
DOI: 10.1142/S0218488512400132

August 24, 2012 8:49 WSPC/118-IJUFKS S0218488512400132

International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems
Vol. 20, Suppl. 2 (October 2012) 1–30
c© World Scientific Publishing Company

IIVFDT: IGNORANCE FUNCTIONS BASED INTERVAL-VALUED

FUZZY DECISION TREE WITH GENETIC TUNING

J. SANZ∗ and H. BUSTINCE†
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The choice of membership functions plays an essential role in the success of fuzzy
systems. This is a complex problem due to the possible lack of knowledge when
assigning punctual values as membership degrees. To face this handicap, we propose a
methodology called Ignorance functions based Interval-Valued Fuzzy Decision Tree with
genetic tuning, IIVFDT for short, which allows to improve the performance of fuzzy
decision trees by taking into account the ignorance degree. This ignorance degree is the
result of a weak ignorance function applied to the punctual value set as membership
degree.

Our IIVFDT proposal is composed of four steps: (1) the base fuzzy decision tree is
generated using the fuzzy ID3 algorithm; (2) the linguistic labels are modeled with
Interval-Valued Fuzzy Sets. To do so, a new parametrized construction method of
Interval-Valued Fuzzy Sets is defined, whose length represents such ignorance degree;
(3) the fuzzy reasoning method is extended to work with this representation of the
linguistic terms; (4) an evolutionary tuning step is applied for computing the optimal
ignorance degree for each Interval-Valued Fuzzy Set.

The experimental study shows that the IIVFDT method allows the results provided
by the initial fuzzy ID3 with and without Interval-Valued Fuzzy Sets to be outperformed.
The suitability of the proposed methodology is shown with respect to both several
state-of-the-art fuzzy decision trees and C4.5. Furthermore, we analyze the quality of our
approach versus two methods that learn the fuzzy decision tree using genetic algorithms.
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Finally, we show that a superior performance can be achieved by means of the positive
synergy obtained when applying the well known genetic tuning of the lateral position

after the application of the IIVFDT method.

Keywords: Linguistic fuzzy rule-based classification systems; interval-valued fuzzy sets;
ignorance functions; tuning; fuzzy decision trees; classification.

1. Introduction

Classification is one of the most studied problems in machine learning and

data mining.1,2 In many classification problems there is a quantity of complex

information that any human user can process in a natural way but which is difficult

to represent and to process in a classifier. Consequently, in order to design an

interpretable and accurate classifier it is necessary to draw upon a suitable tool to

handle this information.3

The hybridization of fuzzy sets4 with decision trees5 naturally enhances the

representative power of decision trees with the knowledge component inherent in

fuzzy logic, leading to greater robustness and applicability in uncertain or imprecise

domains.6 Numerous techniques have been proposed in the specialized literature for

designing Fuzzy Decision Trees (FDTs).6–8 Specifically, fuzzy ID3 algorithm and its

variants9–11 are popular and efficient methods for inducing FDTs.12

The use of linguistic labels enables the acquisition of interpretable knowledge

systems and, in this manner, the choice of the membership function plays an

essential role in their success. The punctual value set as membership degree is

usually defined either by means of expert knowledge or homogeneously over the

input space. In both cases, there can be a lack of knowledge associated with

their assignment. To face it, one solution is to employ Interval-Valued Fuzzy Sets

(IVFSs),13 whose length represent the degree of ignorance when assigning punctual

values as membership degrees.14,15 In order to compute the ignorance degree we use

the concept of ignorance function,14 which is completely different to the ignorance

of an event defined in the possibility theory.16 IVFSs have been applied successfully

to numerous topics such as classification,17 image processing,18,19 multiple criteria

analysis20 and computing with words,21 among others.

In addition to the previous issue, the amount of available information to define

the membership functions associated with the different linguistic terms may not

be the same. Consequently, the ignorance degree that their corresponding IVFSs

represents can vary for each of them. For this reason, it seems necessary to carry

out a tuning step to compute the best ignorance degree for each IVFS. Genetic

Algorithms (GAs) have been applied successfully to compute the optimal values of

the membership functions’ parameters22–25 due to the fact that they consider many

points of the search space simultaneously and, therefore, they reduce the chances

of converging to local optima.26

In this paper, we aim to improve the performance of FDTs exploiting the

suitable features of both IVFSs and GAs to face the previous problems. To do so, we

present a new methodology called IIVFDT, which is short for Ignorance functions
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based Interval-Valued Fuzzy Decision Tree with genetic tuning. The IIVFDT method

involves the following four steps:

(1) The induction of the base FDT using the fuzzy ID3 algorithm.11

(2) A new modeling of the linguistic labels of the classifier by means of IVFSs. With

this aim, we define a novel construction method of IVFSs starting from the fuzzy

sets used by the learning algorithm and using weak ignorance functions27 to

measure the degree of ignorance when assigning punctual values as membership

degrees. The parametrization employed in the construction allows us to: (a) set

the position of the initial fuzzy set within the IVFS; (b) weight the ignorance

degree in order to determine the length of the IVFS.

(3) The extension of the Fuzzy Reasoning Method (FRM) exploiting the full power

of IVFSs in the inference process. To do so, in every step of the FRM we make

the computation using intervals and, in this manner, we take into account the

ignorance degree throughout the whole process.

(4) The definition of an evolutionary tuning methodology that allows to compute

the optimal ignorance degree that each IVFS represents. To do so, we modify

the parameters used in the IVFSs construction method to weight the degree of

ignorance and consequently, we tune the length of the IVFSs.

We must stress that after all these steps, the linguistic structure of the base

FDT is not modified at all, maintaining the original interpretability of this kind of

model.

The suitability of the IIVFDT method is evaluated in the framework of standard

classification. Specifically, our new method is tested on 20 data-sets selected from

the KEEL data-set repository28,29 (http://www.keel.es/dataset.php) and it is

supported by a proper statistical analysis, as suggested in the literature.30–32 Firstly,

we will determine the goodness of our methodology analysing the differences in

performance achieved with respect to both the initial fuzzy ID3 algorithm with

and without IVFSs. We will also compare our new approach with our previous

construction scheme of IVFSs based on weak ignorance functions with adjusted

parameters for modifying the ignorance degree.27 Furthermore, we will study the

behaviour of the IIVFDT method in comparison with four state-of-the-art FDTs

selected in this paper, namely the simple pattern tree,8 a look-ahead approach,9

the FDT proposed by Janikow in Ref. 6 and a method which fuzzifies the Gini

index7 and also with the C4.5 decision tree,33 since it is considered a very robust

approach in machine learning.34 We will also compare our new method with two

proposals for learning the best FDT by means of GAs, which were defined by Kim

and Ryu35 and Chang et al.;36 thus, we will show the goodness of our new approach

when compared not only with state-of-the-art decision trees, but also with respect

to genetically learnt FDTs. Finally, we will study the usefulness of the cooperation

between our new approach and the genetic tuning of the lateral position of the

membership functions.37

http://www.keel.es/dataset.php
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This paper is set out as follows. Section 2 describes the use of IVFSs for dealing

with classification tasks according to our previous works and also provides the

description of the fuzzy ID3 induction algorithm. Then, in Sec. 3 we introduce the

IIVFDT method describing in detail each step of our new methodology for working

with IVFSs in FDTs. Finally, the experimental framework along with the respective

experimental analysis are presented in Secs. 4 and 5 respectively. We summarize

the paper with the main concluding remarks in Sec. 6.

2. Preliminaries

In this section, we will recall some preliminary concepts of IVFSs together with the

description of our previous model to work with IVFSs in linguistic fuzzy rule-based

classification systems27 (Sec. 2.1) and then, we also describe the FDT generation

algorithm considered in this paper, that is, the fuzzy ID3 algorithm11 (Sec. 2.2).

2.1. Interval-valued fuzzy sets in classification

Let us denote by L([0, 1]) the set of all closed subintervals in [0, 1], that is,

L([0, 1]) = {x = [x, x]|(x, x) ∈ [0, 1]2 and x ≤ x}.

We also denote 0L = [0, 0] and 1L = [1, 1]. Using the order relationship given by

Xu and Yager,38 it is easy to prove that 0L and 1L are the smallest and the largest

element of L([0, 1]) respectively.

Definition 1. 39,40 An interval-valued fuzzy set (IVFS) (or interval type 2 fuzzy

set) A on the universe U 6= ∅ is a mapping AIV : U → L([0, 1]), such that

AIV (ui) = [A(ui), A(ui)] ∈ L([0, 1]), for all ui ∈ U.

We must point out that in this paper we will use t-representable IV t-norms

without zero divisors, which will be denoted TTa,Tb
, to model conjunction operators.

Furthermore, we present the interval arithmetic that we will use to to be able to

extend the FRM on IVFSs.

Let [x, x], [y, y] be two intervals in R
+, the rules of interval arithmetic are as

follows:

• Addition: [x, x] + [y, y] = [x+ y, x+ y].

• Subtraction: [x, x]− [y, y] = [x− y, x− y].

• Multiplication: [x, x] ∗ [y, y] = [x ∗ y, x ∗ y].

• Division: [min(min(x
y
, x
y
), 1),min(max(x

y
, x
y
), 1)].

A deep study about interval-valued fuzzy logic operators can be found in Refs. 41

and 42 and about interval arithmetic in Ref. 43.

We denote by L the length of the interval under consideration, that is

L(AIV (ui)) = A(ui)−A(ui).
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Fig. 1. Example of an IVFS considered in our previous works. The solid line is the initial fuzzy
set, which in turn is the lower bound of the IVFS. The dashed line is the upper bound of the
IVFS.

The length of the IVFSs can be seen as a representation of the ignorance

when assigning punctual values as membership degrees.15 In order to measure the

ignorance degree, in our previous work on the topic we defined the concept of weak

ignorance functions,27 which are a particular case of ignorance functions depending

on a single variable and demanding a less number of properties.

Definition 2.27 A weak ignorance function is a mapping

g : [0, 1] → [0, 1]

that satisfies:

(g1) g(x) = g(1− x) for all x ∈ [0, 1];

(g2) g(x) = 0 if and only if x = 0 or x = 1;

(g3) g(0.5) = 1.

Example 1. g(x) = 2 ·min(x, 1 − x) is a weak ignorance function.

In our previous work,27 we constructed IVFSs starting from given fuzzy sets and

applying weak ignorance functions. Then, we used the resulting IVFSs (like the one

depicted in Fig. 1) in the fuzzy rule-based classification system generated by the

Fuzzy Hybrid Genetics-Based Machine Learning algorithm.44 Another construction

method of intervals can be found in Ref. 45.

We must remark that the amplitude of the support of the upper bound of the

IVFSs, consequently the ignorance degree that each IVFSs represents, is defined

by the points a and d as it is shown in Fig. 1. We computed both points using

parametrized equations based on the points defining the lower bound, that is, a =

b −W · (c − b) and d = c +W · (c − b). In this way, we could vary the amount of

ignorance each IVFS represents by modifying the value of the parameter W .
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In fact, in order to improve the system behaviour, we proposed a tuning

approach called weak ignorance tuning.27 By means of this tuning approach we

performed changes to the amplitude of the support of the upper bound of each

IVFSs by varying the value of the parameter W and, consequently, we allowed the

ignorance degree that each IVFSs represents to be modified. As a result, we could

find the best set-up of the linguistic labels modeled by means of IVFSs and, in this

way, we provided the system with a good capability of uncertainty management

leading to an enhancement of the system performance.

In addition, the modeling of the linguistic labels by means of IVFSs led us to

perform simple modifications to the FRM in order to work with this representation.

The original FRM46 is composed of four steps: to compute the matching degree, to

compute the association degree, to compute the pattern classification soundness

degree for all classes and the classification step. In our previous approach, we

modified the two first steps in the following way:

• Matching degree: we apply a t-norm to the lower and upper bounds of the interval

membership degrees of the elements to the IVFSs composing the antecedent of

the rules.

• Association degree: we take the mean between the product of the matching degree

by the RW associated with the lower bound and the product of the matching

degree by the RW associated with the upper bound.

At this point we already have a single number associated with the class and we

apply the remaining steps as in the original FRM. For more details about both the

IVFSs construction method, the extended FRM and the weak ignorance tuning,

please refer to Ref. 27.

2.2. Fuzzy ID3 induction process

FDTs aim at high comprehensibility, attributed to decision trees, with the gradual

and graceful behaviour attributed to fuzzy systems. Thus, they extend the symbolic

decision trees procedures using fuzzy sets and approximate reasoning both for

the tree building and the inference mechanism. At the same time, they borrow

the rich existing decision tree methodologies for dealing with incomplete or

imprecise information, extended to use new wealth of information available in fuzzy

representation.6

In the specialized literature there are many techniques to design FDTs.6–8

Among them, one of the most widely used is the fuzzy ID3 algorithm as it is shown

through its numerous variants, i.e. the ones given in Refs. 9–11 and its application

to several real problems.47–49 Furthermore, it provides a good trade-off between

interpretability and accuracy with a small computation-effort.12

In the remainder of the section we describe in detail the fuzzy ID3 induction

process, which involves two main steps, namely the selection of the expanded

attribute and the FDT generation process.
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Consider there are N labeled patterns and n attributes A = A(1), . . . , A(n).

For each k(1 ≤ k ≤ n), the attribute A(k) takes mk values of fuzzy subsets,

(A
(k)
1 , A

(k)
2 , . . . , A

(k)
mk

), A(n+1) denotes the classification (decision) attribute, taking

m values C1, C2, . . . , Cm. We use the symbol M(·) to denote the cardinality of a

given fuzzy set, that is, the sum of all membership values of the fuzzy set.

The key to the fuzzy ID3 algorithm is to select the expanded attribute, which

can be performed in the following steps:12

(1) For each linguistic label A
(k)
i , (i = 1, 2, . . . ,mk), compute its relative frequencies

with respect to class Cj , (j = 1, 2, . . . ,m).

p
(k)
i (j) =

M(A
(k)
i ∩ Cj)

M(A
(k)
i )

. (1)

(2) For each linguistic label A
(k)
i , (i = 1, 2, . . . ,mk), compute its fuzzy classification

entropy.

Entr
(k)
i =

m
∑

j=1

−p
(k)
i (j) log(p

(k)
i (j)) . (2)

(3) Compute the average fuzzy classification entropy of each attribute.

Ek =

mk
∑

i=1

M(A
(k)
i )

∑mk

j=1 M(A
(k)
j )

Entr
(k)
i . (3)

(4) Select the attribute that minimizes the average classification entropy.

Atr = argmin(Ek)
1≤k≤n

. (4)

Next, we briefly describe the induction based on the fuzzy ID3 algorithm.

With a given evidence significance level α, a truth level threshold β and A being

the set of attributes of the problem, the induction process consists of the following

steps:11

(1) Calculate the α-cut over the set of fuzzified patterns with the evidence

significance level α.

(2) Select the attribute with the minimum average fuzzy classification entropy

(Eq. (4)) as the root decision node and add the linguistic labels as candidate

branches of the tree.

(3) Select one branch to analyse. Delete the branch if it is empty. If the branch is

non-empty, compute the relative frequencies (Eq. (1)) of all objects within the

branch into each class. If the relative frequency of one class is above the given

threshold β or all the attributes have been expanded for this branch terminate

the branch as a leaf. Otherwise, select the attribute, from among those which

have not been expanded yet in this branch, with the smallest average fuzzy

classification entropy (Eq. (4)) as a new decision node for the branch and add
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its linguistic labels as candidate branches of the tree. At each leaf, each class

will have its relative frequency.

(4) Repeat step 3 while there are branches to analyse. If there are no candidate

branches the decision tree is complete.

3. IIVFDT: Ignorance Functions Based Interval-Valued Fuzzy

Decision Tree

The aim of this section is to describe the IIVFDT method, that is, our new

methodology for working with IVFSs using the fuzzy ID3 algorithm to generate the

initial FDT. To do so, in first place we present our new parametrized construction

method of IVFSs from given fuzzy sets. Then, we show how to model the linguistic

labels by means of IVFSs making use of the previously defined construction method.

The modeling of the linguistic labels by means of IVFSs implies the extension of

the FRM in order to fully exploit the whole power of the application of IVFSs for

this approach. To do so, we perform simple modifications to the original FRM using

some of the concepts mentioned in Sec. 2.1.

Furthermore, in the initial construction of the IVFSs we consider the same

ignorance degree for all IVFSs used by the system. This fact may imply a deficit

on the system accuracy, since the degree of ignorance related to the definition of

the different linguistic labels can vary. To deal with this problem, we define an

evolutionary tuning approach in which we modify the values of the parameters of

the IVFSs construction method in order to look for the best amount of ignorance

that each IVFS represents.

3.1. Construction of interval-valued fuzzy sets of fixed length from

a fuzzy set

Our aim in this section is to construct an IVFS starting from any given fuzzy set. To

do so, we define a function G parametrized by δ and γ, which satisfies a determined

set of properties. These properties allow to obtain intervals in such a way that their

length is proportional to the ignorance degree and the initial membership degree is

within the interval.

Proposition 1. Let δ, γ ∈ [0, 1] with δ ≥ γ ≥ δ · x. The function

G : [0, 1]4 → L([0, 1]) given by

G(x, y, δ, γ) = [x · (1− δ · y), x · (1− δ · y) + γ · y)]
(5)

satisfies the following properties:

(1) x ∈ G(x, y, δ, γ);

(2) W (G(x, y, δ, γ)) = γ · y;

(3) If x = 0, then G(0, y, δ, γ) = [0, γ · y];

(4) If y = 0, then G(x, 0, δ, γ) = x;
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(5) If δ = γ, then:

G(x, y, δ, δ) +G(1 − x, y, δ, δ) = 1 ,

G(x, y, δ, δ) +G(1 − x, y, δ, δ) = 1 .

Proof. Direct.

According to the previous proposition, we define Theorem 1 as the new

construction of IVFSs.

Theorem 1. Let A ∈ FS(U). If for each ui ∈ U we take g(µA(ui)), δ(ui), γ(ui) ∈

[0, 1], then the set

AIV = {(ui, AIV (ui))|ui ∈ U} where

AIV (ui) = G(µA(ui), g(µA(ui)), δ(ui), γ(ui))
(6)

is an IVFS on U .

Proof. Direct.

3.2. Modeling the linguistic labels by means of interval-valued

fuzzy sets

In this section, we present how to model the linguistic by means of IVFSs. To do

so, we begin describing the initial membership functions that are the starting point

to apply the IVFSs construction method presented in Sec. 3.1.

We consider fuzzy sets that are represented by triangular membership functions,

which are widely used in the specialized literature. Furthermore, they can be defined

using only 3 points (a, a+b
2 , b):

µA(ui) =











































0, if ui ≤ a ,

2

b− a
(ui − a), if a ≤ ui ≤

a+ b

2
and b 6= a ,

2

a− b
(ui − b), if

a+ b

2
≤ ui ≤ b and b 6= a ,

0, if b ≤ ui .

(7)

The solid line in both subfigures of Fig. 2 depicts the membership function

given in Eq. (7). To construct the IVFSs, we apply Theorem 1 using the initial

fuzzy sets. For the initial construction of the IVFSs, we consider the average degree

of ignorance. Therefore, we initialize δ(ui) = γ(ui) = 0.5 for all ui ∈ U since,

according to Theorem 1, the minimum value of both parameters is 0 and the

maximum is 1. As a result, the initially constructed IVFSs are as follows: for all

ui ∈ U ,
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A
)
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A
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Fig. 2. (a) Solid line: initial fuzzy set; Dashed line: initial IVFS. (b) Solid line: initial fuzzy set;
Dashed line: weak ignorance function; Star line: membership function weighting factor.

AIV (ui) = G(µA(ui), g(µA(ui)), 0.5, 0.5)

= [µA(ui) · (1 − 0.5 · g(µA(ui))), µA(ui) · (1− 0.5 · g(µA(ui)))

+ 0.5 · g(µA(ui))] .

Figure 2(a) depicts the initial construction of an IVFSs. As we can observe, both

the lower and the upper bounds are represented by piecewise functions. This fact is

due to the weak ignorance function (dashed line in Fig. 2(b)) returns the maximum

value when the membership degree is 0.5. Therefore, it presents two maximum

values (points a+b
4 and 3·(a+b)

4 ) when considering a membership function like the one

given in Eq. (7). Therefore, the ignorance weighting factor, 1− 0.5 · g(µA), presents
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a double minimum at the same points (star line in Fig. 2(b)). As consequence, when

the ignorance weighting factor is decreasing (intervals [a, a+b
4 ] and [a+b

2 ,
3·(a+b)

4 ]) the

smaller the value of the ignorance weighting factor the greater the distance from

the lower bound to the initial membership function is. On the other hand, when

the ignorance weighting factor is increasing (intervals [a+b
4 , a+b

2 ] and [ 3·(a+b)
4 , b]) the

greater the ignorance weighting factor the lower the distance from the lower bound

to the initial membership function is. Similarly, we obtain the shape of the upper

bound.

3.3. Fuzzy decision trees with interval-valued fuzzy sets: a new

fuzzy reasoning method

The modeling of the linguistic labels by means of IVFSs in FDTs implies that the

relative frequencies of the classes in each leaf must be recalculated. In order to do

this, we follow the procedure explained in the FDT induction (Sec. 2.2) and we

apply Eq. (1) using the interval arithmetic described in Sec. 2.1. In this manner,

the relative frequencies of the classes will be elements of L([0, 1]).

The use of IVFSs also imply that we need to modify the FRM to predict the

classification of new examples.

For an FDT, each connection from the root node to a leaf is called a path. It is

clear that each path corresponds to a different leaf, so there are as many paths as

leaves in the FDT.

Suppose that the FDT contains l leaves (Pathi, i = 1, 2, . . . , l) and for each leaf,

the path i has Ni nodes (Pathi
1, Pathi

2,. . . ,Pathi
Ni
). Let e be an example to be

classified in one of the m classes. We must point out that each node is modeled by

means of an IVFS, therefore, Pathi
k(ek) = [Pathi

k(ek), Pathi
k(ek)] ∈ L([0, 1]) with

k = 1, . . . , Ni. The interval-valued fuzzy reasoning mechanism follows the following

4 key steps:

(1) To compute the matching degree between each path and the new example. We

apply a t-representable IV t-norm as the conjunction among the nodes in the

corresponding path.

Mi = TTa,Tb
([Pathi

1(e1), Pathi
1(e1)], . . . , [Pathi

Ni
(eNi

), Pathi

Ni
(eNi

)])

= [Ta(Pathi
1(e1), . . . , Pathi

Ni
(eNi

)), Tb(Pathi
1(e1), . . . , Pathi

Ni
(eNi

))],

i = 1, 2, . . . , l .

(2) To compute the certainty of each class in each leaf. We apply a t-representable

IV t-norm to weight the matching degree of the example along the paths with

the relative frequencies of the leaves.

Certij = TTc,Td
([Mi,Mi], [pi(j), pi(j)]) = [Tc(Mi, pi(j)), Td(Mi, pi(j))],

j = 1, . . . ,m, i = 1, . . . , l .
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(3) To compute the total certainty of each class. We employ the interval addition

to aggregate certainties of the same class in all the paths.

Total Certaintyj =

l
∑

i=1

[Certij , Certij ], j = 1, . . . ,m .

(4) Classify the example in the class which maximizes the total certainty.

In order to decide the maximum interval, which is necessary to perform the last

step of the FRM presented above, we will use the following relationship based on

the score and accuracy functions given in Ref. 38 (see Subsec. 2.1). For any interval

[x, x], [y, y] on R and let s([x, x]) = x+x and s([y, y]) = y+ y be the scores of [x, x]

and [y, y] respectively. Let h([x, x]) = x − x and h([y, y]) = y − y be the accuracy

degrees of [x, x] and [y, y] respectively. Then

• If s([x, x]) < s([y, y]), then [x, x] < [y, y];

• If s([x, x]) = s([y, y]), then

(a) If h([x, x]) = h([y, y]), then [x, x] = [y, y];

(b) if h([x, x]) < h([y, y]), then [x, x] < [y, y].

3.4. Genetic tuning of the ignorance weighting factor

The definition of membership functions is usually performed homogeneously over

the input space or by means of expert knowledge. In both cases, there can be

some unknown amount of ignorance when assigning punctual values as membership

degrees. In the former, this ignorance degree can be due to the ad-hoc construction

of fuzzy partitions while in the latter it is associated with the possible lack of

information suffered by the expert. As we have pointed out, we use IVFSs to

deal with this problem due to their length can be seen as a representation of the

ignorance degree. In the initial construction of all the IVFSs (Sec. 3.2) we have

considered the average degree of ignorance, that is, we initially fix the values of δ

and γ to 0.5. However, the ignorance degree can vary depending on the linguistic

label because the available information can differ.

In order to look for a good management of the semantic uncertainties of the

classifier, we propose the application of an evolutionary tuning step (afterwards the

generation of the initial FDT with IVFSs) in which we adapt the parameters δ and

γ (see Theorem 1) keeping the restriction δ ≥ γ ≥ δ · x. As a result, the ignorance

degree associated with the definition of each fuzzy set will be weighted depending

on the suitability of the membership function to the specific problem we are dealing

with, which can lead to an improvement of the system accuracy. An example of the

behaviour of this evolutionary tuning approach is depicted in Fig. 3 where the final

IVFS (dark gray IVFS) is embedded in the initial one (light gray IVFS) since both

δ and γ are lower than the initial ones.

To accomplish this tuning process we follow the CHC evolutionary algorithm,50

which has provided good results in this topic,37,51 with the same scheme described
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Fig. 3. Genetic tuning of the ignorance weighting factor. The final values of the parameters are
δ = 0.1 and γ = 0.1.

in our previous work.27 In the remainder of this section, we present the specific

features of our new evolutionary tuning approach, which involves the specification

of the representation of the solutions, the definition of the fitness function and the

initialization of the population of solutions.

(1) Representation: We consider a real coding scheme, where each pair of genes,

(δ, γ) ∈ [0, 1], represents the modification of the parameters used to weight the

ignorance degree when assigning punctual values as membership degrees. The

form of the chromosome is:

CIWF = (δ11, γ11, . . . , δ1m1 , γ1m1 , δ21, γ21, . . . ,

δ2m2 , γ2m2 , . . . , δn1, γn1, . . . , δnmn , γnmn),

being (m1,m2, . . . ,mn) the number of labels per variable and n the number

of variables. Therefore, the chromosome length is twice the number of labels

times the number of variables.

(2) Fitness function: We employ the most common metric for classification, i.e. the

classification rate.

(3) Initial Gene Pool : we initialize the first individual having all the genes with

a value of 0.5 (the values considered for the initial construction of all the

IVFSs). The second and third individuals have all genes with values of 0 and

1 respectively, whereas the remaining individuals are randomly generated in

[0, 1].

For details about the remainder features of the optimization process, please refer

to Ref. 27.
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Fig. 4. Flow diagram of the IIVFDT method.

3.5. Summarizing the IIVFDT method

For the sake of clarity, we summarize the IIVFDT method by means of a flow

diagram (Fig. 4). We can observe that the whole process is composed of four steps.

The first step consists on inducing the initial FDT from which to apply our

approach. As pointed out, we have designed the IIVFDT method using the fuzzy

ID3 algorithm to accomplish the learning process (Sec. 2.2). To carry out the

learning process we pre-fuzzify the data using triangular membership functions,

which are obtained by performing a homogeneous partition of the input space and

whose expressions are like the one described in Eq. (7).

In the second step, we model the linguistic labels by means of IVFSs as explained

in Sec. 3.2. To this aim, we apply the new parametrized construction method given

in Theorem 1 to the membership functions (defined in the first step), which are

used in the learning process. Consequently, the interpretability of the initial FDT

is not modified, since both the number of rules and the linguistic terms in each of

them are the same ones than those of the initial FDT.

The modeling of the linguistic labels by means of IVFSs implies the extension

of the FRM on IVFSs, leading to the new interval-valued fuzzy reasoning method

introduced in Sec. 3.3 (third step). In the last step, we attempt to further improve

the performance of the fuzzy classifier. In order to achieve this goal, we apply the

new evolutionary tuning approach in which we look for the shape of each IVFS that

best represents the ignorance degree for each IVFS (Sec. 3.4).

4. Experimental Framework

In this section, we firstly present the real world classification data-sets selected for

the experimental study. Next, we briefly describe the different FDTs that we will

use in the experimental analysis and we also provide the values assigned to the

FTDs’ parameters. Finally, we introduce the statistical tests carried out in order

to compare the results achieved throughout the experimental study.

4.1. Data-sets

We have selected a wide benchmark of 20 numerical data-sets selected from the

KEEL data-set repository,28,29 which are publicly available on the corresponding

web pagea including general information about them, partitions for the validation

of the experimental results and so on. Table 1 summarizes the properties of the

ahttp://www.keel.es/dataset.php

http://www.keel.es/dataset.php
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Table 1. Summary description for the employed data-sets.

Id. Data-set #Ex. #Atts. #Class.

app Appendicitis 106 7 2

bal Balance 625 4 3

bup Bupa 345 6 2

cle Cleveland 297 13 5

eco Ecoli 336 7 8

gla Glass 214 9 6

hab Haberman 306 3 2

hea Heart 270 13 2

iri Iris 150 4 3

mag Magic 1,902 10 2

new New-Thyroid 215 5 3

pag Page-blocks 548 10 5

pim Pima 768 8 2

rin Ring 740 20 2

shu Shuttle 2,175 9 7

tae Tae 151 5 3

tit Titanic 2,201 3 2

win Wine 178 13 3

wis Wisconsin 683 9 2

yea Yeast 1,484 8 10

selected data-sets, showing for each data-set the number of examples (#Ex.), the

number of attributes (#Atts.) and the number of classes (#Class.). We must point

out that the magic, page-blocks, ring and shuttle data-sets have been stratified

sampled at 10% in order to reduce their size for training. In the case of missing

values, (cleveland and wisconsin), those instances have been removed from the

data-set.

A 5-folder cross-validation model was considered in order to carry out the

different experiments. That is, we split the data-set into 5 random partitions of

data, each one with 20% of the patterns, and we employ a combination of 4 of them

(80%) to train the system and the remaining one to test it. Furthermore, in order

to avoid failed convergences of the evolutionary tuning, the process was repeated

3 times for each partition, using three different seeds, implying the achievement of

a sample of 15 results which have been averaged to obtain the mean accuracy for

each data-set.

4.2. Fuzzy decision trees for comparison

In this paper we have selected six FDTs (four approaches without using GAs and

the remainder two ones using GAs) in order to compare our methodology with

respect to different methods in the literature. Their descriptions are as follows:
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• The first approach is the fuzzy Gini index .7 This method uses the SLIQ decision

tree as the base algorithm, which uses the Gini index as the split measure, and

fuzzifyies its decision boundaries. Unlike the remaining FDTs considered in this

paper, this method fuzzifies the decision boundaries, depending on the standard

deviation of the attributes, during the decision tree construction instead of using

pre-fuzzified data.

• The second approach is the look-ahead method .9 This method attempts to

establish a decision node by analysing the classifiability of instances that are

split along branches of the node. Dong and Kothari propose the evaluation of

the classifiability by means of a co-occurrence matrix. Finally, they select the

node that optimizes an objective function which considers both a split measure

and classifiability.

• The third proposal is the Janikow’s FDT .6 This FDT imposes the fuzzy sets

defining the fuzzy terms used for building the tree and uses a splitting criteria

based on fuzzy restrictions. Janikow adapts norms used in fuzzy logic to deal

with conjunctions of fuzzy propositions in order to compute the number of

examples falling in a node.

• The fourth approach we have selected is the simple pattern tree algorithm.8

This method, instead of constructing one tree, whose leaves have a probability

distribution expressing the membership of each class, constructs one tree per

class. In order to do so, small pattern trees are aggregated to complex ones

taking into account the similarity between the tree and the class represented

by that tree.

• The first approach for optimizing the generation of FDTs that we have

selected was defined by Kim and Ryu.35 In this case, they consider triangular

membership functions and they induce the best possible FDT by learning the

most suitable fuzzy partition for each variable by means of a GA. To this aim,

they apply a classic genetic approach in which they modify the values of the

three points which define each triangular membership function.

• The second approach we have considered to generate FDTs using GAs was

proposed by Chang et al.36 In this proposal, authors use the fuzzy ID3 induction

process and they use a GA to learn the best FDT by optimizing both the

mean and the standard deviation of Gaussian membership functions and also

to select the most appropriate thresholds for the two stopping criteria that

they consider. Then, they carry out a pruning step and finally, they tune the

membership functions’ parameters using again a GA.

In Table 2 there are specified the configurations for the previously described

FDTs without GAs together with the configuration for the fuzzy ID3 with and

without IVFSs. These configurations have been fitted experimentally in the terms

recommended by authors, since they make up the configuration with the best

performance for each FDT.
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Table 2. Parameter specification for the FDTs.

Fuzzy ID3

Number of labels per variable: 3 labels
Conjunction operator: product t-norm
Evidence significance level = 0.4
Truth level threshold = 0.95

IIVFDT method without the tuning step

Ignorance function: g(x) = 2 ·min(x, 1− x)
Conjunction operator: product IV t-norm
δ = 0.5
γ = 0.5

Fuzzy Gini Index

Number of labels per variable: 3 labels
Threshold = 0.85
Number of examples threshold = 0.05
Maximum depth: number of attributes

Look-Ahead Method

Number of labels per variable: 3 labels
Split measure: information gain
Number of neighbours: 3
Weighting factor: 1

Janikow’s FDT

Number of labels per variable: 3 labels
Conjunction operator: product t-norm

Simple Pattern Tree

Number of labels per variable: 3 labels
Aggregation functions: min and max operators
Similarity function: the similarity related with the root mean square error

The configuration of the FDTs which are learnt using GAs is introduced in

Table 3. In this case, we have used the configuration suggested by Kim and Ryu

in Ref. 35, since it provides a solution in a feasible amount of time.

Finally, we indicate the values that have been considered for the parameters of

the evolutionary tuning of our IIVFDT proposal:

• Population Size: 50 individuals.

• Number of evaluations: 5,000 · d.

• Bits per gene for the Gray codification (for incest prevention): 30 bits.

where d stands for the dimensionality of the problem (number of variables).

4.3. Statistical tests for performance comparison

In this paper, we use some hypothesis validation techniques in order to give

statistical support to the analysis of the results.52,53 We will use non-parametric
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Table 3. Parameter specification for the
FDTs optimized with GAs.

Kim and Ryu’s GAFDT

Number of labels per variable: 3 labels
Conjunction operator: minimum t-norm
Truth level threshold = 1

Number of examples threshold = 0.02
w = 0.98
Number of generations = 100
Population size = 20
Crossover probability = 0.9
Mutation probability = 0.1

Chang’s GAFDT

Number of labels per variable: 3 labels
Conjunction operator: product t-norm
Number of generations = 100
Population size = 20
Crossover probability = 0.9
Mutation probability = 0.1

tests because the initial conditions that guarantee the reliability of the parametric

tests cannot be fulfilled, which imply that the statistical analysis loses credibility

with these parametric tests.30

Specifically, we employ the Wilcoxon rank test54 as a non-parametric statistical

procedure for making pairwise comparisons between two algorithms. For multiple

comparisons, we use the Friedman aligned ranks test55 to detect statistical

differences among a group of results and the Holm post-hoc test56 to find the

algorithms that reject the equality hypothesis with respect to a selected control

method.

The post-hoc procedure allows us to know whether a hypothesis of comparison

of means could be rejected at a specified level of significance α. Furthermore, we

compute the adjusted p-value (APV) in order to take into account that multiple

tests are conducted. In this manner, we can compare directly the APV with respect

to the level of significance α in order to be able to reject the null hypothesis.

In addition, we consider the method of aligned ranks of the algorithms in order to

show graphically how good a method is with respect to its partners. The first step to

compute this ranking is to obtain the average performance of the algorithms in each

data set. Next, we compute the subtractions between the accuracy of each algorithm

minus the average value for each data-set. Then, we rank all these differences in a

descending way and, finally, we average the rankings obtained by each algorithm.

In this manner, the algorithm which achieves the lowest average ranking is the best

one.

These tests are suggested in the studies presented in Refs. 30–32 and 52,

where it is recommended their use in the field of machine learning. A complete
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description of these tests and software for their use can be found on the website:

http://sci2s.ugr.es/sicidm/.

5. Analyzing the Usefulness of the IIVFDT Method

In order to show the suitability of the IIVFDT method, we have divided our study

in this way:

(1) We analyse the capacity for enhancement of our new approach not only with

respect to the basic fuzzy ID3 algorithm with and without IVFSs but also

with our previous tuning approach, that is, the tuning of the weak ignorance27

(Sec. 5.1).

(2) We aim to show the goodness of the IIVFDT method through its comparison

with four state-of-the-art FDTs and C4.5 (Sec. 5.2).

(3) We determine the quality of our new methodology through its comparison with

two proposals of generation of FDTs using GAs (Sec. 5.3).

(4) We study whether the use of the genetic tuning of the lateral position37

afterwards the application of our new methodology allows the results provided

by the latter to be outperformed (Sec. 5.4).

This experimental study is carried out in the following four sections.

5.1. Study of the behaviour of the IIVFDT method

In this section, we analyse the suitability of the IIVFDT proposal. To do so, we show

empirically whether our methodology enhances the results of both the initial fuzzy

ID3 algorithm and the IIVFDT method without the tuning step. Furthermore, we

will compare the results of our new approach versus the results achieved by our

previous proposal for tuning the weak ignorance.27

Table 4 shows the classification accuracy of the different approaches applied to

the fuzzy ID3 algorithm, specifically:

• F-ID3: the standard fuzzy ID3 algorithm without IVFSs.

• F-ID3 IVFS WI: our previous approach for tuning the weak ignorance degree27

applied to the fuzzy ID3 algorithm, that is, its linguistic labels are modeled using

triangular shaped IVFSs, whose ignorance degrees are genetically optimized.

• IIVFDT-0.5: the IIVFDT method without the tuning step, that is, with δ = γ =

0.5.

• IIVFDT: the complete approach proposed in this paper.

Results are grouped in pairs for training and test, where the best global result for

each data-set is stressed in bold-face.

We observe from the results of Table 4 the good behaviour of the IIVFDT

method, since it enhances the performance of both the initial fuzzy ID3 algorithm

and the IIVFDT proposal without the tuning step. Furthermore, our methodology
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Table 4. Results in Train (Tr.) and Test (Tst) achieved by the different approaches
applied to the fuzzy ID3 algorithm.

Data F-ID3 F-ID3 IVFS WI IIVFDT-0.5 IIVFDT

Set Tr. Tst Tr. Tst Tr. Tst Tr. Tst

App 90.57 84.94 91.98 85.84 88.45 86.84 93.16 86.80
Bal 91.72 90.08 93.24 90.56 92.08 90.08 96.60 90.72

Bup 61.52 58.26 67.10 58.84 60.00 58.55 79.93 67.25

Cle 87.29 53.87 92.09 55.55 87.21 56.55 93.18 55.88
Eco 80.21 76.80 81.62 77.09 77.83 75.59 82.14 77.69

Gla 60.17 52.80 75.24 62.66 66.02 58.86 77.57 60.80
Hab 75.08 71.90 77.45 71.89 74.26 72.88 79.90 72.87
Hea 93.52 79.26 95.09 78.89 91.02 78.89 94.81 78.52
Iri 93.07 95.33 98.00 95.33 93.17 92.67 98.83 96.00

Mag 95.50 78.28 83.10 79.60 79.46 78.76 82.75 78.91

New 79.80 91.16 98.26 95.81 90.35 90.23 97.79 94.88
Pag 92.67 92.15 93.57 93.24 92.75 92.15 95.03 94.16

Pim 92.84 75.77 82.36 76.30 78.87 75.65 83.56 76.43

Rin 79.95 49.59 49.73 49.59 52.13 51.76 97.09 90.81

Shu 98.74 90.57 93.37 93.20 83.45 83.31 97.74 97.98

Tae 63.40 54.99 69.87 55.63 64.74 53.61 70.86 58.95

Tit 78.33 78.33 78.33 78.33 78.33 78.33 78.33 78.33

Win 99.59 97.75 100.00 97.75 98.88 96.60 100.00 98.87

Wis 90.63 94.58 98.32 96.63 96.71 94.73 98.28 96.04
Yea 95.90 55.46 62.62 56.87 49.61 47.98 63.01 57.41

Mean 81.02 76.09 84.07 77.48 79.76 75.70 88.03 80.46
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Fig. 5. Rankings of the approaches with the fuzzy ID3 as base algorithm.

provides the best mean value in test and achieves the best performance in most of

the data-sets considered in the study. This situation is confirmed in Fig. 5 where it

is shown that the best ranking is reached by the IIVFDT approach.
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Table 5. Holm test to compare three methodologies
with the fuzzy ID3 as base algorithm. The IIVFDT
method is used as the control method.

i Algorithm APV Hypothesis

2 IIVFDT-0.5 1.30E-5 Rejected for IIVFDT

1 F-ID3 3.55E-5 Rejected for IIVFDT

In order to detect significant differences among the results of the different

approaches, we carry out the Friedman aligned rank test. This test obtains a

p-value near to zero (7.73E-4), which implies that there are significant differences

between the results. For this reason, we can apply a post-hoc test to compare our

methodology against the remaining approaches. Specifically, a Holm test is applied,

which is presented in Table 5. The statistical analysis reflects that the IIVFDT

method outperforms the two remainder approaches with a high level of confidence.

In order to strengthen to goodness of our new methodology, we compare

the results provided by the IIVFDT method with respect to the ones obtained

afterwards the application of our previous approach with IVFSs and tuning of the

weak ignorance degree27 using the fuzzy ID3 algorithm to construct the initial fuzzy

system. We can observe from results on Table 4 that our new proposal enhances

notably the mean test result of our previous model. The statistical analysis, which

is carried out by means of a Wilcoxon test (Table 6), clearly reflects the superiority

of our new methodology with a low p-value.

Table 6. Wilcoxon Test to compare the fuzzy ID3 algorithm with IVFS and the weak
ignorance tuning model (R+) against the IIVFDT method (R−).

Comparison R+ R− Hypothesis p-value

F-ID3 IVFS WI vs. IIVFDT 50.5 159.5 Rejected for IIVFDT 0.044

5.2. Comparing the IIVFDT method versus state-of-the-art

decision trees

We present in Table 7 the results achieved in training and test provided by our

methodology, along with the four FDTs considered and C4.5. For the sake of clarity

we present the notation of each approach:

• SPT: the simple pattern tree algorithm.

• LA: the look-ahead approach with the information gain heuristic.

• Fgini: the approach in which authors fuzzify the Gini index.

• Janikow: the classical FDT.
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Table 7. Results in Train (Tr.) and Test (Tst) achieved by the different decision trees.

Data SPT LA Janikow Fgini C4.5 IIVFDT

Set Tr. Tst Tr. Tst Tr. Tst Tr. Tst Tr. Tst Tr. Tst

App 80.19 80.22 91.27 84.85 89.39 86.84 80.19 80.22 90.09 84.98 93.16 86.80

Bal 78.96 77.92 90.32 88.32 91.72 90.08 89.40 88.64 89.72 77.28 96.60 90.72

Bup 63.99 60.29 79.78 61.74 60.65 58.84 88.62 66.67 83.84 66.09 79.93 67.25

Cle 53.87 53.88 94.69 49.83 97.64 50.50 89.06 53.19 83.41 51.82 93.18 55.88

Eco 67.11 66.67 80.73 75.90 77.98 76.79 89.88 77.39 91.74 78.28 82.14 77.69

Gla 60.40 57.52 85.86 68.24 75.12 64.04 46.26 43.02 91.94 68.73 77.57 60.80

Hab 75.98 74.17 78.43 73.52 74.51 72.88 79.90 74.83 76.06 72.22 79.90 72.87

Hea 81.57 75.19 98.43 75.93 98.52 78.52 90.93 72.96 92.96 79.26 94.81 78.52

Iri 97.17 98.67 97.50 96.00 95.67 96.00 83.67 83.33 97.83 93.33 98.83 96.00

Mag 78.12 78.23 86.40 78.44 78.52 77.55 79.98 77.18 87.22 79.81 82.75 78.91

New 91.86 91.63 96.05 93.95 86.05 85.58 93.49 93.02 98.37 91.16 97.79 94.88

Pag 92.97 91.24 95.67 93.79 93.75 92.51 91.70 91.24 98.95 95.07 95.03 94.16

Pim 76.20 74.34 88.25 73.57 77.54 74.34 85.38 75.78 85.81 74.09 83.56 76.43

Rin 80.78 78.11 94.76 77.03 95.00 90.14 88.55 84.86 97.13 82.70 97.09 90.81

Shu 92.72 92.64 97.72 97.33 83.31 83.31 99.46 99.49 99.66 99.54 97.74 97.98

Tae 55.30 48.99 71.36 53.61 68.38 57.61 56.28 50.34 78.15 54.99 70.86 58.95

Tit 77.64 77.78 78.33 78.33 78.33 78.33 67.37 66.65 78.48 77.78 78.33 78.33

Win 91.85 89.33 98.45 92.11 100.00 97.71 94.10 90.40 99.02 94.90 100.00 98.87

Wis 96.85 96.20 96.85 95.02 98.43 96.49 94.40 93.56 98.43 95.03 98.28 96.04

Yea 35.56 34.16 62.99 51.29 46.60 44.54 21.38 20.95 82.18 55.80 63.01 57.41

Mean 76.45 74.86 88.19 77.94 83.35 77.63 80.50 74.19 90.05 78.64 88.03 80.46

• C4.5: the well known decision tree.

• IIVFDT: the complete approach proposed in this paper.

The best global result for each data-set is highlighted in bold-face.

From the results of Table 7, the capacity of our methodology for improvement

with respect to the results obtained by the decision trees is clearly shown, as it

achieves the best global performance and provides the best performance in half

of the data sets. This situation is confirmed in Fig. 6, where the rankings of the

different approaches are presented, showing that the best ranking is achieved by

our new proposal.

In order to strengthen the previous findings we apply a Friedman aligned rank

test. The p-value is 0.004 which implies that there are statistical differences among

the studied approaches with a high level of significance. In this manner, we apply

a Holm post-hoc test (Table 8) in order to compare our methodology with the

remaining approaches. The statistical analysis shows that all of the FDTs, which

have been considered in this study, and also the C4.5 decision tree are notably

enhanced by the IIVFDT method.

We must point out that the initial fuzzy ID3 algorithm does not outperform any

of the approaches for comparison. In this manner, it is clearly shown the robustness
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Fig. 6. Rankings of the different fuzzy decision trees and C4.5.

Table 8. Holm test to compare the IIVFDT proposal
(used as control method) with all the remaining
decision trees.

i Algorithm APV Hypothesis

4 SPT 1.31E-5 Rejected for IIVFDT

3 Fgini 3.21E-4 Rejected for IIVFDT

2 LA 0.037 Rejected for IIVFDT

1 Janikow 0.068 Rejected for IIVFDT

1 C4.5 0.068 Rejected for IIVFDT

of our new method, since it allows the initial results provided by this algorithm to

be enhanced in such a way that they outperform the results provided by several

state-of-the-art FDTs and also the ones obtained by C4.5.

5.3. On the comparison with fuzzy decision trees constructed

using genetic algorithms

Table 9 shows the results achieved by the different approaches that use GAs, both in

training and in test in each data-set. In first place, there are presented the results of

the methods for generating FDTs with GAs defined by Kim35 (GAFDT Kim) and

Chang36 (GAFDT Chang) and then, there are shown the results obtained when

applying our methodology. The best global result for each data-set is stressed in

bold-face.

From the results of Table 9, we must highlight both the average improvement

of our proposal with respect to the remainder ones and the achievement of the best

result in eleven out of twenty data-sets. This situation is confirmed in Fig. 7, where

the rankings of the three approaches are presented, showing that the best ranking

is provided by our evolutionary tuning method.
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Table 9. Results in Train (Tr.) and Test (Tst) achieved by
the IIVFDT method and the two proposals of FDT generation
using GAs.

Data GAFDT Kim GAFDT Chang IIVFDT

Set Tr. Tst Tr. Tst Tr. Tst

App 91.03 85.84 92.92 84.94 93.16 86.80

Bal 84.80 82.72 86.76 86.40 96.60 90.72

Bup 67.97 62.03 71.23 62.90 79.93 67.25

Cle 62.21 57.59 84.43 53.53 93.18 55.88

Eco 89.14 74.13 90.40 73.81 82.14 77.69

Gla 67.41 61.22 73.25 62.65 77.57 60.80

Hab 78.02 72.22 78.02 72.89 79.90 72.87

Hea 85.09 76.30 92.96 81.48 94.81 78.52

Iri 98.67 96.67 97.67 92.67 98.83 96.00

Mag 78.89 77.65 81.69 79.65 82.75 78.91

New 95.35 95.35 97.33 95.35 97.79 94.88

Pag 93.52 93.06 94.39 93.61 95.03 94.16

Pim 77.08 73.83 79.33 75.13 83.56 76.43

Rin 83.34 81.62 88.61 85.81 97.09 90.81

Shu 94.56 94.34 85.95 85.47 97.74 97.98

Tae 65.73 49.74 67.72 56.34 70.86 58.95

Tit 79.05 79.06 78.90 78.33 78.33 78.33

Win 96.49 90.40 97.89 95.49 100.00 98.87

Wis 97.11 95.90 97.99 96.49 98.28 96.04

Yea 49.88 48.38 43.48 44.95 63.01 57.41

Mean 81.77 77.40 84.05 77.89 88.03 80.46

We have used the Friedman aligned ranks test in order to find out whether

significant differences exist among all the mean values. This test obtains a p-value

near to zero (5.64E-4), which implies that there are significant differences between

the results. We now apply Holm’s test to compare the best ranking method

(IIVFDT approach) with the remaining methods. Table 10 presents these results.

In this table, the methods are ordered with respect to the APV obtained. Holm’s

test rejects the hypothesis of equality with the rest of the methods.

Table 10. Holm test to compare the IIVFDT proposal
(used as control method) with the FDTs using genetic
algorithms.

i Algorithm APV Hypothesis

2 GAFDT Kim 2.57E-4 Rejected for IIVFDT

1 GAFDT Chang 0.005 Rejected for IIVFDT
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Fig. 7. Rankings of the different proposals using GAs.

Therefore, analyzing the results presented in Table 9 and the statistical study

shown in Table 10 we can conclude that our new method outperforms the

performance obtained with two recent proposals for constructing FDTs in an

optimal way by means of the use of GAs. In this manner, it is strengthened the

synergy produced when combining IVFSs with the evolutionary tuning step to face

classification problems.

5.4. Using the tuning of the lateral position of the membership

functions

The genetic tuning of the lateral position of the linguistic labels37 has proved to

provide very accurate models.51,57,58 This tuning approach, which is based on the

linguistic 2-tuples representation,59 allows the lateral displacement of the labels

considering only one parameter (slight displacements to the left/right of the original

membership functions). Therefore, it seems natural to extend our proposal by

applying the genetic tuning of the lateral position afterwards the application of

our new methodology.

Table 11 shows the mean results in training and testing achieved by both the

IIVFDT proposal and the sequential application of our new methodology and the

genetic tuning of the lateral position (IIVFDT+Lat). The best result is highlighted

in bold-face.

From the results in Table 11, it is observed that the synergy between both

approaches allows to achieve a higher classification accuracy in most of the data-sets

of the study. In order to compare both methods, we apply a Wilcoxon test

(Table 12). The statistical analysis allows us to asseverate with a high level of

confidence that the sequential application of both approaches allows to improve the

results obtained by our new methodology. This enhancement is due to the lateral

tuning faces the possible lack of adaptation of the membership functions to the the
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Table 11. Results in Train (Tr.) and Test
(Tst) achieved by the IIVFDT method
with and without lateral tuning.

Data IIVFDT IIVFDT+Lat

Set Tr. Tst Tr. Tst

App 93.16 86.80 94.58 87.75

Bal 96.60 90.72 96.62 92.00

Bup 79.93 67.25 80.65 72.46

Cle 93.18 55.88 96.04 54.55

Eco 82.14 77.69 83.18 77.40

Gla 77.57 60.80 80.14 64.04

Hab 79.90 72.87 80.31 73.19

Hea 94.81 78.52 98.33 78.52

Iri 98.83 96.00 99.83 96.00

Mag 82.75 78.91 84.83 80.39

New 97.79 94.88 99.77 96.28

Pag 95.03 94.16 95.30 93.97

Pim 83.56 76.43 84.18 76.42

Rin 97.09 90.81 99.29 96.22

Shu 97.74 97.98 99.31 99.13

Tae 70.86 58.95 74.34 60.26

Tit 78.33 78.33 79.07 78.87

Win 100.00 98.87 100.00 97.73

Wis 98.28 96.04 98.98 95.75

Yea 63.01 57.41 65.43 59.50

Mean 88.03 80.46 89.51 81.49

Table 12. Wilcoxon Test to compare the the IIVFDT method (R+) versus its
cooperation with the tuning of the lateral position (R−).

Comparison R+ R− Hypothesis p-value

IIVFDT vs. IIVFDT+Lat 43.5 166.5 Rejected for IIVFDT+Lat 0.016

context of each variable and as consequence, it improves the system accuracy by

properly suiting the linguistic labels to each specific variable of the problem.

6. Concluding Remarks

In this paper we have presented the IIVFDT method, a proposal to improve the

performance of FDTs using IVFSs. In order to do so, we have developed a new

IVFS construction method based on weak ignorance functions which starts from

the fuzzy sets used in the induction process of the initial FDT. The final shape of

the IVFSs is set by two parameters which weight the degree of ignorance related

to the assignment of punctual values as membership degrees.
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We have extended the FRM performing natural modifications in order to be

able to work with interval-valued membership functions. Furthermore, we have

introduced an evolutionary tuning approach in which we optimize the parameters

of the construction method of IVFSs. In this manner, we compute the best degree

of ignorance that each IVFS represents, leading to an enhancement of the system

performance.

We have developed the IIVFDT method using the fuzzy ID3 algorithm in order

to generate the initial FDT with which to apply our new methodology. Along the

experimental study, we have reached several lessons learned:

(1) The IIVFDT method allows to improve the results of the initial FDT with

and without IVFSs and also the results provided by our previous methodology

applied to FDTs.

(2) Our new methodology enhances the behaviour of some state-of-the-art FDTs.

(3) The accuracy results of C4.5, a well-known machine learning algorithm, which is

considered in order to strengthen our results, are outperformed by our approach.

(4) Our new approach notably enhances the results obtained with two FDTs that

have been learnt using GAs and, in this way, it is stressed the quality of our

new evolutionary tuning proposal.

(5) We achieve a positive synergy when applying sequentially the IIVFDT method

and the lateral tuning.

These results allow us to conclude that our new methodology is a suitable

solution to confront classification problems dealing with the ignorance degree when

assigning punctual values as membership degrees and a fine evolutionary tuning of

the fuzzy partitions.
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algorithm for environment control device systems based on template matching and
genetic tuning of fuzzy rule-based systems, Int. J. Comput. Int. Syst. 5(2) (2012)
368–386.

26. C. Karr, Genetic algorithms for fuzzy controllers, AI Expert 6(2) (1991) 26–33.
27. J. Sanz, A. Fernández, H. Bustince and F. Herrera, A genetic tuning to improve

the performance of fuzzy rule-based classification systems with interval-valued fuzzy



August 24, 2012 8:49 WSPC/118-IJUFKS S0218488512400132

IIVFDT: Ignorance Functions Based Interval-Valued Fuzzy Decision Tree 29

sets: Degree of ignorance and lateral position, Int. J. Approx. Reason. 52(6) (2011)
751–766.
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