Construction of Interval-valued Fuzzy
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Interval-valued non dominance Criterion
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Abstract In this work we present a construction method for intenallied fuzzy
preference relations from a fuzzy preference relation ded¢presentation of the
lack of knowledge or ignorance that experts suffer when tiedine the membership
values of the elements of that fuzzy preference relation.alsle prove that, with
this construction method, we obtain membership intervatsah element which
length is equal to the ignorance associated with that elenvéa then propose a
generalization of Orlovsky’s non dominance method to sotwdti-criteria decision
making problems using interval-valued fuzzy preferendatiens.

1 Introduction

We know that there exist problems for which the solution oiatd by means of
fuzzy techniques sometimes are very good, but some othdrsUsoally, this
discordance is due to the choice by the experts of the mefmpefsnctions
to represent the information. For instance, in decision intalproblems experts
express their preferences with a numerical value, depgratirthe knowledge they
have about them. Sometimes, experts suffer from a greatolakkowledge about
the environment where the fuzzy decision making method isggto be applied.
In these cases, the numerical values they provide are nohdine suitable ones to
represent the preferences, and hence the result is notsheree(see [5, 14]).
Once the fuzzy preference relatioRRR) for a decision making problem is
known, the goal is to improve the solution that is obtainethvdtommon fuzzy
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methods, as Orlovsky’s non dominance method (see [7]),gusiterval-valued
fuzzy sets (see [12, 18]).

To achieve this goal we will measure the ignorance (lack @iwedge) of the
expert when providing the membership values of the elenwritee FPR We will
do this using ignorance functions (see [2]). So each elemiltie associated with
two values: the first value is given by the expert, and cooedp to the degree
of membership of the element to the origifdPR, the second value is calculated
with the ignorance function and represents the lack of kedge of the expert in the
assignation of the first value. From these two values we wiltkan interval-valued
fuzzy preference relation\{ FPR).

For the newV FPRwe introduce a generalization of the non dominance method,
which allows to recover the classical algorithm solution.

This work is organized as follows: In the next section weddtrce the basic
necessary concepts. In Section 3 we introduce the rel&ijphbgtween the concept
of strict fuzzy preference relation given by Fodor and Raisband the one given
by Orlovsky. In Section 4 we consider a construction methbéhierval-valued
fuzzy preference relations from fuzzy preference relatiand ignorance functions.
In Section 5, we propose a generalization of the non-donsimariterion proposed
by Orlovsky to solve decision making problems. We finish vgitme conclusions
and future lines of research.

2 Preliminary definitions

In fuzzy set theory, we know that a functidh [0, 1] — [0, 1], with N(0) = 1,N(1) =
0 that is strictly decreasing and continuous, is callectstregation. IfN is also
involutive, then it is a strong negation.

Definition 1. [17] A fuzzy setA on a finite univers&l is a mappindJ — [0,1].

We will denote byFS(U) the set of all the fuzzy sets dh.
Let us denote by.(]0,1]) the set of all closed subintervals|i 1], that is,

L([0,1]) = {x = [x,X]|(x,X) € [0,1]? andx < X}.

We also denote|0= [0,0], 1, = [1,1] and the length ok € L([0, 1]) asW(x) =X—x

Definition 2. [18] An interval-valued fuzzy sef on a universdJ is a mapping
A:U —L([0,1]).

Note that the membership of each elemar U is given byA(u;) = [A(ui), A(W)].
We will denote bylV FS(U) the set of all interval-valued fuzzy sets bin

An 1V negation is a functioNyy : L([0,1]) — L([0,1]) that is decreasing (with
respect to the ordek < y if and onlyx < y andx <y) and withNy/ (1) = 0_ and
Niv (OL) = 1. If for all x € L([0,1]), Niv (Niv (X)) = X, Ny is said to be involutive.
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Theorem 1.[3] A function Ny : L([0,1]) — L([0,1]) is an involutive IV negation if
and only if there exists an involutive negatiNrsuch that

Niv (x) = [N(X), N(x)]-

Throughout this paper we use involutive IV negatidds generated from the
standard negatiolN(x) = 1 —x for all x € [0,1] in such a way thatNyy (X) =
IN(X),NX)] =[1—%,1—X].

A triangular norm (t-norm for shorf) : [0, 1]2 — [0, 1] is an associative, commutative,
non-decreasing function such thatl, x) = x for all x € [0,1]. A t-normT is called
idempotentf, T (x,x) = xfor all x € [0, 1].

Three basic t-norms are the following: the minimdm(x,y) = min(x,y), the
productTp(x,y) = x-y and theLukasiewiczT, (x,y) = maxx+y—1,0).

In this paper we will also use the following relationship Iofi0, 1]) (see [15]):
let x,y € L([0,1]) and lets(x) = x+X— 1 ands(y) = y+Yy — 1 be thescoresof x
andy respectively. Leh(x) = 1— (x—x) andh(y) = 1— (y—y) be theaccuracy
degreeof x andy respectively. Then B
1. If s(x) < s(y), thenx <;

2. If s(x) = s(y), then

2.11f h(x) = h(y), thenx =y;

2.2 if h(x) < h(y), thenx <.

The relation between the score functiand the accuracy functidmis similar
to the relation between the mean and the variance in stati€ibserve that any two
intervals are comparable with this order relation. Morepitdollows easily that @
is the smallest element In([0, 1]) and 1 is the largest.

3 Fuzzy binary preference relations and interval-valued fuzy
binary preference relations

First, we recall the concept of strict fuzzy binary prefeenelation given by Fodor
and Roubens [4] and relate it with the definition given, foe tame concept,
by Orlovsky in [7]. Later, we recall the definition of intetwealued fuzzy binary
preference relations and the reciprocity property.

3.1 Strict Fuzzy binary preference relations

Let Re FR(X x X) be a fuzzy preference relation over a set of alternatkies
{x1,...,%} (see [1, 4, 5, 8]); for each pair of alternativgesandx;, Rj = R(X;,X;)
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represents a degree of (weak) preference olerx;, namely the degree to which
X is considered as least as goodas

From a weak preference relatid®) Fodor and Roubens [4] (see also [1, 11])
derive the following relation:

A Strict preference = P(x;,X;) is a measure of strict preferencexpverx;,
indicating thatx; is (weakly) preferred ta; butx; is not (weakly) preferred tg.

More specifically, Fodor and Roubens propose to expresshineaelation in
terms of a t-nornT and a strict negatioN :

Rj = T(Rj,N(Rj)) foralli,j € {1,...,n}; 1)

Fuzzy preference structures have been studied deeplyiaasttmnatic construction
(see[4,1,7,9,10)).

A fuzzy preference relatioR satisfies the property oéciprocityif Rj +Rjj =1
foralli,j € {1,---,n}. In reciprocal preference relations is usual not to defire th
elements in the diagonal (see [6]).

Proposition 1. Let R be a reciprocal fuzzy preference relation aick) = 1 — x for
allx € [0,1]. Then,
Rj =Rjifand only if T= Ty

forallRjj e R
Orlovsky in [7] gives the following definition o$trict fuzzy preference relation
Re FR(X x X):
Rij—Rji if Rij>Rji
= . 2
RS’ {O otherwise @

Next, we present the relationship betwestrict fuzzy preference relation given
by Fodor and Roubens ([4R; and the one given by given by Orlovsky [Rﬂj

Lemma 1l.If T =T, andN(x) =1—xforall x € [0,1], then
R :R-Sj, foralli,je{1,...,n}.

3.2 Interval-valued reciprocal preference relations

A first approach to add some flexibility to the uncertaintyresgntation problem
is by means of interval-valued fuzzy relations. An Intervalued fuzzy binary
relationr on X is defined as an interval-valued fuzzy subsetXok X; that is,
r: X x X — L([0,1]). The intervalr(x;,x;) = ri; denotes the degree to which
elementsg andx; are related in the relationfor all x;,x; € X. By IVFR(X x X)
we denote the set of all interval-valued fuzzy relations<ox X.

Definition 3. Letr € IVFR(X x X). We say that satisfies the reciprocity property
if for all rjj,rj € r the following identities hold:
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rj+ri=1
- ®3)
L +rij=1
In this work we use interval-valued fuzzy preference reladi that satisfy the
reciprocity property and such that the elements in theirnndiagonal are not
defined.

4 Construction of interval-valued fuzzy preference relatons
from fuzzy preference relations and weak ignorance functias

The goal of this section is to build interval-valued fuzzgference relations arising
from a fuzzy preference relation. For this purpose, we usectincept of weak
ignorance function and a new construction method of interva

4.1 Weak ignorance

The concept of ignorance functions is defined in [2] in ordeguantify the lack of
knowledge of an expert when he or she assigns a numerica i@the membership
of an object to a given class and another numerical valuéhmembership of the
same element to a different class.

Definition 4. [2] An ignorance function is a continuous mappi@g: [0, 1> — [0, 1]
such that:

(Gi1) Gi(xy) = Gi(y.x) for all x,y € [0,1];
(Gi2) Gi(x,y)=0ifandonlyifx=1ory=1;
(Gi3) If x=0.5andy=0.5, thenGj(x,y) = 1;
(Gi4) Gjis decreasing if0.5,1]%;
(Gi5) G; is increasing iff0,0.5]2.

Observe that this definition implies that we have assumetl @h@alue of 05
corresponds to complete lack of knowledge of the expert enntembership of
an element to a class.

In order to build the interval-valued fuzzy sets the authaefine in [13] a new
function called weak ignorance for modeling the uncerjaedsociated with the
definition of the membership functions. From this new comctey represent the
linguistic labels using by means of interval-valued fuzeyssand present a natural
extension of both the Fuzzy Reasoning Method (FRM) and thepcoation of the
rule weight.

Proposition 2.[13] Let G; : [0,1]° — [0, 1] be an ignorance function. The mapping:
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g:[0,1] — [0,1] given by

g(x) =Gj(x,1—x) @

is a continuous function that satisfies:

() g(x) =g(1—x) forall x € [0, 1];
(i) g(x) =0ifand only if x=00r x= 1,
(iii) g (0.5) = 1.

Definition 5. [13]A continuous mapping : [0,1] — [0, 1] is called weak ignorance
function if it satisfies the item§) — (iii ) in Proposition 2.

The name is due to the fact that they are only associated witleanent, in the
sense that they depend on a single variable, and not of twaundlerstand weak
ignorance functions as a quantification of the lack of knolgkean expert suffers
from when assigning a numerical value to the membership afgect to a given
class (set).

Example 1The functiong(x) = 2-min(x, 1—x) for all x€ [0, 1], is a weak ignorance
function.

4.2 Construction of interval-valued fuzzy preference relations

One of the main goals of this work is to build 8&nF R arising from aFR, in such a
way that for each element, the length of the interval thatasgnts the membership
to the new relation, is equal to the weak ignorance assaktvwaith the membership
degree of the same element to the original fuzzy relation.

Proposition 3. Let Re FR(X x X). In the setting of Proposition 2 the following
items hold:

1. The relatiorr given by

= {mi- {(1=9(Ry)): R} - (1-9(Ry) +9(R))]  ifRy >Ry

[0,9(Rij)] otherwise ®)

for alli, j is an interval-valued fuzzy relation on XX;

2. W(rij) =9(R;j) forall Rjj € R;

3. If R satisfies the reciprocity property, then the intervalued fuzzy preference
relationr given by iteml. also satisfies it (in the sense of Eq. (3));
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5 An approach to multi-criteria decision making with
interval-valued fuzzy preference relations

In this section we propose a generalization of the non-danga criterion proposed
by Orlovsky. We always consider normalized fuzzy prefeeeredations to satisfy
the reciprocity property. In the algorithm we will use thenstruction method given
in Proposition 4 (item 1.) and the concept of weak ignorancetion.

Given a fuzzy preference relati®f € FR(X x X), to normalize such relation to
[0,1] we use Eq. (6), in such a way that for each element of the natiorlit holds
thatR; = 1-R;.

RI*JTJRTI if Rij + Rji #0
0 othercase

(6)

From the normalized fuzzy preference relatRmve must extract a set of non-
dominated alternatives as the solution of the decision ngairoblem. Specifically,
the maximal non-dominated element$dire calculated by means of the following
operations, according to the non-dominance criterion@sed by Orlovsky in [7]:

Step 1. Compute the fuzzy strict preference relaR®as indicated in Eq. (2);
Step 2. Compute the non-dominance degree of each alteg¥by in the following
way:
ND; =1—mjaX{RJ$i} (7

This value represents the degree to which the alterneitbv@ominated by one of
the remaining alternatives.

Step 3. Take as the best alternative that correspondingtmttex of the maximal non-
dominance value:

Alternative(xp) = arg max {ND;} (8

We must point out that it could happen that there exist two orenalternatives
with the same degrees of membership to the set ND. In this ttasalgorithm does
not choose any of those alternatives. This fact has led matiwes to propose other
algorithms (see [5, 14, 16]).

The main idea of our approach is to build an interval-valueziy preference
relation from the strict preference relatiBh(Step 1) of the non-dominance algorithm.
Given a fuzzy preference relatidR* (without defined elements in the main
diagonal) and given a weak fuzzy ignorance functian the sense of Proposition

2, the algorithm that we propose is the following:
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(NDIVA1) Construct R normalizing the fuzzy preference relatipn
R* € FR(X x X) by means of Eq. (6);

(NDIVA2) Compute the fuzzy strict preference relatighusing Eqg. (2);

(NDIVAS3) Build the interval-valued fuzzy relationusing Eq. (5):

o J IR -(1-9(Ry)). R - (1-9(Rj)) +9(Rj)]  if Rj >Rj ©)
! 0,9(Rij)] otherwise
(NDIVA4) Build the interval-valued fuzzy set:
NDy = {(Xj,NDN (Xj))|Xj € X} where
(10)

NDw (%)) = S(rij) = [\ (r;j), \/ (Tij)]
i=1 i=1

(NDIVAS) Apply the IV negationN;y generated by the standard negation to the
setNDyy ; that is, build:

n n

Niv (NDyw ) (%)) = [1—\/(Fij), 1= \/ (r;j)] (11)

i=1 i=1
(NDIVAG) Order the elements of the sify (NDyy) in a decreasing way with
respect to the interval order of the membership intervals.

(NDIVAY) If there exist several alternatives for which thatérvals obtained
in (NDIVA4) are such that the occupy the first place in the oirtg of step
(NDIVAD), take as solution alternative that with the biggepper bound.

NDIVA Algorithm

Remark

o If for a majority of the elements;; given by Eq. (9) we have thatRj) — 0, i.e.,
if Rf*J = Rj — Rji — 1,then the resulting intervals have a very small length &nd i
is reasonable to assume that the result obtained with trogitdgn (NDIVA) is
the same than the result obtained with the non-dominanceitig.
This is due to the fact that Rj — Rji — 1, thenR;j is very large andR;i is very
small; that is, the expert is very sure about the preferehaéternativex; against
Xj. Moreover, in this case we have that the weak ignorance jssraall. So, due
to our construction method with Eq. (9) the intervals havery small length.

e Iffor a majority of the elements; given by Eq. (9) we have thatRj) — 1;i.e.,
if Rij ~R;ji = 0.5, then the (NDIVA) algorithm allows us to distinguish bettean
the non-dominance algorithm the alternative or altereatihat we must take as
solution.
The reason for this is that R ~ R;i ~ 0.5 andRj + R;i = 1, by Definition
4 we have thag(Rj) = g(Rji) — 1, in such a way that the produ¢R; —
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Rji)(1—9(R;j)) goes to zero faster tha®; — R;i. So, in the (NDIVA) algorithm,
for the cases for which the expert shows a great indifferdacehoosing one
alternative or the other, waenalize(diminish) even more the difference of his or
her preferences, ins such a way that, when we negate irgénvstiep (NDIVA5)
we strengthen even more the worst possible cases, andé¢neistobtained with
Eq. (9) have a very large length.

Example 2Let X = {x1, X2, %3, X4 } be the set of alternatives. Consider the normalized

fuzzy relation
— 070 065 030

030 — 0.70 060
— | 03503 - 070 12)
0.70 040 030 —

For this algorithm we consider the weak ignorance funogiof) = 2- min(x, 1 —

X).
(NDIVA1) ConstructR. In this caseR = R*.
(NDIVA2) TransformRto RS,
— 040 030 000
000 — 040 020
~ | 000 000 — 040 (13)
0.40 000 000 -

(NDIVAS3) Build the interval-valued fuzzy relatior

—  [0.160.76] [0.09,0.79 [0.00,0.60]
[0.000.60 —  [0.160.76 [0.04,0.84
[0.000.70] [0.000.60] —  [0.160.76]
[0.160.76] [0.000.80] [0.000.60]  —

r= (14)

(NDIVA4) Build the interval-valued fuzzy seédDyy :

NDy = {(x1,[0.16,0.76]), (x2,[0.16,0.80]), (x3,[0.16,0.79]), (x4, [0.16,0.84]) }
(NDIVAS) Apply Ny to the interval-valued fuzzy selDyy :

Niv (NDy ) =

{(x1,[0.24,0.84)), (x2,[0.20,0.84]), (x3,[0.21,0.84]), (x4,[0.16,0.84]) }
(NDIVAG) Order alternatives in a non-increasing way usihg brder relationship
defined in terms of thecore and accuracy functions

X1 > X3 = X2 > X4.
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5.1 Relationship between NDIVA algorithm and Orlovsky's
algorithm

Next, we present a new operaf®to associate a fuzzy set with each interval-valued
fuzzy set satisfying a specific set of properties. If we ajbly operator on the non
dominance interval-valued fuzzy algorithm (StepIV A6) we recover the results
given by Orlovsky’s algorithm.

Definition 6. A P operator is a mapping([0, 1]) — [0, 1] given by:
e ITW 1
P — { Twog e (15)
0 ifW(x)=1

Proposition 4. Let Re FR(X x X) and letr € IVFR(X x X) given by Eqg. (5). In
the setting of Proposition 2 the following items hold:

1. P(rij) =R;j forall Rjj € Rand for all Rjj) # 1.
2. Ifg(R;j) = 1then, Rri;) =0.

Proposition 5. Let P given in Eq. (15). The following properties hold:

1. x<P(x) <xforall x € L([0,1]);

2. P([x,x]) =x forall x € [0,1];

3. IfW(x) # 1, then RX) + P(1—Xx) = 1;
4. 1fW(x) = 1, then Rx) + P(1—x) = 0.

Remark Notice thatin step (NDIVA5) of Example 2 all the elementséavwembership
intervals with the same upper bound (see item (2) of Propasit). So, if for
relation R given by Eq. (12) we apply the non-dominance algorithm, &lthe
alternatives dominate with the same numerical value andevea able of choosing
the best one.

Proposition 6. Let Ay € IVFSU) and let P the operator introduced in Definition
6. Then
A= {(u,P(Av (u)))|u €U} (16)

is afuzzy seton U,

Proposition 7. The following items hold:

1. Let P be the operator given in Definition 6. If in the (NDIVAyorithm we
replace (NDIVAA4) by:
(NDFS4) Build the set

NDws = {(xj,NDis(Xj))[xj € X} where
NDws(x)) = [\/P(rij), \/ P(rij)], ()
1 i=1
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then we recover the non-dominance algorithm.

2. If in step (NDIVAG) we reorder the elements of the sgt(NDy,) in a non-
increasing way with respect to the upper bounds of the ialsrvthen the
alternative(s) which are solution(s) for this algorithmeathe same than those
of the non-dominance algorithm.

Remark Notice thatin step (NDIVAS) of Example 2 all the elementséavembership
intervals with the same upper bound (see item (2) of Proposit). So, if for
relation R given by Eq. (12) we apply the non-dominance algorithm, &lthe
alternatives dominate with the same numerical value and&veat able of choosing
the best one.

6 Conclusions

In this paper we have presented an algorithm for decisiorimggkoblems starting

from a fuzzy preference relation. We use weak ignorancetimms (in the sense of

Proposition 2) to penalize indifference situations. Thatsituations in which the

preference of one alternative against the other is closestd/@e also represent the
preference degree of a relation by means of intervals swthithir lengths is equal

to the weak ignorance of the expert when he or she assignsdicpalue.

Finally, we define a new operator that allows us to assocéth mterval-valued
fuzzy set to a fuzzy sets. The analysis of this operator Hasvedl us to settle
minimum conditions under which our first algorithm recovéne classical non
dominance algorithm.

In the future we consider necessary to study a constructithaad to generalize
the one presented in this work. From this generalization 18e propose new
algorithms taking into account different criteria for s#len of alternatives and
different order relations between intervals.
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