
This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted
PDF and full text (HTML) versions will be made available soon.

Real-time tone mapping on GPU and FPGA

EURASIP Journal on Image and Video Processing 2012, 2012:1 doi:10.1186/1687-5281-2012-1

Raquel Urena (ruperez@atc.ugr.es)
Pablo Martinez-Canada (pablomc@correo.ugr.es)
Juan Manuel Gomez-Lopez (jmgomez@atc.ugr.es)

Christian Morillas (cmorillas@atc.ugr.es)
Francisco Pelayo (fpelayo@ugr.es)

ISSN 1687-5281

Article type Research

Submission date 7 April 2011

Acceptance date 15 February 2012

Publication date 15 February 2012

Article URL http://jivp.eurasipjournals.com/content/2012/1/1

This peer-reviewed article was published immediately upon acceptance. It can be downloaded,
printed and distributed freely for any purposes (see copyright notice below).

For information about publishing your research in EURASIP Journal on Image and Video Processing
go to

http://jivp.eurasipjournals.com/authors/instructions/

For information about other SpringerOpen publications go to

http://www.springeropen.com

EURASIP Journal on Image and
Video Processing

© 2012 Urena et al. ; licensee Springer.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:ruperez@atc.ugr.es
mailto:pablomc@correo.ugr.es
mailto:jmgomez@atc.ugr.es
mailto:cmorillas@atc.ugr.es
mailto:fpelayo@ugr.es
http://jivp.eurasipjournals.com/content/2012/1/1
http://jivp.eurasipjournals.com/authors/instructions/
http://www.springeropen.com
http://creativecommons.org/licenses/by/2.0

Real-time tone mapping on GPU and FPGA

Raquel Ureña*1, Pablo Martínez-Cañada1, Juán Manuel Gómez-López1, Christian

Morillas1 and Francisco Pelayo1

1Department of Computer Architecture and Technology, CITIC – ETSIIT, University of

Granada, Granada, Spain

*Corresponding author: ruperez@atc.ugr.es

Email addresses:

RUP: ruperez@atc.ugr.es

PM-C: pablomc@correo.ugr.es

JMG-L: jmgomez@atc.ugr.es

CMG: cmorillas@atc.ugr.es

FJPV: fpelayo@.ugr.es

Abstract

Low-level computer vision algorithms have high computational requirements. In this

study, we present two real-time architectures using resource constrained FPGA and GPU

devices for the computation of a new algorithm which performs tone mapping, contrast

enhancement, and glare mitigation. Our goal is to implement this operator in a portable

and battery-operated device, in order to obtain a low vision aid specially aimed at

visually impaired people who struggle to manage themselves in environments where

illumination is not uniform or changes rapidly. This aid device processes in real-time,

with minimum latency, the input of a camera and shows the enhanced image on a head

mounted display (HMD). Therefore, the proposed operator has been implemented on

battery-operated platforms, one based on the GPU NVIDIA ION2 and another on the

FPGA Spartan III, which perform at rates of 30 and 60 frames per second, respectively,

when working with VGA resolution images (640 ´ 480).

Keywords: reconfigurable hardware; graphics processor; real-time system; low-vision

aid; tone mapping; resource-constrained platforms.

1. Introduction

Luminance levels can change dramatically over time and depending on the place. The

average luminance in an outdoor scene can be 100 million times greater during the day

than at night, and in the same scene the range of luminance can also vary with ratios on

the order of 10,000:1 from highlights to shadows [1].

The human visual system is able to capture a wide range of light levels, and it functions

across the changes in luminance employing diverse adaptation mechanisms. Some of

them include the pupil, the rod, and the cone receptors. As a result, humans can recognize

the details clearly in both dark and bright regions in the same scene. However, vision is

not equally good under all conditions. Particularly, the elderly and those who suffer from

visual disorders may be profoundly impaired by the low intensity, high dynamic range

(HDR), and rapidly changing illumination conditions we often experience in our daily

live as it is stated by Irawan et al. [1].

The human visual system can properly recognize details in both dark and bright regions

in a scene, while the image captured by conventional digital cameras may be either too

dark or too bright to present details [2]. This is due to the limited dynamic range of digital

devices. Hence, some image-processing techniques must be applied to enhance these

images and to map them on displays with a limited dynamic range.

The development of techniques for HDR image capture and synthesis has made tone

mapping an important issue in computer graphics. The fundamental problem is how to

map the large range of intensities found in an HDR image into the limited range

supported by a conventional display device.

Different TMOs have been introduced in the research literature which can be classified

into two broad categories: global and local operators.

Global operators apply a single mapping function to all pixels of the image, whereas local

operators modify the mapping depending on the characteristics of different areas of the

image.

Some examples of well-known global operators are the one proposed by Drago et al. [5]

and by Ward-Larsen et al. [6]. The former is based on logarithmic compression of

luminance values imitating the human visual system response to light. The logarithmic

bases employed are modified using a bias power function which produces a good

preservation of the details and the contrast. The TMO proposed by Ward-Larsen et al.

also performs logarithmic compression of the luminance as well as an iterative histogram

adjustment constrained in slope by the human threshold versus intensity.

The main drawbacks that these algorithms present are that they require the calculations of

global statistic quantities, the maximum, and the log average. These global calculations

are very time-consuming when working with parallel architectures such as the GPU

architecture. Moreover, they require the calculation of the logarithm of the luminance

which demands a great deal of memory resources in the FPGA implementation, since a

look-up-table (LUT) is required. Hence, these TMO are not suitable for being

implemented in resource-constrained devices as we aim to do. As it is stated in [7], to

achieve real-time performance more powerful GPUs are required.

One of the most relevant local TMO that can be found in the literature is the Mutiscale

Retinex with Color Restoration (MSRCR) [8] which performs dynamic range

compression, color constancy, and rendition. This operator brightens up dark areas of the

image without saturating the areas of good contrast, preserving the chromatic component.

It performs logarithmic range compression as well as combination of various Gaussian-

based scales to preserve the color.

Another local TMO is the proposed by Hu et al. [2], which employs bilateral filters and

divides the image in different regions according to the global histogram and then each

region is enhanced according to its individual properties.

The algorithm proposed by Horiuchi and Tominaga [9] takes advantage of both global

and local operators by performing global enhancement employing a model of

photoreceptor adaptation based on the general level of luminance and local adaption

inspired in the MSRCR.

We have decided to develop a new TMO since most of the TMOs that can be found in the

literature require time- or memory-consuming operations such as global statistical

calculations, iterative processing, or logarithmic compression of the dynamic range.

Therefore, they are not appropriate to be implemented on resource-constrained systems as

we aim to do. Actually most of the TMOs mentioned above have been implemented in

high-end GPUs by Zhao et al. [7] to achieve real-time image performance. It is also true

when working with FPGA-based devices. As shown in [10] existing hardware

implementations require high-end FPGAs in order to get real-time operation. Moreover,

the existing operators are not able to properly mitigate glares as well as enhance dark

areas in the same scene while enhancing the details of the image such as the edges. Our

system is required to attenuate glares in the images, since low-vision-affected persons

present difficulties in their adaptation mechanisms to illumination changing conditions.

enhanced image output. As we can observe, our GPU implementation of the TMO is

comprised of several CUDA kernels. The general structure of the implemented CUDA

modules is depicted in Figure 3.

To accurately size the kernels we have used the CUDA Occupancy Calculator tool that

shows the occupation of the multiprocessor’s cache and its percentage of utilization [16].

The thread block size is chosen in all cases so that multiprocessor occupancy is 100%.

The size of the GRID (number of processing blocks to be executed by the kernel) is

dynamically set according to the size of the image. The streaming multiprocessors are

connected to large global memory (512 MB in ION2), which is the interface between the

CPU and the GPU. This DRAM memory is slower than the shared memory; therefore,

before starting the computations, all the threads of a block load the required image

fragment in the shared memory.

Depending on how the data are encoded in the GPU global memory, each thread can load

one element if working with 4-byte datum or 4 data if working with 1-byte datum. The

global memory accesses of the GPU for both reading and writing are done so that in one

clock cycle all the threads of a warp (L) access to 4·L bytes of RAM, where L is equal to

32 in CUDA Compute Capability 1.2 GPUs.

Before turning to the processing stage all the threads of the processing block have to wait

in a barrier to ensure that all of them have loaded its corresponding data. After the

calculation step may be a second stage of synchronization of the block threads before

writing to the GPU global memory.

Since we are unable to connect the camera directly to the GPU, image transfers to and

from the GPU via the PCI-Express bus are required. The interface between the host and

the GPU global memory is the bottleneck of the application so as it is depicted in

Figure 2, the data that transfer between the host and the device have been minimized.

Furthermore, each image data are encoded as 1-byte unsigned integer. Therefore to

encode a color pixel 3 bytes are required. When more precision is needed a conversion to

floating point is done once the image is stored in the GPU global memory, exploiting the

parallelism provided by the GPU.

4.1. GPU implementation of the retina model

In order to optimize the spatial filtering process, the system takes advantage of the linear

property of the convolution operator. Therefore, we can reduce the processing only to the

convolution of each color channel with two different Gaussian masks. Then, these filtered

channels are linearly combined. Equations (16) to (18) describe mathematically this

simplification:

 (16)

 (17)

 (18)

Moreover, the GPU implementation of the retina-like processing relies extensively on 2D

separable convolution operations that are highly data-parallel and thus well matched to

the GPU architecture. Therefore, the computational complexity is reduced from to

 being the filter mask size.

In order to carry out these convolutions in real-time we have developed two CUDA

filtering kernels, one for the rows and another one for the columns. Both modules are

very similar so we detail only the one for rows.

The convolution operation requires a neighborhood with the same width that the filter

mask to calculate the result for each pixel. So, each thread transfers one datum from the

global memory to the shared memory. In order to get the maximum precision and to

avoid bank conflicts in shared memory, these data are stored as floating point data.

So, as to maximize the performance of the system and to exploit the inherent parallelism

on the programmable device selected for the implementation we chose a pipelined

architecture, able to process a pixel every clock cycle.

As in the previous section, we have implemented two main procedures, the retina-like

filtering and the brightness equalization. In the next sections, we explain each of these

modules in detail, as well as the HSV conversion module, which requires a specific

implementation adapted to the FPGA.

5.1. Implementation of the retina-like filtering

The convolution process requires a set of pixels of its neighborhood to calculate each

pixel as we have explained before. To resolve this problem we use the convolution

computation architecture proposed by Ridgeway [21], depicted in Figure 5. In order to

use 7 ́ 7 filtering masks we need 7 FIFO buffers that store the first 7 image rows and

seven shift registers that are responsible for storing the 49 neighboring pixels for the

current convolution. The serial connection of the FIFO memories emulates the vertical

displacement of the mask and the transfer of values of the FIFO memories to the shift

registers emulates the horizontal scrolling. Then, the accumulators marked as “ACCUM

x” add those pixels that are multiplied by the same coefficients of the mask. We have six

products as a result of breaking down the process of convolution taking advantage of the

linear property of the convolution as we have mentioned before. Then, we have to take

into account the weighting to be applied according to the percentage of dark pixels

present in the image.

5.2. HSV conversion

The calculation of the Hue component (H) requires complex computation. To avoid that,

it has been implemented using a LUT with 215 inputs of 8-bits each one mapped into the

FPGA BlockRAM modules. This LUT employs a 36% of the available memory

(262 Kbits). Besides, to get the other two color components, saturation (S) and brightness

(V), two dividers have been implemented. The design of the dividers is fully pipelined,

and they can achieve a throughput of one division per clock cycle. The division of the S

component needs a fractional remainder because the minimum of R, G, and B always is

equal or less than the sum of them. This fact results in an 18-cycle delay which has to be

considered in the H component computation in order to get synchronization.

5.3. Brightness equalizer

To implement the brightness equalizer the whole V color plane, whose size is 640 ́ 480

pixels, the image is divided in 35 blocks with 100 ´ 100 pixels and their cumulative

distributions are calculated. While the cumulative distributions for the current frame are

being computed in parallel, its brightness channel is being equalized using the

distributions computed for the previous frame. The distributions computation is

performed in five steps, calculating seven distributions in parallel at each step, as image

is being scanned. This procedure finishes when the 35 cumulative distribution functions

are stored in the RAM memory. To develop the equalizer we rely extensively in the

implementations explained in [10].

6. Results

Regarding to the results provided by the proposed operator, Figure 6 shows the output

from the different processing stages. Figure 6a shows a dark image [22] in which main

features of the scene cannot be appreciated, only the window can be distinguished.

Figure 6b shows the output from the retina-like filtering, as the whole image is too dark,

the retina output mainly enhances the edges of the main features. Figure 6c shows the

To measure the accuracy of both approaches we have calculated the peak-signal-to-noise

ratio (PSNR), of the output image obtained with both, GPU and FPGA, systems with

respect to the one obtained with the CPU, according to Equation (20). The resulting

image computed with the FPGA obtains a PSNR of 30 dB, whereas with the GPU the

value of the PSNR is infinite since the output image is identical to the one obtained with

the CPU. The FPGA obtains a lower value for the PSNR as a result of the different

algorithmic simplifications that had to be adopted, and the use of fixed point arithmetic.

 (20)

where I stands for the resulting image obtained with the CPU, K is the resulting image

obtained with the GPU or the FPGA, m and n are de dimensions of the image and

is the maximum value that a pixel can reach (255 in our case).

Table 4 details the percentage of the total processing time employed in each of the tasks

by the GPU and by the FPGA. In the case of the FPGA, the percentage of time is

obtained for each module separately, when the whole system is working, all the tasks are

being executed in a pipeline. On the other hand, the GPU employs only a 6% of the

processing time in the histogram adjustment, since the histogram calculation is performed

in parallel with the RGB to HSV conversion. Moreover, more than 30% of the time is

employed in performing image transfers from CPU memory to GPU memory, so further

improvement can be achieved performing the memory storage in parallel with the

computation. Table 5 summarizes the power consumption, clock frequency, and weight

for both systems.

According to the tables presented, we can observe that real-time performance (over

25 fps) is reached with both embedded solutions. Nevertheless the FPGA implementation

is an order of magnitude more power efficient than the GPU, although it provides less

accuracy in the computations and therefore output images with less PSNR.

On the other hand, the FPGA solution is less weight, whereas the GPU solution is more

affordable since its use is widely extended. In the case of the GPU, a fixed architecture is

provided and the goal is to obtain its maximum performance, whereas an FPGA design

leaves more choices to the engineer. This flexibility of the FPGA comes at the cost of a

much larger design time than the GPU and makes tuning the system more difficult than in

the case of the GPU.

7. Conclusions

High-end GPUs and FPGAs are suitable for highly parallel complex algorithms such as

pixel-wise processing. On the other hand, limited resources GPUs and FPGAs, with less

computing capability and reduced power consumption, can compete with other embedded

solutions in portable applications which also require image processing parallel

computation to achieve real-time performance.

We have presented two implementations of a new TMO on a GPU NVIDIA ION2

integrated in a small size netbook and on a Spartan 3 FPGA-based platform reaching in

both cases real-time performance when working with 640 ´ 480 RGB images. The FPGA

implementation provides higher frame rates and less power consumption, whereas the

GPU implementation provides more precision in the computation and therefore higher

quality output images.

Since both implementations use portable and battery-operated platforms they can be used

as low-vision aids specially aimed at visually impaired people, such as those affected by

Retinitis Pigmentosa, who present several difficulties to manage themselves in

environments where illumination is not uniform or in low illumination environments.

Competing interests

The authors declare that they have no competing interests

Acknowledgments

This study was supported by the Junta de Andalucía Project P06-TIC-02007, the Spanish

National Grants RECVIS (TIN2008-06893-C03-02) and DINAM-VISION (DPI2007-

61683), the project GENIL-PYR-2010-19 funded by CEI BioTIC GENIL CEB09-0010,

and the Special Research Programme of the University of Granada.

References

[1] P Irawan, JA Ferwerda, SR Marschner, Perceptually based tone mapping of high

dynamic range image streams. Paper presented at the Eurographics Symposium on

Rendering, Konstanz, Germany, pp. 231–242, 29 June–1 July 2005

[2] K-J Hu, M-Y Lu, J-C Wang, T-I Hsu, T-T Chang, Using adaptive tone mapping to

enhance edge-preserving color image automatically. EURASIP J. Image Video Process.

2010, Article ID 137134, 11 (2010). doi:10.1155/2010/137134

[3] B Cope, P Cheung, W Luk, L Howes, Performance comparison of graphics

processors to reconfigurable logic: a case study. IEEE Trans. Comput. 59, 433–448

(2010)

[4] K Pauwels, M Tomasi, J Diaz Alonso, E Ros, MM Van Hulle, A comparison of

FPGA and GPU for real-time phase-based optical flow, stereo, and local image features.

IEEE Trans. Comput. In press.

[5] F Drago, K Myszkowsky, T Annen, N Chiba, Adaptative logarithmic mapping for

displaying high contrast scene. Paper presented at the Computer Graphics Forum, 22, pp

419–426, 2003

[15] GPU NVDIA ION 2. http://www.nvidia.com/object/picoatom_specifications.html

(2011)

[16] NVIDIA Corporation, NVIDIA CUDA C Programming Best Practices Guide 2.3.

(2009)

[17] R Ureña, P Martínez-Cañada, JM Gómez-López, C Morillas, F Pelayo, A portable

low vision aid based on GPU. Paper presented at First International Conference on

Pervasive and Embedded Computing and Communication Systems. PECCS 2011,

Vilamoura, Portugal, pp. 201–206, 5–7 March 2011

[18] Asus EEPC 1201 PN.

http://www.asus.com/product.aspx?P_ID=N0JLbhfgdnpw5FaY (2011)

[19] V. Volkov, Prologue Quarterly Of The National Archives (2010) (available at

http://people.sc.fsu.edu/~gerlebacher/gpus/better_performance_at_lower_occupancy_gtc

2010_volkov.pdf)

[20] SB platform. http://www.sevensols.com/index.php?seccion=262&subseccion=270

(2011)

[21] D Ridgeway, Designing Complex 2-Dimensional Convolution Filters (The

programmable Logic DataBook, Xilinx, 1994)

[22] The HDR Photografic Survey, http://www.cis.rit.edu/fairchild/HDR.html (2011)

[23] R Mantiuk, A Tomaszewska, W Heidrich. Color correction for tone mapping.

Computer Graphics Forum 28(2), 193–202 (2009)

[24] E Reinhard, K Devlin, Dynamic range reduction inspired by photoreceptor

physiology. IEEE Trans. Visual. Comput. Graph. 11(1), 13–24 (2005)

[25] A Yoshida, V Blanz, K Myszkowski, HP Seidel, Perceptual evaluation of tone

mapping operators with real-world scenes. Paper presented at IS&T/SPIE's 17th Annual

Symposium Electronic Imaging, San Jose, CA, USA, pp. 192–203, 2005

without

the retina-

like

output

(dB)

with the

retina-

like

output

(dB)

Kitchen

scene

–3.28 18.48 16.18 18.18 20.70 12.36 18.52

Car

scene

9.53 20.77 18.52 21.01 18.3 13.96 23.2

Table 2. Area and speed for the whole system on a Spartan 3 XC3S2000

Parameter Value

Slices 16545 (80%)

LUTs 30086 (73%)

RAMB 39 (97%)

 40.25 MHz

MULTs 26 (65%)

BUFGMUXs 7 (87%)

DCMs 2 (50%)

Table 3. Performance of GPU and FPGA implementations, frame size 640 ´́́́ 480

 CPU GPU FPGA

Performance (fps) 4 30 60

Speed up – 7.5 15

- RGB2HSV conversion

- Sub-histograms combination

- Look-up-table substitution

- 1D convolutions

- Linear combinations

- Enhanced Brightness channel computations

- HSV 2 RGB conversion

- Coarse-to-fine control

- Histogram equalization

- Image capture
- Memory management

T
I
M
E

Contrast enhancement

Retina-like processing

RGB input image

Look-up table

V Global histogram

Weighting factors

Retina output

GPU memoryCPU processes CPU memory GPU memory

V sub-histograms

GPU processes

HSV image

- Weighting factors calculation

- Memory management

- Final Image visualization

Enhanced Brightness channel

Output image

Figure 6

	Start of article
	Figure 1
	Figure 2
	Figure 3

