filev, 1994]. FRBSs constitute an
extension to classical rule-based systems, because they deal with “IF-THEN” rules,
whose antecedents and consequents are composed of fuzzy logic statements, instead
of classical ones.

The starting point of FRBSs is dated in 1973 when Professor Mamdani and the
student S. Assilian were trying to stabilize the speed of a small steam engine. How-
ever, engine speed would either overshoot the target speed and arrive at the target
speed after a series of oscillations, or the speed control was too sluggish, taking too
long for the speed to arrive at the desired setting.

At that point, Dr. Mamdani decided to follow the theory proposed by
Professor Zadeh and in this manner he could state that using a fuzzy logic
controller for speed control of a steam engine was much superior to controlling
the engine by conventional analytical control systems and logic control hardware
[Mamdani and Assilian, 1975]. Dr. Mamdani found that, using the conventional ap-
proach, extensive trial and error work was necessary to arrive at successful control
for a specific speed set-point. Further, due to the non-linearity of the steam engine op-
erating characteristics, as soon as the speed set-point was changed, the trial and error
effort had to be done all over again to arrive at effective control. This did not occur
with the fuzzy logic controller, which adapted much better to changes, variations and
non-linearity in the system.

Since then, linguistic FRBSs (also known as Mamdani FRBSs) have widely
demonstrated their ability for control problems [Driankow et al, 1993] but have been
also extended to numerous areas of data mining such as classification
[Ishibuchi et al, 2004], association rule mining [Chan and Au, 1997], subgroup dis-
covery [del Jesus et al, 2007] and so on.

Having this into account, the main aim of this chapter is to provide a brief
overview of these applications of Mamdani FRBSs, showing how they are specif-
ically adapted for each framework and providing a short description of their main
features. With this objective, and trying to develop a self contained chapter, we will
first introduce the concept of fuzzy set and linguistic variable and we will present the
basic elements that compose an FRBS. Furthermore, we will enumerate the steps of
the fuzzy inference system as proposed by Mamdani in order to obtain the output
for an FRBS.

In order to show the significance and goodness of the use of linguistic FRBSs, we
present a case of study on classification with imbalanced data-sets [He and Garcia,
2009; Sun et al, 2009], which refers to the context where the number of examples
that represents one or more classes of the problem is much higher than that of the
other classes. We will focus on those problems with a high degree of imbalance,
showing that linguistic fuzzy models can obtain a higher precision than decision
trees [Quinlan, 1993] in this domain.

The remainder of this chapter is organized as follows. In Section 2, we provide an
overview of FRBSs. In Section 3, we describe the different applications of Mamdani
FRBS over several topics of data mining. Next, Section 4 presents a case of study for
linguistic fuzzy systems in the framework of classification with highly imbalanced
data-sets. Finally, in Section 5, we provide some concluding remarks of this work.
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2 Fuzzy Rule Based Systems

The basic concepts which underlie fuzzy systems are those of linguistic variable and
fuzzy IF-THEN rule. A linguistic variable, as its name suggests, is a variable whose
values are words rather than numbers, e.g., small, young, very hot and quite slow.
Fuzzy IF-THEN rules are of the general form: if antecedent(s) then consequent(s),
where antecedent and consequent are fuzzy propositions that contain linguistic vari-
ables. A fuzzy IF-THEN rule is exemplified by “if the temperature is high then the
fan-speed should be high”. With the objective of modeling complex and dynamic
systems, FRBSs handle fuzzy rules by mimicking human reasoning (much of which
is approximate rather than exact), reaching a high level of robustness with respect
to variations in the system’s parameters, disturbances, etc. The set of fuzzy rules of
an FRBS can be derived from subject matter experts or extracted from data through
a rule induction process.

In this section, we present a brief overview of the foundations of FRBSs, with the
aim of illustrate the way they behave. In particular, in Section 2.1, we introduce the
important concepts of fuzzy set and linguistic variable. In Section 2.2, we deal with
the basic elements of FRBSs. Finally, in Section 2.3 we describe the fuzzy inference
system proposed by Mamdani for the output of an FRBS.

2.1 Preliminaries: Fuzzy Set and Linguistic Variables

A fuzzy set is distinct from a crisp set in that it allows its elements to have a degree
of membership. The core of a fuzzy set is its membership function: a surface or line
that defines the relationship between a value in the set’s domain and its degree of
membership. In particular, according to the original ideal of Zadeh [Zadeh, 1965],
membership of an element x to a fuzzy set A, denoted as μA(x) or simply A(x), can
vary from 0 (full non-membership) to 1 (full membership), i.e., it can assume all
values in the interval [0,1]. Clearly, a fuzzy set is a generalization of the concept of
a set whose membership function takes on only two values {0,1}.

The value of A(x) describes a degree of membership of x in A. For example, con-
sider the concept of high temperature in an environmental context with temperatures
distributed in the interval [0, 40] defined in degree centigrade. Clearly 0oC is not
understood as a high temperature value, and we may assign a null value to express
its degree of compatibility with the high temperature concept. In other words, the
membership degree of 0oC in the class of high temperatures is zero. Likewise, 30oC
and over are certainly high temperatures, and we may assign a value of 1 to express
a full degree of compatibility with the concept. Therefore, temperature values in
the range [30, 40] have a membership value of 1 in the class of high temperatures.
From 20oC to 30oC, the degree of membership in the fuzzy set high temperature
gradually increases, as exemplified in Figure 1, which actually is a membership
function A : T → [0,1] characterizing the fuzzy set of high temperatures in the uni-
verse T = [0,40]. In this case, as temperature values increase they become more and
more compatible with the idea of high temperature.
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Fig. 1 Membership function

Linguistic variables are variables whose values are not numbers but words or
sentences in a natural or artificial language. This concept has clearly been developed
as a counterpart to the concept of a numerical variable. In concrete, a linguistic
variable L is defined as a quintuple [Zadeh, 1975a,b,c]: L = (x,A,X ,g,m), where x is
the base variable, A = {A1,A2, . . . ,AN} is the set of linguistic terms of L (called term-
set), X is the domain (universe of discourse) of the base variable, g is a syntactic rule
for generating linguistic terms and m is a semantic rule that assigns to each linguistic
term its meaning (a fuzzy set in X). Figure 2 shows an example of a linguistic
variable Temperature with three linguistic terms “Low, Medium, and High”. The
base variable is the temperature given in appropriate physical units.
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Fig. 2 Example of linguistic variable Temperature with three linguistic terms

Each underlying fuzzy set defines a portion of the variable’s domain. But this
portion is not uniquely defined. Fuzzy sets overlap as a natural consequence of their
elastic boundaries. Such an overlap not only implements a realistic and functional
semantic mechanism for defining the nature of a variable when it assumes various
data values but provides a smooth and coherent transition from one state to another.
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2.2 Basic Elements of FRBSs

The essential part of FRBSs is a set of IF-THEN linguistic rules, whose antecedents
and consequents are composed of fuzzy statements, related by the dual concepts of
fuzzy implication and the compositional rule of inference.

An FRBS is composed of a knowledge base (KB), that includes the information
in the form of IF-THEN fuzzy rules;

IF a set of conditions are satisfied
THEN a set of consequents can be inferred

and an inference engine module that includes:

• A fuzzification interface, which has the effect of transforming crisp data into
fuzzy sets.

• An inference system, that uses them together with the KB to make inference by
means of a reasoning method.

• A defuzzification interface, that translates the fuzzy rule action thus obtained to
a real action using a defuzzification method.

As we state in the introduction of the paper, we will study linguistic models,
which are based on collections of IF-THEN rules, whose antecedents are linguistic
values, and the system behaviour can be described in natural terms. The consequent
is an output action or class to be applied. For example, we can denote them as:

R j : IF xp1 IS A j1 AND · · · AND xpn IS A jn THEN y IS B j

with j = 1 to L, and with xp1 to xpn and y being the input and output variables, with
A j1 to A jn and B j being the involved antecedents and consequent labels, respectively.
They are usually called linguistic FRBSs or Mamdani FRBSs [Mamdani, 1974].

In linguistic FRBSs, the KB is comprised by two components, a data base (DB)
and a rule base (RB).

• A DB, containing the linguistic term sets considered in the linguistic rules and
the membership functions defining the semantics of the linguistic labels.

Each linguistic variable involved in the problem will have associated a fuzzy
partition of its domain representing the fuzzy set associated with each of its lin-
guistic terms. Reader is referred to recall Figure 2 where we showed an example
of fuzzy partition with three labels. This can be considered as a discretization ap-
proach for continuous domains where we establish a membership degree to the
items (labels), we have an overlapping between them, and the inference engine
manages the matching between the patterns and the rules providing an output
according to the rule consequents with a positive matching. The determination
of the fuzzy partitions is crucial in fuzzy modeling [Au et al, 2006], and the
granularity of the fuzzy partition plays an important role for the FRBS behaviour
[Cordón et al, 2000].
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• An RB, comprised of a collection of linguistic rules that are joined by a rule con-
nective (“also” operator). In other words, multiple rules can fire simultaneously
for the same input.

The generic structure of an FRBS is shown in Figure 3.

Fig. 3 Structure of an FRBS

For more information about fuzzy systems the following books may be consulted
[Yager and Filev, 1994; Kuncheva, 2000; Cordón et al, 2001; Ishibuchi et al, 2004].
For different issues associated to the trade-off between interpretability and accuracy
of FRBSs, the two following edited books present a collection of contributions in
the topic [Casillas et al, 2003a,b].

2.3 Mamdani Fuzzy Inference Process

The inference engine of FRBSs acts in a different way depending of the kind of
problem (classification or regression) and the kind of fuzzy rules. It always includes
a fuzzification interface that serves as the input to the fuzzy reasoning process, an
inference system that infers from the input to several resulting output (fuzzy set,
class, etc) and the defuzzification interface or output interface that converts the fuzzy
sets obtained from the inference process into a crisp action that constitutes the global
output of the FRBS, in the case of regression problems, or provide the final class
associated to the input pattern according to the inference model.

According to Mamdani principles [Mamdani, 1977], the fuzzy inference process
comprises of five parts, which are a very simple structure of “max-min” operators,
specifically fuzzification of the input variables, application of the fuzzy operator
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(AND or OR) in the antecedent, implication from the antecedent to the consequent,
aggregation of the consequents across the rules, and defuzzification. These five op-
erations can be compressed into three basic steps, which are described below:

Step 1. Computation of the Matching Degree. The first step is to take the inputs
and determine the degree to which they belong to each of the appropriate
fuzzy sets via membership functions. In order to compute the matching
degree to which each part of the antecedent is satisfied for each rule, a
conjunction operatorC is applied. Specifically, Mamdani recommended the
use of the minimum t-norm.

μA j(xp) = C(μA j1(xp1), . . . ,μA jn(xpn)), j = 1, . . . ,L. (1)

Step 2. Apply an Implication Operator. In this step, the consequent is reshaped
using a function associated with the antecedent (a single number). The in-
put for the implication process is a single number given by the antecedent,
and the output is a fuzzy set. Implication is implemented for each rule.
Usually, two approaches for the implication operator I are employed, i.e.
minimum t-norm, which truncates the output fuzzy set, and product t-norm,
which scales the output fuzzy set. Mamdani also recommended the use of
the minimum t-norm in this case.

μB′
j
(y) = I(μA j(xp),μB j (y)) j = 1, . . . ,L. (2)

Step 3. Defuzzification process. Decisions are based on the testing of all of the
rules in a fuzzy inference system, so rules must be combined in order
to make a decision. There are two modes of obtaining the output value
of a fuzzy system, namely “aggregation first, defuzzification after” and
“defuzzification first, aggregation after”. The defuzzification method sug-
gested by Mamdani considers the first method via the centre of gravity of
the individual fuzzy sets aggregated with the maximum connective also.

μB(y) =
⋃

j

μB′
j
(y) (3)

y0 =

∫
y y ·μB(y)dy∫

y μB(y)
(4)

3 Extending Mamdani Fuzzy Rule Based Systems to Data
Mining

As we have stressed in the introduction of this work, the first applications of FRBSs
were focused in the field of control processes and directly to regression problems.
Nevertheless, the properties of fuzzy logic make them an appropriate tool for many
other fields of study, mainly because of their capability to built linguistic models
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interpretable to the users and the possibility of mixing different information as the
one coming from expert knowledge and information coming from mathematical
models or empiric measures.

For this and other reasons, the use of linguistic FRBSs has been successfully
extended to the framework of data mining such as classification tasks, mining of
association rules and subgroup discovery among others. In the following of this
section we will briefly introduce the features of these problems and we will describe
how FRBSs are adapted for each one of them.

3.1 Fuzzy Rule Based Systems for Classification

Classification is one of the most studied problems in machine learning and data
mining [Duda et al, 2001; Han and Kamber, 2006]. It is a technique that, from
a supervised learning point of view, consists on inducing a mapping which allow
to determine the class of a new pattern from a set of attributes. A search algo-
rithm is used to generate a classifier from a set of correctly classified patterns called
training set.

Fuzzy sets have been widely employed in the field of pattern recognition and
classification [Pedrycz, 1990, 1997], fundamentally because of, from the method-
ological point of view, the theory of fuzzy sets is an adequate theory to develop tools
for modeling cognitive human processes related to the aspects of recognition. In this
framework, if we join the use of fuzzy logic to the design of rule based systems, we
will obtain which is known as Fuzzy Rule Based Classification Systems (FRBCSs).

We can find three different types of fuzzy classification rules in the specialised
literature, which are enumerated below:

1. Rules with a single class in the consequent [Kuncheva, 1996; Nauck and Kruse,
1997]:

Rule R j : If xp1 is A j1 and . . . and xpn is A jn then Class = Cj

2. Rules with a single class and a rule weight associated to this class in the conse-
quent [Ishibuchi et al, 1992; Nozaki et al, 1996]:

Rule R j : If xp1 is A j1 and . . . and xpn is A jn then Class = Cj with RWj

3. Rules with rule weights associated to each one of the class of the consequent
[Mandal et al, 1992; Pal and Mandal, 1992]:

Rule R j : If xp1 is A j1 and . . . and xpn is A jn then (RW1
j , . . . ,RW 1

M)

In all cases, R j is the label of the jth rule, xp = (xp1, . . . ,xpn) is an n-dimensional
pattern vector, A ji is an antecedent fuzzy set representing a linguistic term, Cj is a
class label, and RWj is the rule weight [Ishibuchi and Nakashima, 2001].
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For classification tasks, the fuzzy inference needs some modifications in order to
adapt it to this specific problem, since the output value is no longer a fuzzy set but
a class label. Therefore, if xp = (xp1, . . . ,xpn) is a new pattern and if L denotes the
number of rules in the RB and M the number of classes of the problem, the steps of
the fuzzy reasoning method for classification [Cordón et al, 1999] are the following:

1. Matching degree, that is, the strength of activation of the if-part for all rules in the
RB with the pattern xp. To compute it a T-norm is used as conjunctive connector.

μA j(xp) = C(μA j1(xp1), . . . ,μA jn(xpn)), j = 1, . . . ,L. (5)

2. Association degree. To compute the association degree of the pattern xp with the
M classes according to each rule in the RB.

bk
j = I(μA j(xp),RW k

j ) k = 1, . . . ,M, j = 1, . . . ,L. (6)

3. Pattern classification soundness degree for all classes. We use an aggregation
function that combines the positive degrees of association calculated in the pre-
vious step.

Yk = f (bk
j, j = 1, . . . ,L and bk

j > 0), k = 1, . . . ,M. (7)

4. Classification. We apply a decision function F over the soundness degree of the
system for the pattern classification for all classes. This function will determine
the class label l corresponding to the maximum value.

F(Y1, . . . ,YM) = argmax(Yk), k = 1, . . . ,M (8)

We must point out that the FRBCSs we have described follow the same philoso-
phy that Mamdani’s fuzzy models for regression/control problems, sharing most of
their features and extending the inference mechanism as it has been explained.

3.2 Fuzzy Rule Based Systems for Association Mining

Association rules are used to represent and identify dependencies between items in
a database [Zhang and Zhang, 2002]. These are an expression of the type X → Y ,
where X and Y are sets of items and X ∩Y = /0. This means that if all the items in
X exist in a transaction then all the items in Y with a high probability are also in the
transaction, and X and Y should not have any common items [Agrawal and Srikant,
1994]. Knowledge of this type of relationship can enable proactive decision making
to proceed from the inferred data. Many problem domains have a need for this type
of analysis, including risk management, medical diagnostic, fire management in
national forests and so on.

The first studies on the topic focused on databases with binary values, however
the data in real-world applications usually consist of quantitative values. In this
context, different studies have proposed methods for mining fuzzy association rules
from quantitative data. Specifically, Chan and Au proposed an F-APACS algorithm
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to mine fuzzy association rules [Chan and Au, 1997]. They first transformed quan-
titative attribute values into linguistic terms and then used the adjusted difference
analysis to find interesting associations among attributes. In addition, both positive
and negative associations could be found.

Kuok et al. proposed a fuzzy mining approach to handle numerical data in databases
with attributes and derived fuzzy association rules [Kuok et al, 1998]. At nearly the
same time, Hong et al. proposed a fuzzy mining algorithm to mine rules from quan-
titative transaction data [Hong et al, 1999] by means of linguistic terms, where the
membership functions were assumed to be known in advance. Whereas these classical
algorithms use a predefined DB, as we have mentioned, recent approaches on fuzzy
association rule mining are focused to learn both the fuzzy rules and the membership
functions of the fuzzy labels [Hong et al, 2008; Alcalá-Fdez et al, 2009].

In contrast to the standard inference modeling of a rule set, in this case rules
are individually analyzed according to specifical measures of quality for evaluating
their interestingness such as support and confidence. Let R j : IF X is A Then Y is B
be a fuzzy association rule where X = x1, . . . ,xn and Y = y1, . . . ,yn are item-
sets which must be disjoint between them. In order to enable the evaluation of
a fuzzy association rule, we use the standard approach for calculating support
and confidence, replacing the set-theoretic operations by the corresponding fuzzy
set-theoretic operations:

Supp(A → B) =
∑xp∈B μA(xp)

m
(9)

Con f (A → B) =
∑xp∈B μA(xp)

∑m
p=1 μA(xp)

(10)

The support measure is especially important to determine frequent itemsets with
respect to the user-defined minimum support, just as in binary association rules. The
confidence is particularly used for investigating the interestingness of the discovered
rules. A rule will only be interesting if its confidence is above the specified mini-
mum, and it becomes more interesting the bigger the support is. Additionally, there
exists some other measures of interest that can be used to complement confidence
in order to measure the goodness of the rules [Noda et al, 1999].

The reader must have realized that conceptually, fuzzy association rules follow
the same scheme proposed by Mamdani in regression/control. What it is used in
this case is simply their meaning as descriptive rules of information, hence having a
descriptive rule set that are a particular chunk of information.

3.3 Fuzzy Rule Based Systems for Subgroup Discovery

Subgroup discovery is a data mining technique aimed at discovering interesting rela-
tionships between different objects in a set with respect to a specific property which
is of interest to the user. In this way, it is somewhere halfway between supervised
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and unsupervised learning [Kralj-Novak et al, 2009]. Indeed, the final aim of sub-
group discovery is not to perform a good classification of new examples but to cover
them within the correct subgroup with a high confidence.

Due to the fact that subgroup discovery is focused on the extraction of relations
with interesting characteristics, it is not necessary to obtain complete but partial
relations. These relations are described in the form of individual rules. Then, a rule
(R), which consists of an induced subgroup description, can be formally defined as
[Lavrac et al, 2004]:

R : Cond → Class

where Class is not considered as an actual class of the problem, but rather a target
value or property of interest for the subgroup which appears in the consequent part
of the rule; and the antecedent part Cond is a conjunction of features (attribute-value
pairs) selected from the features describing the training instances. In this way, for
the representation of the rule it is only necessary to codify the antecedent part.

Currently, some approaches make use of fuzzy logic for representing the contin-
uous variables that form the antecedent of these rules, by means of linguistic vari-
ables, such as SDIGA [del Jesus et al, 2007], MESDIF [Berlanga et al, 2006] and
NMEEF-SD [Carmona et al, 2010]. Specifically, a fuzzy rule describing a subgroup
is represented in the same way as for classification tasks, where the antecedent de-
scribes the subgroup in canonical form or disjunctive normal form and the classes
are treated as the target values.

One of the most important aspects in subgroup discovery is the choice of the
quality measures employed to extract and evaluate the rules. There is no current
consensus in the field about which are the most suitable for both processes, and
there are a wide number of measures presented throughout the bibliography. For
example, we can find measures of complexity, generality and precision which, in the
case of FRBSs, must be computed in concordance to the properties of fuzzy logic.
Specifically, most of these measures compute the number of examples covered by
the rules which, in this case, is given by obtaining a positive compatibility degree of
the example from a given rule, such as confidence and support which are obtained
in the same way as in fuzzy association rule mining:

Supp(Condi →Class j) =
∑xp∈Class j

μAi(xp)

m
(11)

Con f (Condi →Class j) =
∑xp∈Class j

μAi(xp)

∑m
p=1 μAi(xp)

(12)

Despite the lack of consensus, the most commonly used metric of performance
in the field of subgroup discovery is known as Unusualness and it is defined as the
weighted relative accuracy of a rule [Lavrac et al, 1999]:

WRAcc(Condi →Class j) =
n(Condi)

m

(
n(Class j.Condi)

n(Condi)
− n(Class j)

m

)
(13)
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where n(Condi) is the number of examples which verifies the condition Condi

described in the antecedent (independently of the class to which belongs),
n(Class j.Condi) is the number of correctly covered examples of class j and n(Class j)
the number of examples of the former. Therefore, the weighted relative accuracy of a
rule can be described as the balance among the coverage, interest and accuracy gain
of the rule. It must be noted that the higher a rule’s unusualness, the more relevant
it is.

We must emphasize that fuzzy rules for subgroup discovery are treated at de-
scriptive level in a similar way as fuzzy association rules, being linked in the same
manner with Mamdani’s work.

4 Case of Study: Addressing Highly Imbalanced Classification
Problems with Linguistic Fuzzy Rule Based Systems

In this section we present a case of study aiming to show the goodness of the ap-
plication of linguistic fuzzy systems in a relevant problem such as the classification
of imbalanced data-sets [He and Garcia, 2009; Sun et al, 2009], which has been
identified as one of the current challenges in data mining [Yang and Wu, 2006].

In the remaining of this section we will first develop a brief introduction to the
problem of imbalanced data-sets in classification and the evaluation measures em-
ployed in this topic. Next, we will describe the methodology we proposed in our
former work on the topic [Fernández et al, 2009] in order to deal with the imbalance
problem using linguistic hierarchical FRBCSs. Finally, we will present the experi-
mental framework for this work, together with the tables of results and the statistical
study carried out.

4.1 Imbalanced Data-Sets in Classification

We refer to imbalanced data-sets when the distribution between the classes is not
uniform, being the number of examples that represents one of the classes much
lower than the other, adding that the characterization of this class often has a higher
practical interest [Chawla et al, 2004]. The significance of this problem relies on
its presence in numerous real classification problems including, but not limited to,
telecommunications, finances, biology or medicine.

Standard classification algorithms from examples are often biased towards the
negative class (majority class), since the rules that correctly classify a higher num-
ber of examples are selected in the learning process while increasing the considered
metric (that it is often based in the percentage of well-classified examples). Hence,
the instances of the positive class (minority class) are misclassified with a higher
frequency than those that belong to the negative class [Weiss, 2004]. Another im-
portant feature of this type of problems are the “small disjuncts”, that is, a data
concentration of one class in a small area of the problem being surrounded by ex-
amples of the contrary class [Orriols-Puig and Bernadó-Mansilla, 2009]; this type
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of regions are hard to detect for most of the learning algorithms. Furthermore, an-
other main problem of imbalanced data-sets is the higher probability of overlapping
between the positive and negative examples [Garcı́a et al, 2008].

In order to deal with this problem, we may find external approaches that prepro-
cess the training data in order to rebalance the class distribution prior to the learning
stage [Batista et al, 2004]. According to our previous empirical results on the topic
[Fernández et al, 2008], we selected the “Synthetic Minority Over-sampling Tech-
nique” (SMOTE) [Chawla et al, 2002] as preprocessing mechanism for our current
study. This technique is an over-sampling method whose main idea is to form new
minority class examples by interpolating between several minority class examples
that lie together. Thus, the overfitting problem is avoided and causes the decision
boundaries for the minority class to spread further into the majority class space. We
considered only the 1-nearest neighbor to generate the synthetic samples, and we
balanced both classes to the 50% distribution.

Regarding performance metric, standard quality measures for classification can
lead to erroneous conclusions over imbalanced data-sets since they do not take into
account the proportion of examples for each class, as we stated before. For this reason,
in this work we will use the Area Under the ROC Curve (AUC) [Huang and Ling,
2005], which is defined as:

AUC =
1 + TPrate −FPrate

2
(14)

where TPrate is the ratio of examples of the positive class that are well-classified and
FPrate is the ratio of examples of the negative class misclassified.

Finally, we must point out that there exist different imbalance degrees between
the data. In this work we will use the imbalance ratio (IR) [Orriols-Puig and
Bernadó-Mansilla, 2009] to distinguish among different categories. This metric is
defined as the ratio between the number of examples of the negative class and the
positive class. We consider that a data-set present a high degree of imbalance when
its IR is higher than 9 (less than a 10% of instances of the positive class).

4.2 A Methodology for Dealing with Imbalanced Data-Sets with
Hierarchical FRBCSs

In our previous work on the topic, we propose the use of a hierarchical environ-
ment in order to improve the behaviour of linguistic FRBCSs in the framework
of imbalanced data-sets [Fernández et al, 2009]. A Hierarchical Fuzzy Rule Based
Classification System (HFRBCS) [Cordón et al, 2002], is based on the refinement
of a simple linguistic fuzzy model by means of the extension of the structure of the
KB in a hierarchical way by using the concept of “layers”, i.e. fuzzy partitions with
different granularity. The final aim is the application of a thick granularity for infer-
ring the initial RB, and a fine granularity in those areas of the problem where these
low granularity rules have a bad performance.
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In this manner, this approach preserves the original descriptive power and in-
creases its accuracy by reinforcing those problem subspaces that are specially diffi-
cult. Therefore, we focus our efforts on enhancing the classification performance in
the boundary areas of the problem, obtaining a good separability among the classes
in an imbalanced environment.

The algorithm to obtain an HFRBCS is based on a two-stage methodology, which
includes the following processes:

1. Hierarchical KB Generation Process: A hierarchical RB is created from a simple
RB obtained by a linguistic rule generation method. In our work we employed
a simple inductive rule generation method, we named as Chi et al.’s method
[Chi et al, 1996]. It is worth to mention that this process is divided into two
main steps: the first one identifies bad performance rules and the second one ex-
pands these rules into a higher granularity space. Finally, both “good rules” and
expanded rules are joint together.

2. Hierarchical RB Genetic Selection Process: The best cooperative rules from the
previous stage are selected by means of an evolutionary algorithm. We consid-
ered the CHC evolutionary model [Eshelman, 1991] in order to make the rule
selection.

This approach allow us to get a compact set of fuzzy rules with different granu-
larity in the fuzzy partition, adapted to each region of the data.

4.3 Experimental Study

We will study the performance of linguistic FRBCSs employing a large collection
of imbalanced data-sets with high IR. Specifically, we have considered twenty-two
data-sets from KEEL data-set repository [Alcalá-Fdez et al, 2010], as shown in Ta-
ble 1, where we denote the number of examples (#Ex.), number of attributes (#Atts.),
class name of each class (minority and majority), class attribute distribution and IR.
This table is in ascendant order according to the IR.

To develop the different experiments we consider a 5-folder cross-validation
model, i.e., 5 random partitions of data with a 20%, and the combination of 4 of
them (80%) as training and the remaining one as test. We must point out that the
data-set partitions employed in this paper are available for download at the KEEL
data-set repository (http://www.keel.es/dataset.php) both for the orig-
inal partitions and those preprocessed data with the SMOTE method. Therefore, any
interested researcher can use the same data for comparison.

We will use the following configuration for the FRBCS approach: product T-
norm as conjunction operator, together with the Penalized Certainty Factor heuristic
Ishibuchi and Yamamoto [2005] for the rule weight and the winning rule approach

http://www.keel.es/dataset.php
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Table 1 Summary Description for Imbalanced Data-Sets

Data-set #Ex. #Atts. Class (min., maj.) %Class(min.; maj.) IR
Yeast2vs4 514 8 (cyt; me2) (9.92, 90.08) 9.08
Yeast05679vs4 528 8 (me2; mit,me3,exc,vac,erl) (9.66, 90.34) 9.35
Vowel0 988 13 (hid; remainder) (9.01, 90.99) 10.10
Glass016vs2 192 9 (ve-win-float-proc; build-win-float-proc, (8.89, 91.11) 10.29

build-win-non float-proc,headlamps)
Glass2 214 9 (Ve-win-float-proc; remainder) (8.78, 91.22) 10.39
Ecoli4 336 7 (om; remainder) (6.74, 93.26) 13.84
Yeast1vs7 459 8 (vac; nuc) (6.72, 93.28) 13.87
Shuttle0vs4 1829 9 (Rad Flow; Bypass) (6.72, 93.28) 13.87
Glass4 214 9 (containers; remainder) (6.07, 93.93) 15.47
Page-blocks13vs2 472 10 (graphic; horiz.line,picture) (5.93, 94.07) 15.85
Abalone9vs18 731 8 (18; 9) (5.65, 94.25) 16.68
Glass016vs5 184 9 (tableware; build-win-float-proc, (4.89, 95.11) 19.44

build-win-non float-proc,headlamps)
Shuttle2vs4 129 9 (Fpv Open; Bypass) (4.65, 95.35) 20.5
Yeast1458vs7 693 8 (vac; nuc,me2,me3,pox) (4.33, 95.67) 22.10
Glass5 214 9 (tableware; remainder) (4.20, 95.80) 22.81
Yeast2vs8 482 8 (pox; cyt) (4.15, 95.85) 23.10
Yeast4 1484 8 (me2; remainder) (3.43, 96.57) 28.41
Yeast1289vs7 947 8 (vac; nuc,cyt,pox,erl) (3.17, 96.83) 30.56
Yeast5 1484 8 (me1; remainder) (2.96, 97.04) 32.78
Ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49, 97.51) 39.15
Yeast6 1484 8 (exc; remainder) (2.49, 97.51) 39.15
Abalone19 4174 8 (19; remainder) (0.77, 99.23) 128.87

for the fuzzy reasoning method. Furthermore, we selected the following values for
the parameters in the learning method for building HFRBCSs:

• Rule Generation:

– δ ,n(t+1)-linguistic partition terms selector: 0.1
– α , used to decide the expansion of the rule: 0.2

• Evolutionary Algorithm Selection:

– Number of evaluations: 10,000
– Population length: 61

As algorithm of comparison we have selected the well-known C4.5 decision
tree [Quinlan, 1993], which is a method of reference in the field of classification
with imbalanced data-sets [Batista et al, 2004; Orriols-Puig and Bernadó-Mansilla,
2009; Su and Hsiao, 2007]. We have set a confidence level of 0.25, the minimum
number of item-sets per leaf was set to 2 and the application of pruning was used to
obtain the final tree.

Finally, we have made use of statistical tests for performance comparison. Specif-
ically, we apply the Wilcoxon signed-rank test [Sheskin, 2006] as non-parametric
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statistical procedure for performing pairwise comparisons between two algorithms.
We will also compute the p-value associated to each comparison, which represents
the lowest level of significance of a hypothesis that results in a rejection. In this
manner, we can know whether two algorithms are significantly different and how
different they are.

Table 2 shows the results in performance using the AUC metrics, for the HFR-
BCS methodology and C4.5 being the values for the precision grouped for the train-
ing and test partitions in the first and second columns respectively.

Table 2 Detailed table of results for the linguistic HFRBCS and C4.5 in both training and
test

Data-set HFRBCS C4.5
yeast2vs4 .9527 ± .0104 .8952 ± .0373 .9814 ± .0088 .8588 ± .0878
yeast05679vs4 .9296 ± .0107 .7475 ± .0608 .9526 ± .0094 .7602 ± .0936
vowel0 .9999 ± .0003 .9883 ± .0160 .9967 ± .0048 .9494 ± .0495
glass016vs2 .8766 ± .0233 .6262 ± .1824 .9716 ± .0186 .6062 ± .1266
glass2 .8390 ± .0146 .5695 ± .1929 .9571 ± .0151 .5424 ± .1401
ecoli4 .9870 ± .0140 .9325 ± .0788 .9769 ± .0196 .8310 ± .0990
shuttle0vs4 1.000 ± .0000 .9912 ± .0114 .9999 ± .0002 .9997 ± .0007
yeast1vs7 .9181 ± .0221 .7234 ± .1016 .9351 ± .0220 .7003 ± .0146
glass4 .9981 ± .0017 .8059 ± .1995 .9844 ± .0229 .8508 ± .0935
page-blocks13vs4 .9989 ±.0012 .9865 ± .0064 .9975 ± .0021 .9955 ± .0047
abalone9-18 .8367 ± .0290 .7108 ± .0790 .9531 ± .0444 .6215 ± .0496
glass016vs5 .9971 ± .0030 .8743 ± .2257 .9921 ± .0047 .8129 ± .2444
shuttle2vs4 .9990 ± .0023 .9755 ± .0263 .9990 ± .0023 .9917 ± .0186
yeast1458vs7 .9076 ± .0136 .6474 ± .0454 .9158 ± .0278 .5367 ± .0209
glass5 .9768 ± .0215 .7988 ± .1842 .9976 ± .0040 .8829 ± .1331
yeast2vs8 .8462 ± .0139 .7685 ± .1066 .9125 ± .0184 .8066 ± .1122
yeast4 .9002 ± .0194 .8293 ± .0205 .9101 ± .0264 .7004 ± .0565
yeast1289vs7 .8713 ± .0229 .7040 ± .0343 .9465 ± .0113 .6832 ± .0616
yeast5 .9785 ± .0032 .9427 ± .0257 .9777 ± .0145 .9233 ± .0472
yeast6 .9344 ± .0174 .8619 ± .1077 .9242 ± .0354 .8280 ± .1277
ecoli0137vs26 .9868 ± .0078 .8226 ± .2103 .9678 ± .0328 .8136 ± .2168
abalone19 .8405 ± .0307 .7001 ± .1070 .8544 ± .0249 .5202 ± .0441
average .9352 ± .0129 .8137 ± .0936 .9593 ± .0168 .7825 ± .0838

As it can be observed, the prediction ability obtained by the linguistic HFRBCS is
higher than that of C4.5, showing the goodness of the use of fuzzy systems achiev-
ing a high classification accuracy in this context of highly imbalanced data-sets
and therefore emphasizing the robustness of this approach. We must also stress the
significance of these results since the obtained fuzzy model has an implicit high
interpretability because of the inclusion of linguistic fuzzy terms in the antecedents.
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In order to validate these results, we perform a Wilcoxon test for detecting sig-
nificant differences between the results of HFRBCS and C4.5. The result of this test
is shown in Table 3, where we observe that the fuzzy approach clearly outperforms
C4.5 considering a degree of confidence over the 95%.

Table 3 Wilcoxon Test to compare the HFRBCS method with C4.5 regarding the AUC met-
ric. R+ stands for the sum of the ranks for the first method and R− for the second.

Comparison R+ R− Hypothesis α = 0.05 p-value
HFRBCS vs. C4.5 195 58 Rejected for HFRBCS 0.026

In brief, it is possible to improve the behaviour of the linguistic FRBCS by a
simple and effective methodology, that is, applying a higher granularity in the areas
where the RB has a bad performance in order to obtain a better coverage of that area
of the space of solutions.

5 Concluding Remarks

In this work, we have discussed the extension of the use of linguistic fuzzy rules in
order to represent the information in numerous areas of data mining such as clas-
sification, association rule mining or subgroup discovery among others. We have
shown the specific features for linguistic FRBSs for adapting them to each case,
also providing a brief description of their use and most significant characteristics.

Finally, we have proved the usefulness of linguistic FRBCSs within an emerging
and significant problem in data mining such as the classification of imbalanced data-
sets and specifically for those with a high imbalance degree. Specifically, we have
shown the good behaviour of a linguistic hierarchical FRBCS, enhancing the clas-
sification performance in the overlapping areas between the minority and majority
classes and outperforming the well-known C4.5 decision tree.
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del Jesus, M.J., González, P., Herrera, F., Mesonero, M.: Evolutionary Fuzzy Rule Induction
Process for Subgroup Discovery: A case study in marketing. IEEE Transactions on Fuzzy
Systems 15(4), 578–592 (2007)

Kralj-Novak, P., Lavrac, N., Webb, G.I.: Supervised descriptive rule discovery: A unifying
survey of constrast set, emerging pattern and subgroup mining. Journal of Machine Learn-
ing Research 10, 377–403 (2009)

Kuncheva, L.I.: On the equivalence between fuzzy and statistical classifiers. International
Journal of Uncertainty, Fuzzyness and Knowledge Based Systems 4(3), 245–253 (1996)

Kuncheva, L.I.: Fuzzy classifier design. Springer, Berlin (2000)
Kuok, C.M., Fu, A.W.C., Wong, M.H.: Mining fuzzy association rules in databases. SIGMOD

Record 27(1), 41–46 (1998)
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