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Abstract 

Low-level computer vision algorithms have high computational requirements. In this 

study, we present two real-time architectures using resource constrained FPGA and GPU 

devices for the computation of a new algorithm which performs tone mapping, contrast 

enhancement, and glare mitigation. Our goal is to implement this operator in a portable 

and battery-operated device, in order to obtain a low vision aid specially aimed at 

visually impaired people who struggle to manage themselves in environments where 

illumination is not uniform or changes rapidly. This aid device processes in real-time, 

with minimum latency, the input of a camera and shows the enhanced image on a head 

mounted display (HMD). Therefore, the proposed operator has been implemented on 



battery-operated platforms, one based on the GPU NVIDIA ION2 and another on the 

FPGA Spartan III, which perform at rates of 30 and 60 frames per second, respectively, 

when working with VGA resolution images (640 ´  480). 

Keywords: reconfigurable hardware; graphics processor; real-time system; low-vision 

aid; tone mapping; resource-constrained platforms. 

 

1. Introduction 

Luminance levels can change dramatically over time and depending on the place. The 

average luminance in an outdoor scene can be 100 million times greater during the day 

than at night, and in the same scene the range of luminance can also vary with ratios on 

the order of 10,000:1 from highlights to shadows [1]. 

The human visual system is able to capture a wide range of light levels, and it functions 

across the changes in luminance employing diverse adaptation mechanisms. Some of 

them include the pupil, the rod, and the cone receptors. As a result, humans can recognize 

the details clearly in both dark and bright regions in the same scene. However, vision is 

not equally good under all conditions. Particularly, the elderly and those who suffer from 

visual disorders may be profoundly impaired by the low intensity, high dynamic range 

(HDR), and rapidly changing illumination conditions we often experience in our daily 

live as it is stated by Irawan et al. [1]. 

The human visual system can properly recognize details in both dark and bright regions 

in a scene, while the image captured by conventional digital cameras may be either too 

dark or too bright to present details [2]. This is due to the limited dynamic range of digital 

devices. Hence, some image-processing techniques must be applied to enhance these 

images and to map them on displays with a limited dynamic range. 





The development of techniques for HDR image capture and synthesis has made tone 

mapping an important issue in computer graphics. The fundamental problem is how to 

map the large range of intensities found in an HDR image into the limited range 

supported by a conventional display device. 

Different TMOs have been introduced in the research literature which can be classified 

into two broad categories: global and local operators. 

Global operators apply a single mapping function to all pixels of the image, whereas local 

operators modify the mapping depending on the characteristics of different areas of the 

image. 

Some examples of well-known global operators are the one proposed by Drago et al. [5] 

and by Ward-Larsen et al. [6]. The former is based on logarithmic compression of 

luminance values imitating the human visual system response to light. The logarithmic 

bases employed are modified using a bias power function which produces a good 

preservation of the details and the contrast. The TMO proposed by Ward-Larsen et al. 

also performs logarithmic compression of the luminance as well as an iterative histogram 

adjustment constrained in slope by the human threshold versus intensity. 

The main drawbacks that these algorithms present are that they require the calculations of 

global statistic quantities, the maximum, and the log average. These global calculations 

are very time-consuming when working with parallel architectures such as the GPU 

architecture. Moreover, they require the calculation of the logarithm of the luminance 

which demands a great deal of memory resources in the FPGA implementation, since a 

look-up-table (LUT) is required. Hence, these TMO are not suitable for being 

implemented in resource-constrained devices as we aim to do. As it is stated in [7], to 

achieve real-time performance more powerful GPUs are required. 



One of the most relevant local TMO that can be found in the literature is the Mutiscale 

Retinex with Color Restoration (MSRCR) [8] which performs dynamic range 

compression, color constancy, and rendition. This operator brightens up dark areas of the 

image without saturating the areas of good contrast, preserving the chromatic component. 

It performs logarithmic range compression as well as combination of various Gaussian-

based scales to preserve the color. 

Another local TMO is the proposed by Hu et al. [2], which employs bilateral filters and 

divides the image in different regions according to the global histogram and then each 

region is enhanced according to its individual properties. 

The algorithm proposed by Horiuchi and Tominaga [9] takes advantage of both global 

and local operators by performing global enhancement employing a model of 

photoreceptor adaptation based on the general level of luminance and local adaption 

inspired in the MSRCR. 

We have decided to develop a new TMO since most of the TMOs that can be found in the 

literature require time- or memory-consuming operations such as global statistical 

calculations, iterative processing, or logarithmic compression of the dynamic range. 

Therefore, they are not appropriate to be implemented on resource-constrained systems as 

we aim to do. Actually most of the TMOs mentioned above have been implemented in 

high-end GPUs by Zhao et al. [7] to achieve real-time image performance. It is also true 

when working with FPGA-based devices. As shown in [10] existing hardware 

implementations require high-end FPGAs in order to get real-time operation. Moreover, 

the existing operators are not able to properly mitigate glares as well as enhance dark 

areas in the same scene while enhancing the details of the image such as the edges. Our 

system is required to attenuate glares in the images, since low-vision-affected persons 

present difficulties in their adaptation mechanisms to illumination changing conditions. 







enhanced image output. As we can observe, our GPU implementation of the TMO is 

comprised of several CUDA kernels. The general structure of the implemented CUDA 

modules is depicted in Figure 3. 

To accurately size the kernels we have used the CUDA Occupancy Calculator tool that 

shows the occupation of the multiprocessor’s cache and its percentage of utilization [16]. 

The thread block size is chosen in all cases so that multiprocessor occupancy is 100%. 

The size of the GRID (number of processing blocks to be executed by the kernel) is 

dynamically set according to the size of the image. The streaming multiprocessors are 

connected to large global memory (512 MB in ION2), which is the interface between the 

CPU and the GPU. This DRAM memory is slower than the shared memory; therefore, 

before starting the computations, all the threads of a block load the required image 

fragment in the shared memory. 

Depending on how the data are encoded in the GPU global memory, each thread can load 

one element if working with 4-byte datum or 4 data if working with 1-byte datum. The 

global memory accesses of the GPU for both reading and writing are done so that in one 

clock cycle all the threads of a warp (L) access to 4·L bytes of RAM, where L is equal to 

32 in CUDA Compute Capability 1.2 GPUs. 

Before turning to the processing stage all the threads of the processing block have to wait 

in a barrier to ensure that all of them have loaded its corresponding data. After the 

calculation step may be a second stage of synchronization of the block threads before 

writing to the GPU global memory. 

Since we are unable to connect the camera directly to the GPU, image transfers to and 

from the GPU via the PCI-Express bus are required. The interface between the host and 

the GPU global memory is the bottleneck of the application so as it is depicted in 

Figure 2, the data that transfer between the host and the device have been minimized. 



Furthermore, each image data are encoded as 1-byte unsigned integer. Therefore to 

encode a color pixel 3 bytes are required. When more precision is needed a conversion to 

floating point is done once the image is stored in the GPU global memory, exploiting the 

parallelism provided by the GPU. 

 

4.1. GPU implementation of the retina model 

In order to optimize the spatial filtering process, the system takes advantage of the linear 

property of the convolution operator. Therefore, we can reduce the processing only to the 

convolution of each color channel with two different Gaussian masks. Then, these filtered 

channels are linearly combined. Equations (16) to (18) describe mathematically this 

simplification: 

   (16) 

    (17) 

           (18) 

Moreover, the GPU implementation of the retina-like processing relies extensively on 2D 

separable convolution operations that are highly data-parallel and thus well matched to 

the GPU architecture. Therefore, the computational complexity is reduced from  to 

 being  the filter mask size. 

In order to carry out these convolutions in real-time we have developed two CUDA 

filtering kernels, one for the rows and another one for the columns. Both modules are 

very similar so we detail only the one for rows. 

The convolution operation requires a neighborhood with the same width that the filter 

mask to calculate the result for each pixel. So, each thread transfers one datum from the 

global memory to the shared memory. In order to get the maximum precision and to 

avoid bank conflicts in shared memory, these data are stored as floating point data. 





So, as to maximize the performance of the system and to exploit the inherent parallelism 

on the programmable device selected for the implementation we chose a pipelined 

architecture, able to process a pixel every clock cycle. 

As in the previous section, we have implemented two main procedures, the retina-like 

filtering and the brightness equalization. In the next sections, we explain each of these 

modules in detail, as well as the HSV conversion module, which requires a specific 

implementation adapted to the FPGA. 

 

5.1. Implementation of the retina-like filtering 

The convolution process requires a set of pixels of its neighborhood to calculate each 

pixel as we have explained before. To resolve this problem we use the convolution 

computation architecture proposed by Ridgeway [21], depicted in Figure 5. In order to 

use 7 ́  7 filtering masks we need 7 FIFO buffers that store the first 7 image rows and 

seven shift registers that are responsible for storing the 49 neighboring pixels for the 

current convolution. The serial connection of the FIFO memories emulates the vertical 

displacement of the mask and the transfer of values of the FIFO memories to the shift 

registers emulates the horizontal scrolling. Then, the accumulators marked as “ACCUM 

x” add those pixels that are multiplied by the same coefficients of the mask. We have six 

products as a result of breaking down the process of convolution taking advantage of the 

linear property of the convolution as we have mentioned before. Then, we have to take 

into account the weighting to be applied according to the percentage of dark pixels 

present in the image. 

5.2. HSV conversion 

The calculation of the Hue component (H) requires complex computation. To avoid that, 

it has been implemented using a LUT with 215 inputs of 8-bits each one mapped into the 



FPGA BlockRAM modules. This LUT employs a 36% of the available memory 

(262 Kbits). Besides, to get the other two color components, saturation (S) and brightness 

(V), two dividers have been implemented. The design of the dividers is fully pipelined, 

and they can achieve a throughput of one division per clock cycle. The division of the S 

component needs a fractional remainder because the minimum of R, G, and B always is 

equal or less than the sum of them. This fact results in an 18-cycle delay which has to be 

considered in the H component computation in order to get synchronization. 

 

5.3. Brightness equalizer 

To implement the brightness equalizer the whole V color plane, whose size is 640 ́  480 

pixels, the image is divided in 35 blocks with 100 ´  100 pixels and their cumulative 

distributions are calculated. While the cumulative distributions for the current frame are 

being computed in parallel, its brightness channel is being equalized using the 

distributions computed for the previous frame. The distributions computation is 

performed in five steps, calculating seven distributions in parallel at each step, as image 

is being scanned. This procedure finishes when the 35 cumulative distribution functions 

are stored in the RAM memory. To develop the equalizer we rely extensively in the 

implementations explained in [10]. 

 

6. Results 

Regarding to the results provided by the proposed operator, Figure 6 shows the output 

from the different processing stages. Figure 6a shows a dark image [22] in which main 

features of the scene cannot be appreciated, only the window can be distinguished. 

Figure 6b shows the output from the retina-like filtering, as the whole image is too dark, 

the retina output mainly enhances the edges of the main features. Figure 6c shows the 







To measure the accuracy of both approaches we have calculated the peak-signal-to-noise 

ratio (PSNR), of the output image obtained with both, GPU and FPGA, systems with 

respect to the one obtained with the CPU, according to Equation (20). The resulting 

image computed with the FPGA obtains a PSNR of 30 dB, whereas with the GPU the 

value of the PSNR is infinite since the output image is identical to the one obtained with 

the CPU. The FPGA obtains a lower value for the PSNR as a result of the different 

algorithmic simplifications that had to be adopted, and the use of fixed point arithmetic. 

     (20) 

where I stands for the resulting image obtained with the CPU, K is the resulting image 

obtained with the GPU or the FPGA, m and n are de dimensions of the image and  

is the maximum value that a pixel can reach (255 in our case). 

Table 4 details the percentage of the total processing time employed in each of the tasks 

by the GPU and by the FPGA. In the case of the FPGA, the percentage of time is 

obtained for each module separately, when the whole system is working, all the tasks are 

being executed in a pipeline. On the other hand, the GPU employs only a 6% of the 

processing time in the histogram adjustment, since the histogram calculation is performed 

in parallel with the RGB to HSV conversion. Moreover, more than 30% of the time is 

employed in performing image transfers from CPU memory to GPU memory, so further 

improvement can be achieved performing the memory storage in parallel with the 

computation. Table 5 summarizes the power consumption, clock frequency, and weight 

for both systems. 

According to the tables presented, we can observe that real-time performance (over 

25 fps) is reached with both embedded solutions. Nevertheless the FPGA implementation 

is an order of magnitude more power efficient than the GPU, although it provides less 

accuracy in the computations and therefore output images with less PSNR. 



On the other hand, the FPGA solution is less weight, whereas the GPU solution is more 

affordable since its use is widely extended. In the case of the GPU, a fixed architecture is 

provided and the goal is to obtain its maximum performance, whereas an FPGA design 

leaves more choices to the engineer. This flexibility of the FPGA comes at the cost of a 

much larger design time than the GPU and makes tuning the system more difficult than in 

the case of the GPU. 

 

7.  Conclusions 

High-end GPUs and FPGAs are suitable for highly parallel complex algorithms such as 

pixel-wise processing. On the other hand, limited resources GPUs and FPGAs, with less 

computing capability and reduced power consumption, can compete with other embedded 

solutions in portable applications which also require image processing parallel 

computation to achieve real-time performance. 

We have presented two implementations of a new TMO on a GPU NVIDIA ION2 

integrated in a small size netbook and on a Spartan 3 FPGA-based platform reaching in 

both cases real-time performance when working with 640 ´  480 RGB images. The FPGA 

implementation provides higher frame rates and less power consumption, whereas the 

GPU implementation provides more precision in the computation and therefore higher 

quality output images. 

Since both implementations use portable and battery-operated platforms they can be used 

as low-vision aids specially aimed at visually impaired people, such as those affected by 

Retinitis Pigmentosa, who present several difficulties to manage themselves in 

environments where illumination is not uniform or in low illumination environments. 
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without 

the retina-

like 

output 

(dB) 

with the 

retina-

like 

output 

(dB) 

Kitchen 

scene 

–3.28 18.48 16.18 18.18 20.70 12.36 18.52 

Car 

scene 

9.53 20.77 18.52 21.01 18.3 13.96 23.2 

 

Table 2. Area and speed for the whole system on a Spartan 3 XC3S2000 

Parameter Value 

Slices 16545 (80%) 

LUTs  30086 (73%) 

RAMB  39 (97%) 

 40.25 MHz 

MULTs  26 (65%) 

BUFGMUXs 7 (87%) 

DCMs 2 (50%) 

 

Table 3. Performance of GPU and FPGA implementations, frame size 640 ´́́́  480 

 CPU GPU FPGA 

Performance (fps) 4 30 60 

Speed up – 7.5 15 
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