
Neurocomputing 97 (2012) 332–343
Contents lists available at SciVerse ScienceDirect
Neurocomputing
0925-23

http://d

n Corr

E-m

jderrac@

herrera
journal homepage: www.elsevier.com/locate/neucom
Integrating a differential evolution feature weighting scheme
into prototype generation
Isaac Triguero a,n, Joaquı́n Derrac a, Salvador Garcı́a b, Francisco Herrera a

a Department of Computer Science and Artificial Intelligence, CITIC-UGR (Research Center on Information and Communications Technology), University of Granada,

18071 Granada, Spain
b Department of Computer Science, University of Jaén, 23071 Jaén, Spain
a r t i c l e i n f o

Article history:

Received 23 November 2011

Received in revised form

13 March 2012

Accepted 1 June 2012
Communicated by M. Bianchini
However, these results can be improved even more if other data reduction techniques, such as
Available online 1 July 2012

Keywords:

Differential evolution

Prototype generation

Prototype selection

Feature weighting

Nearest neighbor

Classification
12/$ - see front matter & 2012 Elsevier B.V. A

x.doi.org/10.1016/j.neucom.2012.06.009

esponding author. Tel.: þ34 958 240598; fax

ail addresses: triguero@decsai.ugr.es (I. Trigue

decsai.ugr.es (J. Derrac), sglopez@ujaen.es (S

@decsai.ugr.es (F. Herrera).
a b s t r a c t

Prototype generation techniques have arisen as very competitive methods for enhancing the nearest

neighbor classifier through data reduction. Within the prototype generation methodology, the methods

of adjusting the prototypes’ positioning have shown an outstanding performance. Evolutionary

algorithms have been used to optimize the positioning of the prototypes with promising results.

prototype selection and feature weighting, are considered.

In this paper, we propose a hybrid evolutionary scheme for data reduction, incorporating a new

feature weighting scheme within two different prototype generation methodologies. Specifically, we

will focus on a self-adaptive differential evolution algorithm in order to optimize feature weights and

the placement of the prototypes. The results are contrasted with nonparametric statistical tests,

showing that our proposal outperforms previously proposed methods, thus showing itself to be a

suitable tool in the task of enhancing the performance of the nearest neighbor classifier.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The designing of classifiers can be considered to be one of the
most important tasks in machine learning and data mining [1,2].
Most machine learning methods build a model during the learn-
ing process, known as eager learning methods [3], but there are
some approaches where the algorithm does not need a model.
These algorithms are known as lazy learning methods [4].

The Nearest Neighbor (NN) rule [5] is a simple and effective
supervised classification technique which belongs to the lazy
learning family of methods. NN is a nonparametric classifier,
which requires that all training data instances are stored. Unseen
cases are classified by finding the class labels of the closest
instances to them. The extended version of NN to k neighbors
(kNN) is considered one of the most influential data mining
algorithms [6] and it has attracted much attention and research
in recent years [7,8]. However, NN may have several disadvan-
tages, such as high computational cost, high storage requirement
and sensitivity to noise, which can affect its performance.
Furthermore, NN makes predictions over existing data and it
ll rights reserved.
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assumes that input data perfectly delimits the decision bound-
aries among classes.

Many approaches have been proposed to improve the perfor-
mance of the NN rule. One way to simultaneously tackle the
computational complexity, storage requirements, and sensitivity
to noise of NN is based on data reduction [9]. These techniques try
to obtain a reduced version of the original training data, with the
double objective of removing noisy and irrelevant data. Taking
into consideration the feature space, we can highlight Feature
Selection (FS) [10–13] and feature generation/extraction [14] as
the main techniques. FS consists of choosing a representative
subset of features from the original feature space, while feature
generation creates new features to describe the data. From the
perspective of the instances, data reduction can be divided into
Prototype Selection (PS) [15–17] and Prototype Generation (PG)
[18,19]. The former process consists of choosing an appropriate
subset of the original training data, while the latter can also build
new artificial prototypes to better adjust the decision boundaries
between classes in NN classification. In this way, PG does not
assume that input data perfectly defines the decision boundaries
among classes.

Another way to improve the performance of NN is the employ-
ment of weighting schemes. Feature Weighting (FW) [20] is a well
known technique which consists of assigning a weight to each
feature of the domain of the problem to modify the way in which
distances between examples are computed [21]. This technique
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can be viewed as a generalization of FS algorithms, allowing us to
obtain a soft approximation of the feature relevance degree
assigning a real value as a weight, so different features can
receive different treatments.

Evolutionary algorithms [22] have been successfully used in
different data mining problems [23,24]. Given that PS, PG and FW
problems could be seen as combinatorial and optimization
problems, evolutionary algorithms have been used to solve them
with excellent results [25]. PS can be expressed as a binary space
search problem. To the best of our knowledge, memetic algo-
rithms [26] have provided the best evolutionary model proposed
for PS, called SSMA [27]. PG is expressed as a continuous space
search problem. Evolutionary algorithms for PG are based on the
positioning adjustment of prototypes [28–30], which is a suitable
methodology to optimize the location of prototypes. Concretely,
Differential Evolution (DE) [31,32] and its advanced approaches
[33] have been demonstrated as being the most effective posi-
tioning adjustment techniques [34]. Regarding FW methods,
many successful evolutionary proposals, most of them based on
genetic algorithms, have been proposed, applied to the NN
algorithm [35].

Typically, positioning adjustment methods [28,36,30] focus on
the placement process and they do not take into consideration the
selection of the most appropriate number of prototypes per class.
Recently, two different approaches have been proposed in order
to tackle this problem. First, in [37,38], this problem is addressed
by an iterative addition process that determines which classes
need more prototypes to be represented. This algorithm is
denoted as IPADECS. Secondly, in [34], the algorithm SSMA-DEPG
is presented, in which a previous PS stage is applied to provide the
appropriate choice of the number of prototypes per class.

In these techniques, the increase in the size of the data set is a
crucial problem. It has been addressed in PS and PG by using
stratification techniques [39,40]. They split the data set into
various parts to make the application of a prototype reduction
technique easier, using a mechanism to join the solutions of each
part into a global solution.

The aim of this work is to propose a hybrid approach which
combines these two PG methodologies with FW to enhance the
NN rule addressing its main drawbacks. In both schemes, the
most promising feature weights and location of the prototypes
are generated by the SFLSDE algorithm [41] acting as an FW and
PG method respectively. Evolutionary PG methods usually tend to
overfit the training data in a small number of iterations. For this
reason we apply, during the evolutionary optimization process, an
FW stage to modify the fitness function of the PG method and
determine the relevance of each feature.

The hybridization of the PG and FW problems is the main
contribution of this paper, which can be divided into three
objectives:
�
 To propose a new FW technique based on a self-adaptive DE.
To the best of our knowledge, DE has not yet been applied to
the FW problem.

�
 To carry out an empirical study to analyze the hybridization

models in terms of classification accuracy. Specifically, we will
analyze whether the integration of an FW stage with PG
methods improves the quality of the resulting reduced sets.

�

1 http://sci2s.ugr.es/pr/
To check the behavior of these hybrid approaches when deal-
ing with huge data sets, developing a stratified model with the
proposed hybrid scheme.

To test the behavior of these approaches, the experimental
study will include a statistical analysis based on nonparametric
statistical tests [42]. We shall conduct experiments involving a
total of 46 classification data sets with different properties.
In order to organize this paper, Section 2 describes the back-
ground of PS, PG, FW, DE and stratification. Section 3 explains the
hybridization algorithms proposed. Section 4 discusses the
experimental framework and Section 5 presents the analysis of
results. Finally, in Section 6 we summarize our conclusions.
2. Background

This section covers the background information necessary to
define and describe our proposals. Section 2.1 presents a formal
definition of PS and PG problems. Section 2.2 describes the main
characteristic of FW. Section 2.3 explains the DE technique.
Finally, Section 2.4 details the characteristics of the stratification
procedure.
2.1. PS and PG problems

This section presents the definition and notation for both PS
and PG problems.

A formal specification of the PS problem is the following: let xp

be an example where xp ¼ ðxp1,xp2, . . . ,xpD,oÞ, with xp belonging
to a class o given by xpo and a D-dimensional space in which xpi

is the value of the i-th feature of the p-th sample. Then, let us
assume that there is a training set TR which consists of n
instances xp and a test set TS composed of t instances xq, with
o unknown. Let SSDTR be the subset of selected samples
resulting from the execution of a PS algorithm, then we classify
a new pattern xq from TS by the NN rule acting over SS.

The purpose of PG is to obtain a prototype generated set GS,
which consists of r, ron, prototypes, which are either selected or
generated from the examples of TR. The prototypes of the
generated set are determined to efficiently represent the distribu-
tions of the classes and to discriminate well when used to classify
the training objects. Their cardinality should be sufficiently small
to reduce both the storage and evaluation time spent by an NN
classifier.

Both methodologies have been widely studied in the specia-
lized literature. More than 50 PS methods have been proposed. In
general, they can be categorized into three kinds of methods:
condensation [43], edition [44] or hybrid models [27]. A complete
review of this topic is proposed in [17]. Regarding PG techniques,
they can be divided into several families depending on the main
heuristic operation followed: positioning adjustment [30], class
re-labeling [45], centroid-based [18] and space-splitting [46].
A recent PG review is proposed in [19].

More information about PS and PG approaches can be found at
the SCI2S thematic public website on Prototype Reduction in

Nearest Neighbor Classification: Prototype Selection and Prototype

Generation.1
2.2. Feature weighting

The aim of FW methods is to reduce the sensitivity to
redundant, irrelevant or noisy features in the NN rule, by
modifying its distance function with weights. These modifications
allow us to perform more robust classification tasks, increasing in
this manner the global accuracy of the classifier.

The most well known distance or dissimilarity measure for the
NN rule is the Euclidean Distance (Eq. (1)), where xp and xq are
two examples and D is their number of features. We will use it
throughout this study as it is simple, easy to optimize, and has

http://sci2s.ugr.es/pr/
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been widely used in the field of instance based learning [47]

EuclideanDistanceðX,YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

i ¼ 0

ðxpi�xqiÞ
2

vuut ð1Þ

FW methods often extend this equation to apply different
weights to each feature (Wi) which modify the way in which the
distance measure is computed (Eq. (2))

FWDistðX,YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

i ¼ 0

Wi � ðxpi�xqiÞ
2

vuut ð2Þ

This technique has been widely used in the literature. As far as
we know, the most complete study performed can be found in
[20], in which a review of several FW methods for lazy learning
algorithms is presented (with most of them applied to improve
the performance of the NN rule). In this review, FW techniques
were categorized by several dimensions, according to its weight
learning bias, the weight space (binary or continuous), the
representation of features, their generality and the degree of
employment of domain specific knowledge.

A wide number of FW techniques are available in the litera-
ture, both classical (see [20]) and recent (for example, [21,35]).
The most well known group of them is the family of Relief-based

algorithms. The Relief algorithm [48] (which was originally an FS
method) has been widely studied and modified, producing some
interesting versions of the original approach [49]. Some of them
are based on ReliefF [50] which is the first step of development of
Relief-based methods as FW techniques [51].

Finally, it is important to note that it is possible to find some
approaches dealing simultaneously with FW and FS tasks, for
instance, inside a Tabu Search procedure [52] or by managing
ensemble-based approaches [53].

2.3. Differential evolution

DE follows the general procedure of an evolutionary algorithm
[33]. DE starts with a population of NP solutions, so-called individuals.
The initial population should cover the entire search space as much as
possible. In some problems, this is achieved by uniformly randomiz-
ing individuals, but in other problems, such as the PG problem, basic
knowledge of the problem is available and the use of other initializa-
tion mechanisms is more effective. The subsequent generations are
denoted by G¼ 0;1, . . . ,Gmax. In DE, it is common to denote each
individual as a D-dimensional vector Xi,G¼{x1

i,G, . . . ,xD
i,G}, called a

‘‘target vector’’.
After initialization, DE applies the mutation operator to gen-

erate a mutant vector Vi,G, with respect to each individual Xi,G, in
the current population. For each target Xi,G, at the generation G, its
associated mutant vector Vi,G¼{V1

i,G, . . . ,VD
i,G}. The method of

creating this mutant vector is that which differentiates one DE
scheme from another. In this work, we will focus on the
RandToBest/1 which generates the mutant vector as follows:

Vi,G ¼ Xi,GþF � ðXbest,G�Xi,GÞþF � ðXri
1
,G�Xri

2
,GÞ ð3Þ

The indices ri
1, ri

2 are mutually exclusive integers randomly
generated within the range ½1,NP�, which are also different from
the base index i. The scaling factor F is a positive control
parameter for scaling the different vectors.

After the mutation phase, the crossover operation is applied to
each pair of the target vector Xi,G and its corresponding mutant
vector Vi,G to generate a new trial vector that we denote Ui,G. We
will focus on the binomial crossover scheme, which is performed
on each component whenever a randomly picked number
between 0 and 1 is less than or equal to the crossover rate (CR),
which controls the fraction of parameter values copied from the
mutant vector. Then, we must decide which individual should
survive in the next generation Gþ1. The selection operator is
described as follows:

Xi,Gþ1 ¼
Ui,G if F ðUi,GÞ is better than F ðXi,GÞ

Xi,G Otherwise

(

where F is the fitness function to be minimized. If the new trial
vector yields a solution equal to or better than the target vector, it
replaces the corresponding target vector in the next generation;
otherwise the target is retained in the population. Therefore, the
population always gets better or retains the same fitness values,
but never deteriorates. This one-to-one selection procedure is
generally kept fixed in most of the DE algorithms.

The success of DE in solving a specific problem crucially
depends on choosing the appropriate mutation strategy and its
associated control parameter values (F and CR) that determine the
convergence speed. Hence, a fixed selection of these parameters
can produce slow and/or premature convergence depending on
the problem. Thus, researchers have investigated the parameter
adaptation mechanisms to improve the performance of the basic
DE algorithm [54–56].

One of the most successful adaptive DE algorithms is the Scale
Factor Local Search in Differential Evolution (SFLSDE) proposed
by [41]. This method was established as the best DE technique for
PG in [34].
2.4. Stratification for prototype reduction schemes

When performing data reduction, the scaling up problem
appears as the number of training examples increases beyond
the capacity of the prototype reduction algorithms, harming their
effectiveness and efficiency. This is a crucial problem which must
be overcome in most practical applications of data reduction
methods. In order to avoid it, in this work we will consider the use
of the stratification strategy, initially proposed in [39] for PS, and
[40] for PG.

This stratification strategy splits the training data into disjoint
strata with equal class distribution. The initial data set D is
divided into two sets, TR and TS, as usual (for example a 10th of
the data for TS, and the rest for TR in a 10-fold cross validation).
Then, TR is divided into t disjoint sets TRj, strata of equal size, TR1,
TR2 � � � TRt , maintaining class distribution within each subset. In
this manner, the subsets TR and TS can be represented as follows:

TR¼
[t

j ¼ 1

TRj, TS¼D\TR ð4Þ

Then, a prototype reduction method should be applied to each
TRj, obtaining a reduced set RSj for each partition.

In PS and PG stratification procedures, the final reduced set is
obtained joining every RSj obtained, and it is denoted as Stratified
Reduced Set (SRS)

SRS¼
[t

j ¼ 1

RSj ð5Þ

When the SRS has been obtained, it is ready to be used by an
NN classifier to classify the instances of TS.

The use of the stratification procedure does not have a great
cost in time. Usually, the process of splitting the training data into
strata, and joining them when the prototype reduction method
has been applied, is not time-consuming, as it does not require
any kind of additional processing. Thus, the time needed for the
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stratified execution is almost the same as that taken in the
execution of the prototype reduction method in each strata,
which is significantly lower than the time spent if no stratification
is applied, due to the time complexity of the PS and PG methods,
which most of the time is OðN2

Þ or higher.
The prototypes present in TR are independent of each other, so

the distribution of the data into strata will not degrade their
representation capabilities if the class distribution is maintained.
The number of strata, which should be fixed empirically, will
determine the size of them. By using a proper number it is
possible to greatly reduce the training set size. This situation
allows us to avoid the drawbacks that appeared due to the scaling

up problem.
3. Hybrid evolutionary models integrating feature weighting
and prototype generation

In this section we describe in depth the proposed hybrid
approaches and their main components. First of all, we present
the proposed FW scheme based on DE (Section 3.1). Next, as we
established previously, we will design a hybrid model with the
proposed FW for each of the two most effective PG methodologies,
IPADECS [37] (Section 3.2) and SSMA-DEPG [34] (Section 3.3).
Finally, we develop a stratified model for our hybrid proposals
(Section 3.4).
1: Weights [1.. D ] = 1.0
2: bestWeights [1.. D ] = Weights [1..D ]
3: GS = IPADECS (Weights);
4: Accuracy = Evaluate With Weights (GS , T R , Weights)
5: for i = 1 to MAXIT ER do
6: newWeights[1.. D ] = DEFW (GS, Weights)
7: GS aux = IPADECS (newWeights)
8: Accuracy trial = EvaluateWithWeights (GS aux , T R , newWeights)
9: if Accuracy trial > Accuracy then

10: Accuracy = Accuracytrial

11: GS = GS aux

12: end if
13: Weights = newWeights
14: end for
15: return GS , Weights

Fig. 1. Hybridization of IPADECS and DEFW.
3.1. Differential evolution for feature weighting

As we stated before, FW can be viewed as a continuous space
search problem in which we want to determine the most appro-
priate weights for each feature in order to enhance the NN rule.
Specifically, we propose the use of a DE procedure to obtain the
best weights, which allows a given reduced set to increase the
performance of the classification made in TR. We denote this
algorithm as DEFW.

DEFW starts with a population of NP individuals Xi,G. In order
to encode a weight vector in a DE individual, this algorithm uses a
real-valued vector containing D elements corresponding to D

attributes, which range in the interval [0,1]. It means that each
individual Xi,G in the population encodes a complete solution for
the FW problem. Following the ideas established in [54,55,41], the
initial population should better cover the entire search space as
much as possible by uniformly randomizing individuals within
the defined range.

After the initialization process, DEFW enters in a loop in which
mutation and crossover operators, explained in Section 2.3, guide
the optimization of feature weights by generating new trial
vectors Ui,G. After applying these operators, we check if there
have been values out of range of ½y,1�. If a computed value is
greater than 1, we truncate it to 1. Furthermore, based on [48], if
this value is lower than a threshold y, we consider this feature to
be irrelevant, and therefore, it is established at 0. In our experi-
ments, y has been fixed empirically to 0.2.

Finally, the selection operator must decide which generated
trial vectors should survive in the population of the next genera-
tion Gþ1. For our purpose, the NN rule guides this operator. The
instances in TR are classified with the prototypes of the reduced
set given, but in this case, the distance measure for the NN rule is
modified according to Eq. (2), where the weights Wi are obtained
from Xi,G and Ui,G. Their corresponding fitness values are mea-
sured as the accuracy( � ) obtained, which represents the number
of successful hits (correct classifications) relative to the total
number of classifications. We try to maximize this value, so the
selection operator can be viewed as follows:

Xi,Gþ1 ¼

Ui,G if accuracyðReducedSet,Ui,GÞ

4 ¼ accuracyðReducedSet,Xi,GÞ

Xi,G Otherwise

8><
>: ð6Þ

In case of a tie between the values of accuracy, we select the
Ui,G in order to give the mutated individual the opportunity to
enter the population.

In order to overcome the limitation of the parameters’ selec-
tion (F and CR), we use the ideas established in [41] to implement
a self-adaptive DE scheme.

3.2. IPADECS-DEFW: hybridization with IPADECS

The IPADECS algorithm [37] follows an iterative prototype
adjustment scheme with an incremental approach. At each step,
an optimization procedure is used to adjust the position of the
prototypes, adding new ones if needed. The aim of this algorithm
is to determine the most appropriate number of prototypes per
class and adjust their positioning during the evolutionary process.
Specifically, IPADECS uses the SFLSDE technique as an optimizer
with a complete solution per individual codification. At the end of
the process, IPADECS returns the best GS found.

The hybrid model which composes IPADECS and DEFW can
basically be described as the combination of an IPADECS stage
and then a DEFW to determine the best weights. Fig. 1 shows the
pseudo-code of this hybrid scheme. The algorithm proceeds as
follows:
�
 Initially, we perform an IPADECS algorithm in which all the
features have a relevance degree of 1.0 (Instructions 1–4).

�
 Then, the algorithm enters in a loop in which we try to find the

most appropriate weights and placement of the prototypes:
– Instruction 6 performs a DE optimization of the feature

weights, so that, the best GS obtained from the IPADECS
algorithm is used to determine the appropriate weights, as
we described in Section 3.1. Furthermore, the current
weights are inserted as one of the individuals of the FW
population. In this way, we ensure that the FW scheme
does not degrade the performance of the GS obtained with
IPADECS, due to the selection operator used in DEFW.

– Next, Instruction 7 generates a new GS, with IPADECS, but
in this case, the optimization process takes into considera-
tion the new weights to calculate the distances between
prototypes (see Eq. (2)). The underlying idea of this instruc-
tion is that IPADECS should generate a different GS due to
the fact that the distance measure has changed, and there-
fore, the continuous search space has been modified.
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– After this process, we have to ensure that the new position-
ing of prototypes GSaux with its respective weights has
reported a successful improvement of the accuracy rate
with respect to the previous GS. If the computed accuracy of
the new GSaux and its respective weights is greater than
the best accuracy found, we save GSaux as the current GS

(Instructions 8–12).
– Instruction 13 stored the obtained weights and they will be

used in the next iteration.

�
 After a previously fixed number of iterations, the hybrid model

returns the best GS and its respective best feature weights.

3.3. SSMA-DEPGFW: hybridization with SSMA-DEPG

The SSMA-DEPG approach [34] uses a PS algorithm prior to the
adjustment process to initialize a subset of prototypes, finding a
promising selection of prototypes per class.

Specifically, the SSMA algorithm is applied [27]. This is a
memetic algorithm which makes use of a local search or meme
specifically developed for the PS problem. The interweaving of the
global and local search phases allows the two to influence each
other. The resulting SS is inserted as one of the individuals of the
population in the SFLSDE algorithm, which, in this case, is acting as a
PG method. Next, it performs mutation and crossover operations to
generate new trial solutions. Again, the NN rule guides the selection
operator, therefore the SSMA-DEPG returns the best location of the
prototypes, which increases the classification rate.

Fig. 2 outlines the hybrid model. To hybridize FW with SSMA-
DEPG, this method is carried out as follows:
�
 Firstly, it is necessary to apply an SSMA stage to determine the
number of prototypes per class (Instruction 1).

�
 Next, the rest of the individuals are randomly generated,

extracting prototypes from the TR and keeping the same
structure as the SS selected by the PS method, thus they must
have the same number of prototypes per class, and the classes
must have the same arrangement in the matrix Xi,G.

�
 At this stage, we have established the relevance degree of all

features to 1.0. Then, Instruction 4 determines the best
classification accuracy obtained in the NP population.

�
 After this, our hybrid model enters into a cooperative loop

between FW and SFLSDE.
– The proposed FW method is applied with the best GS found

up to that moment. Once again, the current weights are
inserted as one of the individuals of the FW population
(Instruction 6).

– Then, a new optimization stage is applied to all the
individuals of the population, with the obtained weights
modifying the distance measure between prototypes.
�
 Finally, the method returns the best GS with its appropriate
feature weights, and it is ready to be used as a reference set by
the NN classifier.
1: GS [1] = SSMA();
2: Generate GS [2 ..NP ] randomly

with the prototypes distribution of GS [1]
3: Weights[1.. D ] = 1.0
4: Determine the best GS
5: for i = 1 to MAXIT ER do
6: Weights [1.. D ] = DEFW( GS [best], Weights)
7: GS [1..NP ] = SFLSDE( GS [1..NP ], Weights)
8: Determine the best GS
9: end for

10: return GS [best], Weights

Fig. 2. Hybridization of SSMA-DEPG and DEFW.
3.4. A stratified scheme for hybrid FW and PG methods

Since the immediate application of these hybrid methods over
huge sets should be avoided due to their computational cost, we
propose the use of a stratification procedure to mitigate this
drawback, and thus develop a suitable approach to huge
problems.

PS and PG stratified models join every resulting set RSj, obtained
as the application of these techniques to each strata TRj. Never-
theless, in the proposed hybrid scheme, we obtain for each strata a
generated reduced set and its respective feature weights. To develop
a stratified method, we study two different strategies:
�
 Join procedure: In this variant, the SRS is also generated as the
sum of each RSj. However, the weight of each feature is re-
calculated, applying the DEFW algorithm. In this case, it uses
the SRS set as a given reduced set. The stratified method
returns SRS and its obtained weights to classify the instances
of TS.

�
 Voting rule: This approach consists of applying a majority

voting rule. Each strata RSj and its respective weights are used
to calculate the possible class of each instance of TS. The final
assigned class is produced via majority voting of the computed
class per strata. In our implementation, ties are randomly
decided.

4. Experimental framework

In this section, we present the main characteristics related to
the experimental study. Section 4.1 introduces the data sets used
in this study. Section 4.2 summarizes the algorithms used for
comparison with their respective parameters. Finally, Section 4.3
describes the statistical tests applied to contrast the results
obtained.

4.1. Data sets

In this study, we have selected 40 classification data sets for
the main experimental study. These are well-known problems in
the area, taken from the KEEL data set repository2 [57]. Table 1
summarizes the properties of the selected data sets. It shows, for
each data set, the number of examples (#Ex.), the number of
attributes (#Atts.), and the number of classes (#Cl.). The data sets
considered in this study contain between 100 and 20 000
instances, and the number of attributes ranges from 2 to 85. In
addition, they are partitioned using the 10 fold cross-validation
(10-fcv) procedure and their values are normalized in the interval
[0,1] to equalize the influence of attributes with different range
domains. In addition, instances with missing values have been
discarded before the execution of the methods over the data sets.

Furthermore, we will perform an additional experiment apply-
ing our hybrid models to six huge data sets, which contain more
than 20 000 instances. Table 2 shows their characteristics, includ-
ing the exact number of strata (#Strata.) and instances per strata
(#Instances/Strata.).

4.2. Comparison algorithms and parameters

In order to perform an exhaustive study of the capabilities of
our proposals, we have selected some of the main proposed
models in the literature of PS, PG and FW. In addition, the NN
rule with k¼1 (1NN) has been included as a baseline limit of
performance. Apart from SSMA, IPADECS and SSMA-DEPG, which
2 http://sci2s.ugr.es/keel/datasets

http://sci2s.ugr.es/keel/datasets


Table 1
Summary description for classification data sets.

Data set #Ex. #Atts. #Cl. Data set #Ex. #Atts. #Cl.

Sbalone 4174 8 28 Lym 148 18 4

Banana 5300 2 2 Magic 19 020 10 2

Bands 539 19 2 Mammographic 961 5 2

Breast 286 9 2 Marketing 8993 13 9

Bupa 345 6 2 Monks 432 6 2

Chess 3196 36 2 Newthyroid 215 5 3

Cleveland 297 13 5 Nursery 12 690 8 5

Coil2000 9822 85 2 Pima 768 8 2

Contraceptive 1473 9 3 Ring 7400 20 2

Crx 125 15 2 Saheart 462 9 2

Dermatology 366 33 6 Spambase 4597 57 2

Flare-solar 1066 9 2 Spectheart 267 44 2

German 1000 20 2 splice 3190 60 3

Glass 214 9 7 Tae 151 5 3

Haberman 306 3 2 Thyroid 7200 21 3

Hayes-roth 133 4 3 Titanic 2201 3 2

Heart 270 13 2 Twonorm 7400 20 2

Housevotes 435 16 2 Wisconsin 683 9 2

Iris 150 4 3 Yeast 1484 8 10

led7digit 500 7 10 Zoo 101 16 7

Table 2
Summary description for huge classification data sets.

Data set #Ex. #Atts. #Cl. #Strata. #Instances/strata.

Adult 48 842 14 2 10 4884

Census 299 285 41 2 60 4990

Connect-4 67 557 42 3 14 4826

Fars 100 968 29 8 20 5048

Letter 20 000 16 26 4 5000

Shuttle 58 000 9 7 12 4833

Table 3
Parameter specification for all the methods used in the experimentation.

Algorithm Parameters

SSMA Population¼30, Evaluations¼10 000, Crossover

Probability¼0.5, Mutation Probability¼0.001

SSMA-DEPG PopulationSFLSDE¼40, IterationsSFLSDE¼500, iterSFGSS¼8,

iterSFHC¼20, Fl¼0.1, Fu¼0.9

IPADECS Population¼10, iterations of Basic DE¼500, iterSFGSS¼8,

iterSFHC¼20, Fl¼0.1, Fu¼0.9

TSKNN Evaluations¼10 000, M¼10, N¼2, P¼ceil ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#Features
p

Þ

ReliefF K value for contributions¼Best in [1,20]

GOCBR Evaluations¼10 000, Population¼100, Crossover

Probability¼0.7, Mutation Probability¼0.1

SSMA-

DEPGFW

MAXITER¼20, PopulationSFLSDE¼40, IterationsSFLSDE¼50

PopulationDEFW¼25, IterationsDEFW¼200, iterSFGSS¼8,

iterSFHC¼20, Fl¼0.1, Fu¼0.9

IPADECS-

DEFW

MAXITER¼20, PopulationIPADECS¼10, iterations of Basic

DE¼50

PopulationDEFW¼25, IterationsDEFW¼200, iterSFGSS¼8,

iterSFHC¼20, Fl¼0.1, Fu¼0.9
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have been explained above, the rest of the methods are described
as follows:
�
 TSKNN: A Tabu search based method for simultaneous FS and
FW, which encodes in its solutions the current set of features
selected (binary codification), the current set of weights
assigned to features, and the best value of k found for the
kNN classifier. Furthermore, this method uses fuzzy kNN [58]
to avoid ties in the classification process [52].

�
 ReliefF: The first Relief-based method adapted to perform the

FW process [50]. Weights computed in the original Relief
algorithm are not binarized to 0;1. Instead, they are employed
as final weights for the kNN classifier. This method was
marked as the best performance-based FW method in [20].

�

3 http://sci2s.ugr.es/sicidm/
GOCBR: A genetic algorithm designed for simultaneous PS and
FW process in the same chromosome. Weights are represented
by binary chains, thus preserving binary codification in the
chromosomes. It has been applied successfully to several real-
world applications [59].

Many different configurations are established by the authors of
each paper for the different techniques. We focus this experimenta-
tion on the recommended parameters proposed by their respective
authors, assuming that the choice of the values of the parameters
was optimally chosen. The configuration parameters, which are
common to all problems, are shown in Table 3. In all of the
techniques, Euclidean distance is used as a similarity function and
those which are stochastic methods have been run three times per
partition. Note that the values of the parameters Fl, Fu, iterSFGSS and
iterSFHC remain constant in all the DE optimizations, and are the
recommended values established in [41]. Implementations of the
algorithms can be found in the KEEL software tool [57].
4.3. Statistical tools for analysis

Hypothesis testing techniques provide us with a way to
statistically support the results obtained in the experimental
study, identifying the most relevant differences found between
the methods [60]. To this end, the use of nonparametric tests will
be preferred over parametric ones, since the initial conditions that
guarantee the reliability of the latter may not be satisfied, causing
the statistical analysis to lose credibility.

We will focus on the use of the Friedman Aligned-ranks (FA)
test [42], as a tool for contrasting the behavior of each of our
proposals. Its application will allow us to highlight the existence
of significant differences between methods. Later, post hoc
procedures like Holm’s or Finner’s will find out which algorithms
are distinctive among the 1nn comparisons performed. Further-
more, we will use the Wilcoxon Signed-Ranks test in those cases
in which we analyze differences between pairs of methods not
marked as significant by the previous tests.

More information about these tests and other statistical
procedures specifically designed for use in the field of Machine
Learning can be found at the SCI2S thematic public website on
Statistical Inference in Computational Intelligence and Data Mining.3
5. Analysis of results

In this section, we analyze the results obtained from different
experimental studies. Specifically, our aims are:
�
 To compare the proposed hybrid schemes to each other over
the 40 data sets (Section 5.1).

�
 To test the performance of these models in comparison with

previously proposed methods (Section 5.2).

�
 To check if the performance of hybrid models is maintained with

huge data sets using the proposed stratified model (Section 5.3).

5.1. Comparison of the proposed hybrid schemes

We focus this experiment on comparing both hybrid schemes in
terms of accuracy and reduction capabilities. Fig. 3 shows a star plot
in which the obtained accuracy test of IPADECS-DEFW and SSMA-
DEPGFW is presented for each data set, allowing us to see in an
easier way how both algorithms behave in the same domains.

http://sci2s.ugr.es/sicidm/


Fig. 3. Accuracy rate comparison.

Fig. 4. Reduction rate comparison.
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The reduction rate is defined as

Reduction Rate¼ 1�sizeðGSÞ=sizeðTRÞ ð7Þ

It has a strong influence on the efficiency of the solutions
obtained, due to the cost of the final classification process performed
by the 1NN classifier. Fig. 4 illustrates a star plot representing the
reduction rate obtained in each data set for both hybrid
models. These star plots represent the performance as the
distance from the center; hence a higher area determines the best
average performance. The plots allow us to visualize the
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Table 4
Results of the Wilcoxon signed-ranks test comparing hybrid schemes.

Comparison Rþ R� p-Value

Accuracy rate

SSMA-DEPGFW vs IPADECS-DEFW 442 338 0.4639

Reduction rate

IPADECS-DEFW Vs SSMA-DEPGFW 802 18 4.602�10�10
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performance of the algorithms comparatively for each problem and
in general.

Fig. 5 shows a graphical comparison between these methods
considering both objectives simultaneously (accuracy and reduc-
tion rate), by using a relative movement diagram [61]. The idea of
this diagram is to represent with an arrow the results of two
methods on each data set. The arrow starts at the coordinate
origin and the coordinates of the tip of the arrow are given by the
difference between the reduction (x-axis) and accuracy (y-axis) of
IPADECS-DEFW and SSMA-DEPGFW, in this order. Furthermore,
numerical results will be presented later in Tables 5 and 6.

Apart from these figures, we use the Wilcoxon test to statis-
tically compare our proposals in both measures. Table 4 collects
the results of its application to the accuracy and reduction rates.
This table shows the rankings Rþ and R� values achieved and its
associate p-value.

Observing Figs. 3–5 and Table 4 we want to make some
comments:
�
 Fig. 3 shows that both proposals present similar behavior in
many domains. Nevertheless, SSMA-DEPGFW obtains the best
average result in 24 of the 40 data sets. The Wilcoxon test
confirms this statement, showing that there are no significant
differences between both approaches and the Rþ is greater for
SSMA-DEPGFW.

�
 In terms of reduction capabilities, IPADECS-DEFW is shown to be

the best performing hybrid model. As the Wilcoxon test reports,
it obtains significant differences with respect to SSMA-DEPGFW.

�
 In Fig. 5, we observe that most of the arrows point out to the

right side of the plot. This means that IPADECS-DEFW obtains a
lower reduction rate in the problems addressed. Moreover,
there are a similar number of arrows pointing up-right and
down-left, depicting that the accuracy of both methods is
similar. Hence, we can state that IPADECS-DEFW finds the best
trade-off between accuracy and reduction rate.
5.2. Comparison with previously proposed methods

In this subsection we perform a comparison between the two
proposed hybrid models and the comparison methods established
above. We analyze the results obtained in terms of the accuracy in
test data and reduction rate.

Table 5 shows the accuracy test results for each method
considered in the study. For each data set, the mean accuracy
(Acc) and the standard deviation (SD) are computed. The best
result for each column is highlighted in bold. The last row
presents the average considering all the data sets.

Table 6 presents the reduction rate achieved. Reduction rates
are only shown for those methods which perform a relevant
reduction of the instances of the TR. In this table we can observe
that those methods which are based on SSMA obtain the same
average reduction rate. This is due to the fact that SSMA is used to
obtain the appropriate number of prototypes per class, determin-
ing the reduction capabilities at the beginning of the hybrid
models: SSMA-DEPG and SSMA-DEPGFW. IPADECS and IPA-
DECS-DEFW obtains slightly different reduction rates because
they use the same PG approach changing the fitness function
with weights.

To verify the performance of each of our proposals, we have
divided the nonparametric statistical study into two different
parts. Firstly, we will compare IPADECS-DEFW and SSMA-
DEPGFW with the rest of the comparison methods separately
(excluding the other proposal) in terms of test accuracy.

Tables 7 and 8 present the results of the FA test for IPADECS-
DEFW and SSMA-DEPGFW respectively. In these tables, the
computed FA rankings, which represent the associated effective-
ness, are presented in the second column. Both tables are ordered
from the best (lowest) to the worst (highest) ranking. The third
column shows the adjusted p-value (APV) with Holm’s test.
Finally, the fourth column presents the APV with Finner’s test.
Note that IPADECS-DEFW and SSMA-DEPGFW are established as
control algorithms because they have obtained the best FA
ranking in their respective studies. Those APVs highlighted in
bold are methods outperformed by the control, at an a¼ 0:1 level
of significance.

In this study, we have observed that hybrid schemes
perform well with large data sets (those data sets that have
more than 2000 instances). We select large data sets, from
Table 1, and we compare weighted and unweighted proposals.
Fig. 6 shows this comparison. The x-axis position of the point
is the accuracy of the original proposal on a single data set, and
the y-axis position is the accuracy of the weighted algorithm.
Therefore, points above the y¼x line correspond to data sets
for which new proposals perform better than the original
algorithm.

Given Fig. 6 and the results shown before, we can make the
following analysis:
�
 SSMA-DEPGFW and IPADECS-DEFW achieve the best average
results. It is important to note that the two hybrid models
clearly outperform the methods upon which they are based.
The good synergy between PG and FW methods is demon-
strated with the obtained results. Specifically, if we focus our
attention on those data sets with a large number of features
(see splice, chess, etc.), we can state that, in general, the
hybridization between PG and a DEFW scheme can be useful
to increase the classification accuracy obtained.

�
 Furthermore, Fig. 6 shows that the proposed weighted algo-

rithms are able to overcome, in most cases, the original
proposal when dealing with large data sets.

�
 Both SSMA-DEPGFW and IPADECS-DEFW achieve the lowest

(best) ranking in the comparison. The p-value of the FA test is



Table 5
Accuracy test obtained.

Data sets 1NN SSMA SSMA-DEPG SSMA-DEPGFW IPADECS IPADECS-DEFW TSKNN ReliefF GOCBR

Acc SD Acc SD Acc SD Acc SD Acc SD Acc SD Acc SD Acc SD Acc SD

Abalone 19.91 1.60 26.09 1.41 25.66 1.71 25.61 1.34 22.21 2.34 25.47 2.39 24.65 1.43 14.71 1.85 20.75 1.32

Banana 87.51 1.03 89.64 0.89 89.55 1.14 89.94 1.16 84.09 4.38 89.70 0.97 89.51 0.84 68.53 2.76 87.87 0.87

Bands 63.09 4.65 59.02 8.98 69.78 6.08 67.00 6.55 67.15 5.91 69.97 5.89 73.67 8.33 70.15 6.38 71.45 6.15

Breast 65.35 6.07 73.79 4.05 70.32 7.51 69.63 7.64 70.91 7.15 71.00 8.52 72.02 6.45 62.47 9.71 67.14 8.14

Bupa 61.08 6.88 62.79 8.47 66.00 7.80 67.41 7.96 65.67 8.48 67.25 5.27 62.44 7.90 56.46 4.37 61.81 6.31

Chess 84.70 2.36 90.05 1.67 90.61 2.18 95.56 1.69 80.22 3.81 94.52 1.03 95.94 0.40 96.09 0.57 87.48 1.15

Cleveland 53.14 7.45 54.78 6.29 56.15 6.76 55.80 6.11 52.49 4.48 54.14 6.20 56.43 6.84 55.10 8.62 52.80 5.75

Coil2000 89.63 0.77 94.00 0.12 94.00 0.12 94.00 0.12 94.04 0.09 94.02 0.09 94.03 0.05 94.02 0.06 91.75 0.40

Contraceptive 42.77 3.69 48.14 5.93 48.74 4.46 50.17 3.35 48.54 4.67 54.79 3.61 42.70 0.22 39.99 6.05 43.38 3.65

Crx 79.57 5.12 84.78 4.90 85.65 4.46 85.65 4.83 85.22 4.80 85.07 4.54 86.23 3.90 80.43 3.62 84.20 3.91

Dermatology 95.35 3.45 95.10 5.64 95.37 4.04 94.02 4.31 96.18 3.01 96.73 2.64 96.47 4.01 95.92 2.77 96.46 2.98

Flare-solar 55.54 3.20 65.47 3.97 66.14 3.42 66.95 3.48 66.23 3.13 65.48 3.25 67.16 4.07 57.60 3.51 65.20 3.13

German 70.50 4.25 73.20 4.69 71.90 3.11 72.10 5.13 71.80 3.25 71.40 4.27 71.40 2.20 69.30 1.42 70.30 5.37

Glass 73.61 11.91 68.81 8.19 71.98 9.47 73.64 8.86 69.09 11.13 71.45 11.94 76.42 13.21 80.65 12.04 67.67 14.10

Haberman 66.97 5.46 73.17 3.75 71.53 6.38 73.18 2.61 74.45 6.40 71.53 4.92 74.15 5.07 63.34 8.42 68.94 6.34

Hayes-roth 35.70 9.11 56.18 13.39 75.41 10.57 76.41 10.49 77.05 7.67 75.52 12.11 54.36 11.56 80.20 10.67 67.49 10.55

Heart 77.04 8.89 83.70 10.10 82.22 8.25 85.19 8.11 83.70 9.83 80.74 9.19 81.48 6.42 78.15 9.72 76.67 8.77

Housevotes 92.16 5.41 92.39 4.99 93.55 5.36 94.24 3.78 92.64 3.71 94.00 4.76 95.16 3.34 94.00 3.48 92.83 6.27

Iris 93.33 5.16 96.00 4.42 94.00 4.67 94.67 4.99 94.67 4.00 94.67 4.00 94.00 4.67 94.00 5.54 94.00 3.59

Led7digit 40.20 9.48 34.00 6.69 71.40 4.90 71.80 4.77 72.40 3.88 71.20 4.66 10.80 3.12 63.20 5.53 69.80 4.42

Lym 73.87 8.77 83.03 13.95 80.29 15.48 81.76 9.83 78.41 9.31 80.66 14.74 74.54 8.95 70.43 22.52 79.34 9.46

Magic 80.59 0.90 82.03 0.75 82.31 0.65 83.24 0.96 80.23 1.47 83.17 1.01 83.25 0.68 76.68 5.46 80.66 0.71

Mammographic 73.68 5.59 81.27 5.32 81.27 5.48 81.86 6.03 79.71 4.41 83.67 5.55 82.62 4.76 70.76 4.28 78.67 3.84

Marketing 27.38 1.34 30.87 1.63 31.39 0.70 31.90 1.34 30.69 1.11 31.94 1.39 24.05 1.33 26.45 1.91 27.19 1.47

Monks 77.91 5.42 96.79 3.31 95.44 3.21 98.86 1.53 91.20 4.76 96.10 2.48 100.00 0.00 100.00 0.00 79.21 7.15

Newthyroid 97.23 2.26 96.30 3.48 97.68 2.32 96.73 3.64 98.18 3.02 97.71 3.07 93.48 2.95 97.25 4.33 94.87 4.50

Nursery 82.67 0.92 85.58 1.17 85.38 1.09 92.99 0.76 64.79 4.58 85.10 1.42 82.67 0.88 78.94 32.09 83.53 1.05

Pima 70.33 3.53 74.23 4.01 74.89 5.81 73.23 5.43 76.84 4.67 71.63 7.35 75.53 5.85 70.32 5.65 70.59 4.88

Ring 75.24 0.82 92.86 1.03 93.49 1.05 93.45 0.64 89.70 1.03 91.22 0.94 84.23 1.17 73.08 1.11 74.54 0.48

Saheart 64.49 3.99 71.66 3.46 70.35 5.10 69.47 4.36 70.36 3.07 71.21 3.37 68.22 11.35 60.83 9.15 66.45 14.20

Spambase 89.45 1.17 88.28 1.72 89.84 0.97 88.69 2.12 90.89 0.95 92.50 1.38 92.54 1.21 60.58 0.08 89.82 1.48

Spectfheart 69.70 6.55 74.20 8.69 79.02 7.31 79.68 10.73 80.54 4.25 77.93 4.70 76.01 10.12 78.30 11.92 74.99 6.87

Splice 74.95 1.15 73.32 1.63 78.37 4.44 82.51 4.80 79.78 3.99 88.53 1.99 71.72 1.72 78.24 1.30 74.20 1.54

Tae 40.50 8.43 53.17 12.66 56.54 15.86 58.38 11.80 57.71 11.11 58.33 12.04 30.54 2.56 49.12 3.77 55.00 3.98

Thyroid 92.58 0.81 94.14 0.74 94.58 0.55 96.93 2.39 93.99 0.36 94.28 0.58 95.87 0.61 92.57 0.26 92.85 0.73

Titanic 60.75 6.61 73.51 2.47 78.96 2.30 78.83 2.22 78.19 2.92 79.01 2.11 77.78 2.79 61.33 7.90 78.83 2.22

Twonorm 94.68 0.73 96.34 0.74 96.92 0.79 96.50 0.72 97.66 0.69 97.76 0.72 96.96 0.87 94.65 1.01 94.93 1.25

Wisconsin 95.57 2.59 96.57 2.65 96.14 2.12 96.42 2.23 96.42 1.94 96.28 1.72 96.00 3.61 96.28 2.14 97.14 3.30

Yeast 50.47 3.91 57.55 1.66 58.09 2.14 56.88 1.60 57.35 3.13 59.17 3.61 55.86 12.99 51.55 4.97 53.44 6.50

Zoo 92.81 6.57 85.33 9.73 95.33 6.49 95.83 9.72 96.33 8.23 96.67 6.83 66.25 8.07 96.83 2.78 96.17 5.16

Average 70.80 20.06 75.20 18.98 77.66 17.24 78.43 17.55 76.44 17.46 78.29 17.29 73.68 22.09 72.46 19.78 74.51 17.89
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lower than 10�5 in both cases, meaning that significant
differences have been detected between the methods of the
experiment.

�
 Holm’s procedure states that the differences of IPADECS-DEFW

over 1NN, ReliefF, GOCBR, TSKNN and SSMA are significant
(a¼ 0:1). Finner’s procedure goes further, also highlighting the
difference over IPADECS (Finner APV ¼ 0.0926).

�
 In the case of SSMA-DEPGFW the results are similar: the differ-

ences over 1NN, ReliefF, GOCBR, TSKNN and SSMA are marked as
significant by Holm’s test (a¼ 0:1), whereas Finner’s also high-
lights the difference over IPADECS again (Finner APV ¼ 0.0643).

These results suggest that our proposals, SSMA-DEPGFW and
IPADECS-DEFW, significantly improve all the comparison meth-
ods considered except SSMA-DEPG. The multiple comparison test
applied does not detect significant differences between the three
best methods. Hence, we will study this last case carefully,
applying a pairwise comparison between our proposals and
SSMA-DEPG. Specifically, we will focus on the Wilcoxon test,
which allows us to have a further insight into the comparison of
this method with our proposals. Table 9 shows the results of its
application, comparing SSMA-DEFPGW and IPADECS-DEFW with
SSMA-DEPG. The results obtained suggest that it is outperformed
by the new proposals, at a¼ 0:1 level. Although this result is not
as strong as those differences found by Holm’s and Finner’s
procedures, it still supports the existence of a significant improve-
ment of SSMA-DEPGFW and IPADECS-DEFW over SSMA-DEPG.

5.3. Analyzing scaling up capabilities: a stratified model

In this study, we select the hybrid model IPADECS-DEFW as the
best trade-off between accuracy and reduction rate to implement a
stratified model, considering the two strategies explained in Section
3.4. The performance of this method is analyzed by using six huge
data sets taken from the KEEL data set repository (see Table 2).

To check the performance of the proposed stratified models,
we perform a comparison with the stratified versions of IPADECS
and SSMA-DEPG proposed in [40]. Furthermore, 1NN behavior has
also been analyzed as a baseline method for this study. For all the
techniques, we used the same set up as that used in the former
study, and set up the strata size as near as possible to 5000
instances. Table 2 shows the exact number of strata and instances
per strata.

Table 10 shows the accuracy test results for each method
considered in this study. For each data set, the mean accuracy
(Acc) and the standard deviation (SD) are computed. The best result
for each column is highlighted in bold. The last row presents the
average considering all the huge data sets. Table 11 collects the



Table 9
Results of the Wilcoxon signed-ranks test.

Comparison Rþ R� p-Value

SSMA-DEPGFW vs SSMA-DEPG 586.5 233.5 0.0469
IPADECS-DEFW vs SSMA-DEPG 521 259 0.0682

Table 6
Reduction rates obtained.

Data sets SSMA SSMA-
DEPG

SSMA-
DEPGFW

IPADECS IPADECS
DEFW

Abalone 0.9749 0.9749 0.9749 0.9886 0.9882

Banana 0.9900 0.9900 0.9900 0.9981 0.9981

Bands 0.9567 0.9567 0.9567 0.9872 0.9866

Breast 0.9790 0.9790 0.9790 0.9820 0.9829

Bupa 0.9417 0.9417 0.9417 0.9848 0.9842

Chess 0.9782 0.9782 0.9782 0.9981 0.9981

Cleveland 0.9710 0.9710 0.9710 0.9600 0.9600

Coil2000 0.9999 0.9999 0.9999 0.9997 0.9997

Contraceptive 0.9672 0.9672 0.9672 0.9926 0.9922

Crx 0.9844 0.9844 0.9844 0.9929 0.9929

Dermatology 0.9663 0.9663 0.9663 0.9806 0.9806

Flare-solar 0.9955 0.9955 0.9955 0.9969 0.9969

German 0.9686 0.9686 0.9686 0.9940 0.9920

Glass 0.9237 0.9237 0.9237 0.9393 0.9393

Haberman 0.9840 0.9840 0.9840 0.9904 0.9891

Hayes-roth 0.9006 0.9006 0.9006 0.9436 0.9436

Heart 0.9716 0.9716 0.9716 0.9853 0.9831

Housevotes 0.9826 0.9826 0.9826 0.9849 0.9849

Iris 0.9630 0.9630 0.9630 0.9748 0.9748

Led7digit 0.9693 0.9693 0.9693 0.9747 0.9747

Lym 0.9504 0.9504 0.9504 0.9594 0.9594

Magic 0.9808 0.9808 0.9808 0.9996 0.9996

Mammographic 0.9895 0.9895 0.9895 0.9938 0.9938

Marketing 0.9825 0.9825 0.9825 0.9961 0.9961

Monks 0.9750 0.9750 0.9750 0.9910 0.9910

Newthyroid 0.9700 0.9700 0.9700 0.9835 0.9835

Nursery 0.9396 0.9396 0.9396 0.9992 0.9992

Pima 0.9780 0.9780 0.9780 0.9916 0.9916

Ring 0.9902 0.9902 0.9902 0.9956 0.9956

Saheart 0.9735 0.9735 0.9735 0.9931 0.9911

Spambase 0.9805 0.9805 0.9805 0.9971 0.9971

Spectfheart 0.9696 0.9696 0.9696 0.9817 0.9817

Splice 0.9679 0.9679 0.9679 0.9947 0.9947

Tae 0.9139 0.9139 0.9139 0.9558 0.9558

Thyroid 0.9982 0.9982 0.9982 0.9992 0.9989

Titanic 0.9960 0.9960 0.9960 0.9990 0.9987

Twonorm 0.9952 0.9952 0.9952 0.9993 0.9993

Wisconsin 0.9932 0.9932 0.9932 0.9951 0.9951

Yeast 0.9681 0.9681 0.9681 0.9858 0.9858

Zoo 0.9010 0.9010 0.9010 0.9086 0.9086

Average 0.9695 0.9695 0.9695 0.9842 0.9840

Table 7
Average FA rankings of IPADECS-DEFW and the rest of the comparison methods.

Algorithm FA ranking Holm APV Finner APV

IPADECS-DEFW 97.6750 – –

SSMA-DEPG 106.8875 0.6561 0.6561

IPADECS 133.9000 0.1599 0.0926
SSMA 149.0250 0.0392 0.0182
TSKNN 153.1375 0.0294 0.0128
GOCBR 190.4875 0 0
ReliefF 209.0500 0 0
1NN 243.8375 0 0

p-Value by the FA test¼ 9:915� 10�6.

Table 8
Average FA rankings of SSMA-DEPGFW and the rest of the comparison methods.

Algorithm FA ranking Holm APV Finner APV

SSMA-DEPGFW 93.8875 – –

SSMA-DEPG 108.0750 0.4929 0.4929

IPADECS 133.5250 0.1107 0.0643
SSMA 149.5250 0.0215 0.0100
TSKNN 155.2250 0.0121 0.0053
GOCBR 190.8000 0 0
ReliefF 208.7250 0 0
1NN 244.2375 0 0

p-Value by the FA test¼ 9:644� 10�6.
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reduction rate achieved for each method. In this table, both
IPADECS-DEFW variants obtain the same average reduction rate.

In Table 10, we observe that the IPADECS-DEFW model with
the join procedure has obtained the best average accuracy result.
The Wilcoxon test has been conducted comparing this method
with the rest. Table 12 shows the results of its application.

As in the former study, IPADECS-DEFW obtains a slightly lower
reduction power than IPADECS as we can see in Table 11.

Observing these tables, we can summarize that with an
appropriate stratification procedure, the idea of combining PG
and FW is also applicable to huge data sets, obtaining good
results. The Wilcoxon test supports this statement, showing that
IPADECS-DEFW, with the join procedure, is able to significantly
outperform IPADECS, SSMA-DEPG and 1NN to a level of a¼ 0:1.
6. Conclusions

In this paper, we have introduced a novel data reduction
technique which exploits the cooperation between FW and PG
to improve the classification performance of the NN, storage
requirements and its running time. A self-adaptive DE algorithm
has been used to optimize feature weights and the positioning of
the prototypes for the nearest neighbor algorithm, acting as an
FW scheme and a PG method, respectively.

The proposed DEFW scheme has been incorporated within two
of the most promising PG methods. These hybrid models are able
to overcome isolated PG methods due to the fact that FW changes
the way in which distances between prototypes are measured,
and therefore the adjustment of prototypes can be more refined.
Furthermore, we have proposed a stratified procedure specifically
designed to deal with huge data sets.

The wide experimental study performed has allowed us to
contrast the behavior of these hybrid models when dealing with a
wide variety of data sets with different numbers of instances and



Table 10
Accuracy test results in huge data sets.

Data sets 1NN IPADECS SSMA-DEPG IPADECS-DEFW IPADECS-DEFW

Acc SD Acc SD Acc SD Join Voting rule

Acc SD Acc SD

Adult 0.7960 0.0035 0.8263 0.0032 0.8273 0.0098 0.8335 0.0077 0.8313 0.0031

Census 0.9253 0.0010 0.9439 0.0005 0.9460 0.0009 0.9477 0.0007 0.9428 0.0300

Connect-4 0.6720 0.0036 0.6569 0.0009 0.6794 0.0061 0.6847 0.0058 0.6624 0.0045

Fars 0.7466 0.0034 0.7439 0.0218 0.7625 0.0036 0.7676 0.0039 0.7536 0.0033

Letter 0.9592 0.0002 0.9420 0.0082 0.9053 0.0082 0.9632 0.0121 0.9699 0.0075

Shuttle 0.9993 0.0004 0.9941 0.0021 0.9967 0.0021 0.9967 0.0008 0.9967 0.0015

Average 0.8497 0.0020 0.8512 0.0061 0.8529 0.0051 0.8656 0.0052 0.8595 0.0083

Table 11
Reduction rate results in huge data sets.

Data sets IPADECS SSMA-DEPG IPADECS-DEFW IPADECS-DEFW

Join Voting rule

Adult 0.9986 0.9882 0.9986 0.9986
Census 0.9994 0.9973 0.9987 0.9987

Connect-4 0.9990 0.9822 0.9981 0.9981

Fars 0.9968 0.9808 0.9957 0.9957

Letter 0.9924 0.9805 0.9901 0.9901

Shuttle 0.9986 0.9981 0.9971 0.9971

Average 0.9975 0.9878 0.9964 0.9964

Table 12
Results obtained by the Wilcoxon test for algorithm IPADECS-DEFW join.

IPADECS-DEFW join VS Rþ R� p-Value

1NN 20.0 1.0 0.0625
IPADECS 21.0 0.0 0.0312
SSMA-DEPG 15.0 0.0 0.0625
IPADECS-DEFW voting rule 12.0 3.0 0.1775
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features. The proposed stratified procedure has shown that this
technique is useful to tackle the scaling up problem. The results
have been compared with several nonparametric statistical pro-
cedures, which have supported the conclusions drawn.

As future work, we consider that this methodology could be
extended by using different learning algorithms such as support
vector machines, decision trees, and so on, following the guide-
lines given in similar studies for training set selection [62–64].
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