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Abstract. Noise is a common problem that produces negative conse-
quences in classification problems. When a problem has more than two
classes, that is, a multi-class problem, an interesting approach to deal
with noise is to decompose the problem into several binary subproblems,
reducing the complexity and consequently dividing the effects caused
by noise into each of these subproblems. This contribution analyzes
the use of decomposition strategies, and more specifically the One-vs-
One scheme, to deal with multi-class datasets with class noise. In or-
der to accomplish this, the performance of the decision trees built by
C4.5, with and without decomposition, are studied. The results obtained
show that the use of the One-vs-One strategy significantly improves the
performance of C4.5 when dealing with noisy data.

Keywords: Noisy Data, Class Noise, One-vs-One, Decomposition
Strategies, Ensembles, Classification.

1 Introduction

Any classification problem [I] consists of m training patterns, characterized by n
attributes A;, 1 = 1,...,n, which are either numerical or nominal, being ; their
corresponding domains. Thus, an example x is represented as an n-dimensional
attribute vector

X=(Z1,...,Zp) ED =Dy x--- x D, .

Each example is labeled with one of M possible classes L = {A1,..., Aa}. Many
current real-world classification problems, such as cancer classification [2] or the
recognition of fingerprints [3], are characterized by having more than two classes,
that is M > 2. These problems are formally known as multi-class classification
problems.
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Classification algorithms aim to extract the implicit knowledge from previ-
ously known instances of these problems by creating a model, called a classifier,
that generalizes the peculiarities of the set of labeled examples and is capable
of predicting the class for previously unobserved examples. Hence, the classifica-
tion accuracy of a classifier is directly influenced by the quality of the training
data used to build the model. Data quality depends on several components [4],
for instance, the source of that data and the input of the data, inherently sub-
ject to errors, among others. Real-world datasets rarely avoid this type of errors
and they usually contain corrupted data that may hinder the interpretations,
decisions and therefore, the models created from the data.

Generally, the more classes in a problem, the more complex the decision
boundaries are. Moreover, the presence of noise in such problems adds an ex-
tra complexity. Traditionally, decomposing a multi-class problem into several
binary, easier to solve subproblems, has been related to obtaining a good per-
formance when data are affected by noise —although this issue has not been
explicitly addressed yet. In such a way, the complexity of the original problem
is decreased, and as a consequence, noisy instances are divided into each sub-
problem, which also decreases the noise effect on the final performance of the
classifier. These techniques are called binary decomposition strategies [8]. The
One-vs-One (OVO) [9] and One-vs-All (OVA) [10] schemes are the most studied
in the literature. OVO is based on dividing the problem into as many binary
problems as possible combinations between pairs of classes, while OVA learns a
classifier for each class. Generally, OVO outstands over OVA as reflected in the
literature [11], [12], [13].

In this work our aim is to analyze the suitability of the OVO binary decom-
position strategy with training data suffering from class noise. We will study
the differences between OVO and non-OVO (baseline) classifiers built by C4.5
[6] through an analysis of their accuracy, which we will also contrast using the
proper statistical tests as recommended in the specialized literature [I4]. Notice
that C4.5 is capable of handling multiple classes inherently; hence, we will be
able to compare the OVO scheme with their baseline performances. In order to
validate our hypothesis and to extract meaningful conclusions, we will prepare
an experimental framework considering 21 real-world datasets. Four different
levels of noise are introduced in the class labels in the training partitions: 5%,
10%, 15% and 20%. Thus, 84 new synthetic datasets with class noise will be
created. The test sets will remain unchanged in order to check which strategy,
OVO or baseline, performs better in the presence of noisy data.

The rest of this contribution is organized as follows. Section [2] presents an
introduction to classification with noisy data. Section [ is devoted to the moti-
vations for the use of binary decomposition strategies in multi-class classification
problems, recalling the OVO decomposition scheme. Next, Section [ describes
the experimental framework. Section [l includes the analysis of the experimental
results obtained by the classifiers with and without the use of the OVO decom-
position scheme. Finally, in Section [0l we present our concluding remarks.
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2 Classification with Noisy Data

Real-world data is never perfect and often suffers from corruptions that harm
the interpretations of the data, the models created and the decisions made. In
classification, noise can negatively affect the system performance in terms of
classification accuracy, building time, size and interpretability of the classifier
built [5].

The quality of any dataset is determined by a large number of components as
described in []. Some of these are the source of the data and the input of the
data, which are inherently subject to error.

Class labels and attributes are two information sources which can influence
the quality of a classification dataset. The quality of the class labels represents
whether the class of each instance is correctly assigned; and the quality of the
attributes indicates how well the attributes characterize instances for classifica-
tion purposes. Based on these two information sources, we can distinguish two
types of noise in a given dataset [5]:

1. Class noise. These errors occur when an instance belongs to the incorrect
class. Class noise can be attributed to several causes, including subjectivity
during the labeling process, data entry errors, or inadequacy of the informa-
tion used to label each object. There are two possible types of class noise:

— Contradictory examples: the same examples appear more than once and
are labeled with different classes.
— Misclassifications: instances are labeled with the wrong classes [18§].

2. Attribute noise. It is used to refer to corruptions in the values of one or
more attribute of instances in the dataset. Examples of attribute noise in-
clude: erroneous attribute values, missing or unknown attribute values, and
incomplete attributes or “do not care” values.

The two most common approaches to noisy data in the literature are:

— Robust learners. They are characterized by being less influenced by noisy
data. An example of a robust learner is the C4.5 algorithm [6]. C4.5 uses
pruning strategies to reduce the chances of trees being built with noise in the
training data. However, when the noise level becomes relatively high, even
a robust learner may obtain a poor performance.

— Noise preprocessing techniques. They are classifier-independent and try to re-
move the negative impact of noise in the datasets prior to creating a model
over the original data. Among these techniques, the most well-known meth-
ods are noise filtering ones [7].

In this contribution, we focus on class noise because it is very common in real-
world data [5], [I8]. These errors can be produced in situations where different
classes have similar symptoms, as generally happens on the class boundaries. We
compare the performance of the C4.5 robust learner considering or not the use
of decomposition. We want to verify that the effect of class noise on the accuracy
of the decision trees created by C4.5 is lower considering the use of OVO, even
if this classification algorithm is a robust learner.
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3 Addressing Multi-class Classification by Decomposition

Classification tasks involving more than two categories or classes, commonly
known as multi-class classification problems, are frequent in real-world problems.
Multi-class problems are more general than the special case considering only two
classes (binary classification problems).

A multi-class classification problem is intrinsically more complex than a binary
one since the generated classifier must be able to separate the data into a higher
number of categories, which increases the chances of incorrect classifications (in
a two-class balanced problem, the probability of a correct random classification
is 1/2, whereas in a multi-class problem it is 1/M).

In order to reduce the complexity of the original problems and/or to be able to
use binary classification techniques to solve multi-class classification problems,
in the literature two approaches have been adopted:

— Adaptation of the internal operations of the learning algorithm.
— Decomposition of the multi-class problem into a set of easier to solve two-
class problems.

The extension of a binary learning algorithm to a multi-class version may be very
difficult to perform in many cases [I5]. Therefore, it is more common to use the
alternative which decomposes the multi-class problem into binary subproblems,
a strategy called decomposition.

3.1 Decomposition Strategies for Multi-class Problems

Several motivations for the use of binary decomposition strategies in multi-class
classification problems can be found in the literature [11], [I2]. For example, in
[12], the reduction of the complexity involved in the classes’ separation when
using a decomposition approach was shown. Also in [16], the authors point out
the advantages of the use of binary decompositions when the classification errors
for different classes have distinct costs. This way, the binary predictors generated
may impose preferences for some of the classes. Decomposition also opens up new
possibilities for the use of parallel processing, since the binary subproblems are
independent and can be solved with different processors.

Dividing a problem into several new problems which are then independently
solved implies the need for a second phase where the outputs of each problem
have to be aggregated. Therefore, decomposition includes two steps:

1. Problem division. In this phase, the problem is decomposed into several bi-
nary subproblems which are solved by independent binary classifiers, called
base classifiers [12]. Different decomposition strategies can be found in the
literature [§], the most common strategies are OVO [9] and OVA [I0], as
discussed above.

2. Combination of the outputs [I1]. In this phase, the different outputs of the
binary classifiers are aggregated in order to output the final class prediction.
The simplest method is a voting strategy where each classifier gives a vote,
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and the final prediction is given by the class achieving the largest amount of
votes.

In this contribution, we consider the OVO decomposition strategy due to its
several advantages shown in the literature [I1], [12]:

— OVO creates simpler borders between classes than OVA. This is one of the
main advantages of OVO that we want to exploit when training with noisy
data. In such a way, the noise’s corruptions in these regions will be less
notable and the classifiers will be less influenced. Moreover, as OVO only
distinguishes between two classes, if the noisy examples do not belong to one
of the two classes that have been learned to be distinguished by a concrete
classifier, this classifier will not be affected by noise and its predictions will
not be altered.

— OVO generally obtains a higher classification accuracy and a shorter training
time than OVA because it creates easier and smaller problems.

— OVO has less tendency to create imbalanced datasets which can be counter-
productive [13].

In [I1I], an exhaustive study comparing different methods to combine the out-
puts of the base classifiers in the OVO and OVA strategies has been developed.
However, the most used combination, also used in our experiments, is the voting
strategy already mentioned.

3.2 One-vs-One Decomposition Scheme

The OVO decomposition strategy is based on dividing a classification problem
with M classes, L = {A1,..., A}, into M (M —1)/2 binary problems. Each new
subproblem only considers the examples of the training data corresponding to a
different pair of classes (A;, Aj), with ¢ < j.

In the learning phase, a binary classifier is created for each problem, which
is capable of distinguishing between a different pair of classes. In the validation
phase, an example is presented to each one of the binary classifiers. This way,
each classifier discriminating between classes A; and A; provides a confidence
degree r;; € [0,1] in favor of the former class, and another confidence degree in
favor of the latter rj; € [0,1] (if the classifier does not provide the latter, it is
computed by rj; = 1 —7;;). These outputs are represented by a score matrix R:

Ja— 7"12...7"1m
R=| - (1)

Tml Tm2 **° —

The final output of the system is derived from the score matrix by different
aggregation models. As we have previously mentioned, the voting strategy is the
simplest method:

Class = arg max Z Sij (2)

=l Cicm
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where s;; is 1 if r;; > r;; and 0 otherwise. This strategy has shown a competitive
behavior with different classifiers [I1] obtaining similar results in comparison
with more complex strategies.

Although the number of classifiers is of M?2 order, as each classifier is only
trained with examples from two classes, the required time is distributed, and
hence is usually low. However, there is also a drawback: when a new example
is submitted to all the classifiers, some of them may not have seen a similar
instance before, so their output would not be significant; these cases are called
non-competent examples [I7]. In any case, OVO aggregations usually suppose
that the base classifiers will be correctly predicted if the new pattern is one of
the considered pairs of classes, and therefore, considering a voting strategy, the
class with the largest number of votes will be the correct class.

4 Experimental Framework

In this section, we present the details of the experimentation developed in this
contribution. First, in Subsection 1], we describe the base datasets of our ex-
perimentation. Then, we show how to build up the noisy datasets from the base
ones in Subsection Finally, the methodology for the analysis of the results
is explained in Subsection

4.1 Base Datasets

The experimentation is based on 21 real-world multi-class classification problems
from the UCI repository@. Table [ shows the datasets sorted by the number
of classes (#Cla). Moreover, for each dataset, the number of instances (#Ins)
and the number of attributes (#Att) along with the number of real, integer and
nominal attributes (R/I/N) are presented. Some of the largest data-sets (nursery,
page-blocks, penbased, satimage, shuttle and led7digit) were stratified at 10%
in order to reduce the computational time required for training. For datasets
containing missing values (automobile and dermatology), these instances with
missing values were removed from the dataset before the partitioning.

4.2 Inducing Noise in Datasets

The initial amount of noise present in the previous datasets is unknown so we
cannot make any assumption about it. We need to control in some way the
amount of noise in each dataset. This will help us to check how a higher or a lower
amount of noise affects the models obtained by the classification algorithms. For
these reasons, we systematically and independently add noise to each dataset,
as proposed in [5].

In order to introduce a level of class noise of 2% in a dataset, we use a pairwise
scheme as indicated in [I8]: given a pair of classes (X, Y'), with X the majority

! http://archive.ics.uci.edu/ml/datasets.html
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Table 1. Summary description for classification datasets

Dataset #Cla #Ins #Att (R/I/N) Dataset #Cla #Ins #Att (R/I/N)
balance 3 625 4 (4/0/0) glass 7 214 9 (9/0/0)

contraceptive 3 1473 9 (0/9/0) satimage 7 643 36 (0/36/0)
iris 3 150 4 (4/0/0) segment 7 2310 19 (19/0/0)
splice 3 319 60(0/0/60)  shuttle 7 2175 9 (0/9/0)
thyroid 3 720 21 (6/15/0) 200 7 101 16 (0/0/16)
wine 3178 13 (13/0/0) ecoli 8 336  7(7/0/0)
nursery 5 12690 8(0/0/8)  led7digit 10 500 7 (7/0/0)
page-blocks 5 547 10 (4/6/0)  pembased 10 1099 16 (0/16/0)
automobile 6 150 25 (15/0/10) yeast 10 1484 8 (8/0/0)
dermatology 6 358 34 (0/34/0)  vowel 11 990 13 (10/3/0)
flare 6 1066 11 (0/0/11)

class and Y the second majority class, and a noise level 2%, an instance with
the label X has a probability of % to be incorrectly labeled as Y. As indicated
in [5], this scheme is appropriate because it is more likely that only certain types
of classes are mislabeled.

In order to create a noisy dataset from the original one, the noise is consis-
tently introduced into the training partitions as follows:

1. A level of noise 2% is introduced into a copy of the full original dataset.

2. Both datasets, the original one and the noisy copy, are partitioned into 5
equivalent folds having the same examples per fold.

3. We use a cross-validation scheme for new noisy datasets, building the train-
ing partitions with the noisy copy, and the test partitions with the original
dataset.

The accuracy estimation of each classifier in a dataset is obtained by means of 5
runs of a stratified 5-fold cross-validation. The dataset is divided into 5 partition
sets with equal numbers of examples and maintaining the proportion between
classes in each fold. Each partition set is used as a test set for the model learned
from the four remaining partitions. This procedure is repeated 5 times. We use
5 partitions as if each partition has a large number of examples, the noise effects
will be more notable, facilitating their analysis.

Introducing noise into training partitions makes it possible to observe how
noise affects the test accuracy of the classifiers when training with noisy data.
The accuracy of the model built over the original training set without additional
noise can act as a reference value. In this way, we can observe how the accuracy
of the models built with noisy training sets is more or less affected with respect
to this value by the noise effect.

From the 21 base datasets from the UCI repository we have created a large
collection of new noisy datasets. We have studied the levels of noise: z = 5%,
x = 10%, x = 15% and x = 20%. Therefore, 84 datasets with class noise were
created.
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4.3 Analysis Methodology

The main aim of this contribution is to check whether the use of the OVO
binary decomposition strategy improves the classification performance in multi-
class datasets affected by class noise. We will study the advantages provided by
this strategy against not using it in this framework. For this reason, we consider
the C4.5 algorithm which can deal with multi-class problems directly, and we use
the OVO scheme in order to find whether there are improvements with respect
to the original algorithm that does not use it.

In order to be able to make this comparison, we use the mean accuracy pro-
vided by C4.5 over the test sets for each level of induced noise, defined as its
performance averaged across all classification problems. Along with the test ac-
curacy, we use the Wilcoxon signed ranks statistical test [14]. This is a non-
parametric pairwise test that aims to detect significant differences between two
sample means; that is, the behavior of the two implicated algorithms in the com-
parison. Statistical analysis needs to be carried out in order to find significant
differences among the results obtained by the studied methods. Accordingly, we
do not only consider the mean accuracy, but we also take into account the sta-
tistical differences. Therefore, our conclusions are not only based on averaged
mean results. For each level of noise, we compare C4.5 using OVO versus C4.5
trained with the complete dataset with the Wilcoxon test and we obtain the
p-values associated with these comparisons.

5 Analysis of the One-vs-One Decomposition Strategy
with Data with Class Noise

In this section we analyze the performance of C4.5 using the OVO decomposition
with respect to its baseline results when dealing with data with class noise. Table
shows the test accuracy results of C4.5 in each single dataset (with and without
OVO) and also the mean test accuracy as an indicator at each noise level. Table
shows the associated p-values of the Wilcoxon test between the OVO and
non-OVO version at each noise level.

From these two tables of results we should stress several points:

— The good performance of C4.5 when using the OVO strategy must be high-
lighted, since the test accuracy increases with respect to the absence of
decomposition.

— Although C4.5 is considered a robust learner tolerant to class noise, the bi-
nary decomposition into subproblems causes the algorithm to achieve better
accuracy rates than baseline at all noise levels.

— Moreover, as shown in Table[3, we can observe from the associated p-values
that there are significant differences in the results of C4.5 when using OVO
with respect to the baseline results, in favor of OVO. This occurs for all noise
levels.
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Table 2. Test accuracy results on each single dataset with class noise. The best results
between the OVO and the non-OVO version for each noise level have been stressed in
bold.

C4.5 without decomposition C4.5 with OVO
Noise % 0% 5% 10% 15% 20% 0% 5% 10% 15% 20%
autos 76.7339 78.0645 71.0484 72.9435 76.6935 80.5242 79.8589 77.3387 77.3185 77.3790
balance 77.2800 77.4400 77.6000 76.8000 76.9600 80.1600 80.3200 81.4400 79.6800 78.2400

contraceptive 52.6798 52.3406 50.6415 51.2561 48.8083 51.7297 53.1588 51.7290 52.0689 50.0989
dermatology 92.4648 92.4687 91.6236 93.0203 91.3498 95.5321 94.1354 93.2981 94.9804 93.2942

ecoli 78.2836 79.4776 77.6822 77.0896 77.6997 78.5777 77.1071 80.0702 76.8130 78.5821
flare 74.4803 74.4803 74.4803 74.4803 74.4803 74.2947 7T4.2947 74.2947 74.2947 74.2947
glass 68.7265 63.5991 65.4707 62.2148 64.0421 71.9048 71.0188 67.2979 64.0310 63.5327
iris 93.3333 93.3333 93.3333 94.0000 92.6667 93.3333 93.3333 93.3333 93.3333 92.0000

led7digit 70.6000 70.4000 70.0000 70.8000 70.8000 71.8000 71.6000 72.0000 72.2000 72.0000
newthyroid  91.1628 91.6279 89.7674 88.3721 91.6279 94.4186 94.4186 92.5581 90.6977 90.6977
nursery 89.0446 89.0446 89.0446 89.0446 89.0446 88.8907 88.9676 88.8138 88.7369 88.7369
page-blocks  97.0212 97.0030 96.8386 96.3269 96.4730 97.1125 97.1126 97.1857 96.8384 97.0760
penbased 96.1518 96.4701 96.2973 96.3609 96.2518 97.0069 96.9341 96.6339 96.8158 96.8887
satimage 85.5789 85.6410 84.2269 83.6364 82.9371 87.0396 86.3869 84.6620 83.6364 85.0816

segment 96.7100 96.5368 96.7100 96.1905 96.3636 97.0130 96.7532 96.9697 96.7100 96.6234
shuttle 99.5402 99.4943 99.5862 99.5402 98.9885 99.7241 99.7241 99.6322 99.6782 99.1724
splice 79.3105 78.9980 74.6230 74.2659 70.2282 89.0179 85.2530 82.4454 82.7431 81.1756
thyroid 99.4861 99.4583 99.4444 99.3611 99.0556 99.4722 99.4306 99.4167 99.2917 98.9167
vowel 79.4949 78.1818 77.0707 78.6869 76.8687 79.7980 78.9899 78.7879 78.0808 77.5758
wine 94.9048 90.9841 89.3016 92.6190 88.1746 92.1270 92.6667 89.8413 93.7460 89.8889
yeast 54.9181 55.7951 53.3697 54.0411 54.1792 58.4239 58.2214 58.6257 58.2209 56.6043
700 94.0952 95.0476 95.0476 93.0952 93.1429 93.0952 92.0952 92.0952 90.0952 90.1429
mean 83.7273 83.4494 82.4185 82.4612 82.1289 85.0453 84.6264 84.0213 83.6369 83.0910

Table 3. Test accuracy results and Wilcoxon’s test p-values

Noise % 0% 5% 10% 15% 20%
p-value 0.0129 0.0096 0.0017 0.0228 0.0262

— There are several datasets with a noise level of 0%, that is, without additional
noise introduced, such as contraceptive or wine, where the non-OVO version
outperforms the OVO version. However, OVO perform better than non-OVO
when we introduce noise into these datasets.

These results show the usefulness of decomposition strategies to deal with class
noise. For this type of noise, the overall test accuracy of C4.5 using the OVO
decomposition strategy is always better than that of its baseline classifier, at
each level of induced noise. Also, as reflected by the Wilcoxon test p-values, a
better and significant global behavior is shown when OVO is used. This clearly
shows the better performance of C4.5 using this decomposition strategy in a
noisy framework. This better behavior of the OVO scheme dealing with class
noise can be attributed to two main causes:

— Decomposing the problem into several binary subproblems increases the sep-
arability of the classes, obtaining simpler and more regular borders between
some pairs of classes, thereby facilitating the construction of the classifier.
In such a way, more compact and general classifiers can be constructed.
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— Collecting information from different models may provide a more robust
method for classification in noisy environments than collecting information
from a single model. Thus, if a noisy example does not belong to one of
both classes involved in the training of a classifier, the classifier will not be
affected by that noise, and its predictions will not be hindered.

6 Concluding Remarks

In this contribution we have analyzed the suitability of the OVO decomposition
scheme when dealing with datasets with class noise in multi-class problems. We
have created 84 datasets with class noise. We have tested the C4.5 algorithm over
these datasets. This method has been compared in its original version, which di-
rectly address the multi-class problem, and considering the OVO decomposition
strategy.

The test accuracy results have shown that C4.5 using OVO performs better
when trained over noisy data than the baseline method. In addition, the sta-
tistical tests carried out have shown that these improvements using OVO are
significant.

This better behavior of OVO with data with class noise can be attributed to
two main causes: (1) decomposing the problem into several binary subproblems
lead us to create simpler, easier to build, classifiers and (2) if a noisy example
does not belong to one of both classes involved in the training of a classifier
using OVO, the classifier will not be affected by that noise, and its predictions
will not be hindered.

In future works, the consideration of other kinds and schemes of noise, e.g. the
attribute noise; the incorporation of additional algorithms; or the comparison of
the decomposition strategies with other preprocessing techniques to deal with
noisy data can be interesting.
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