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Abstract Craniofacial superimposition is a forensic pro-

cess where photographs or video shots of a missing person

are compared with the skull that is found. By projecting

both photographs on top of each other (or, even better,

matching a scanned three-dimensional skull model against

the face photo/video shot), the forensic anthropologist can

try to establish whether that is the same person. The whole

process is influenced by inherent uncertainty mainly

because two objects of different nature (a skull and a face)

are involved. In previous work, we categorized the differ-

ent sources of uncertainty and introduced the use of

imprecise landmarks to tackle most of them. In this paper,

we propose a novel approach, a cooperative coevolutionary

algorithm, to deal with the use of imprecise cephalometric

landmarks in the skull–face overlay process, the main task

in craniofacial superimposition. Following this approach

we are able to look for both the best projection parameters

and the best landmark locations at the same time. Coevo-

lutionary skull–face overlay results are compared with our

previous fuzzy-evolutionary automatic method. Six skull–

face overlay problem instances corresponding to three real-

world cases solved by the Physical Anthropology Lab at

the University of Granada (Spain) are considered. Prom-

ising results have been achieved, dramatically reducing the

run time while improving the accuracy and robustness.

Keywords Forensic identification � Craniofacial

superimposition � skull–face overlay � Fuzzy landmarks �
Fuzzy distances � Evolutionary algorithms � CMA-ES �
Coevolutionary algorithm � Genetic fuzzy systems

1 Introduction

Craniofacial superimposition (CS) (Krogman and Iscan

1986; Iscan 1993; Stephan 2009) is a forensic process

where photographs or video shots of a missing person are

compared with the skull that is found. By projecting both

photographs on top of each other (or, even better, matching

a three-dimensional skull model obtained scanning an

unidentified human skull against the face photo/series of

video shots), the forensic anthropologist can try to establish

whether that is the same person. This skull–face overlay

(SFO) process is usually done by bringing to matching

some corresponding anthropometrical landmarks on the

skull and the face.

SFO is known to be one of the most time-consuming

tasks for the forensic experts (it takes several hours in many

real-world situations) (Fenton et al. 2008). In addition,

there is no systematic methodology for CS but every expert

usually applies a particular process. Hence, there is a strong

interest in designing automatic methods to support the

forensic anthropologist to put it into effect (Ubelaker 2000).

In particular, the design of computer-aided CS methods

has experienced a boom over the past 20 years (Damas

et al. 2011). The most recent ones consider the use of laser

range scanners to achieve a digital model of the human

skull found (see Fig. 1) by means of a manual (Hee-Kyung

et al. 2006) or automatic 3D reconstruction procedure

(Santamarı́a et al. 2007, 2009a, 2010), as it is the case in

the current contribution.
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In Ibáñez et al. (2009), we developed an automatic

method to properly overlay a 3D model of the skull over a

2D photograph of the missing person’s face. For that pur-

pose, we studied and experimented with different evolu-

tionary algorithms (Eiben and Smith 2003) and CMA-ES

(Hansen and Ostermeier 2001) demonstrated to be the most

accurate and robust approach.

The SFO process is influenced by inherent uncertainty

since two objects of different nature are involved (a skull

and a face). In Ibáñez et al. (2011), we studied in detail the

sources of uncertainty related to the SFO task and proposed

the use of imprecise landmarks to overcome most of the

limitations associated with them. Using imprecise land-

marks, forensic anthropologists are able to properly deal

with two different problems. On the one hand, the difficult

task of invariably locating anthropometric landmarks

(Richtsmeier et al. 1995). On the other hand, the identifi-

cation of a large enough set of non-coplanar landmarks.

These imprecise landmarks were modeled and their use led

to a very significant performance improvement of our

automatic method.

However, the resulting fuzzy-evolutionary approach

relies on a large number of computational operations due to

the fact that distances between a crisp point (cranial

landmarks) and a fuzzy set of points (facial landmarks)

must be computed. Hence, the run time required by the

algorithm increases. In particular, the crisp landmark

approach ranged in 10–20 s per run while the fuzzy land-

mark approach ranged in 2–4 min. Up to our knowledge,

all the geometrical distance definitions applied to image

processing under imprecision need to calculate all the

Euclidean distances among the crisp point and all the

points that belong to the corresponding fuzzy set.

With the aim of decreasing the run time needed without

losing accuracy, we propose the use of a new evolutionary

approach based on a coevolutionary algorithm (Paredis

1995). It also takes advantage of handling imprecise

landmarks but, unlike the fuzzy approach where distances

between a fuzzy set and a crisp point have to be calculated

(computationally costly), it only requires to calculate

Euclidean distances between pairs of crisp points.

The novel proposal is tested on six SFO problem

instances derived from three real-world identification cases

previously solved by the Physical Anthropology Lab at the

University of Granada (Spain). The results achieved have

been actually good, being competitive or even better than

previous approaches.

The structure of the paper is as follows. In Sect. 2 we

describe the SFO problem and our previous evolutionary

algorithm to tackle it. Then, we review the sources of

uncertainty associated with the SFO task (Sect. 3) and

summarize our previous fuzzy sets-based approach to deal

with them. Section 4 is devoted to introduce our new

proposal based on a cooperative coevolutionary algorithm.

In Sect. 5, we test and compare the new proposal against

two different fuzzy-evolutionary approaches over the six

problem instances. Finally, we present some concluding

remarks and future works in Sect. 6.

2 Skull–face overlay in craniofacial superimposition

The success of the SFO process requires positioning the

skull in the same pose of the face as seen in the given

photograph (provided by the relatives of the missing/

deceased person). The orientation process is a very chal-

lenging and time-consuming part of the CS technique

(Fenton et al. 2008).

Most of the existing SFO methods are guided by a

number of anthropometrical landmarks located in both the

skull and the photograph of the missing person (see Figs. 2

and 3, respectively). The selected landmarks are placed in

those parts where the thickness of the soft tissue is low. The

goal is to ease their location when the anthropologist must

deal with changes in age, weight, and facial expressions.

Once these landmarks are available, the SFO procedure

is based on searching for the skull orientation leading to the

best matching of the two sets of landmarks.

In view of the task to be performed, the relation of the

desired procedure with the image registration (IR) problem

in computer vision (Zitová and Flusser 2003) can be clearly

identified. We aim to properly align the 3D skull model and

the 2D face photograph in a common coordinate frame

following a 3D–2D IR approach. The required perspective

transformation to be applied on the skull was modeled in

Ibáñez et al. (2009) as a set of geometric operations

Fig. 1 Acquisition of a skull 3D partial view using the Konica-

Minolta laser range scanner of the Physical Anthropology Lab at the

University of Granada (Spain)
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involving 12 parameters/unknowns which are encoded in a

real-coded vector to represent a superimposition solution.

The remainder of this section reviews this formulation.

Formally, SFO can be formulated as follows: given two

sets of 2D facial and 3D cranial landmarks, F and C,

respectively, both comprising N landmarks:

F ¼

xf1 yf1 1 1

xf2 yf2 1 1

..

. ..
. ..

. ..
.

xfN yfN 1 1

2
6664

3
7775C ¼

xc1
yc1

zc1
1

xc2
yc2

zc2
1

..

. ..
. ..

. ..
.

xcN
ycN

zcN
1

2
6664

3
7775

the overlay procedure aims to solve a system of equations

with the following 12 unknowns: a rotation represented by

an axis dx, dy, dz and angle h a center of mass rx, ry, rz a

translation vector tx, ty, tz a uniform scaling (s) and a 3D–2D

projection function given by a field of view /. These 12

parameters determine the geometric transformation f which

projects every cranial landmark cli in the skull 3D model

onto its corresponding facial landmark fli in the photograph

as follows:

F0 ¼ f ðCÞ ¼ R � S � T � P ð1Þ

where F0 is the set of cranial landmarks (C) once they have

been projected onto the image plane by f ;R ¼ ðA � D1 �
D2 � Rh � D�1

2 � D�1
1 � A�1Þ represents a rotation matrix to

orient the skull in the same pose of the photograph. Such

rotation involves a number of geometric transformations

ðA � D1 � D2 � RhÞ that aim to:

• Translate the skull to align the origin of coordinates

with the rotation axis ðAÞ:
• Reorient the skull so that the rotation axis coincides

with one of the Cartesian axes ðD1 and D2Þ:
• Perform the rotation given by Rh:

• Use the inverse rotation matrices in reverse order in

order to leave the rotation axis in its original orientation

ðD�1
2 ;D�1

1 ;A�1Þ:
• Apply the inverse translation matrix to leave the rotated

skull in its original location.

S; T ; and P are uniform scaling, translation, and perspec-

tive projection matrices, respectively. The interested reader

is referred to Hearn and Baker (1997) for a detailed

description of the matrices in Eq. 1 and their relation with

the 12 unknowns of the problem.

Different definitions of the fitness function were also

studied and the one achieving the best results was the mean

error (ME)1 (Ibáñez et al. 2009):

ME ¼
PN

i¼1 k f ðciiÞ � fli k
N

ð2Þ

Fig. 2 Main craniometric

landmarks: lateral (left) and

frontal (right) views

Fig. 3 Main facial landmarks:

lateral (left) and frontal (right)
views

1 Notice that, mean square error is not used because of its negative

effect when image ranges are normalized in [0,1].
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where || � || is the 2D Euclidean distance, N is the number of

considered landmarks (provided by the forensic experts),

cli corresponds to every 3D craniometric landmark, fli

refers to every 2D facial landmark, f is the function which

defines the geometric 3D–2D projective transformation,

and f(cli) represents the projected skull 3D landmark cli in

the image/photo plane.

Solving the SFO problem in the latter fashion results in a

really complex optimization task, with a highly multimodal

landscape, and forensic experts demand very robust and

accurate results. This complex landscape lead us to tackle

the problem considering robust evolutionary algorithms

(EAs) (Eiben and Smith 2003) to search for the optimal

values of the 12 registration transformation parameters. In

Ibáñez et al. (2009), CMA-ES (Hansen and Ostermeier

2001) and different real-coded genetic algorithms

(RCGAs) (Herrera et al. 1998) were applied, achieving

very promising results in some problem instances.

3 Imprecise landmarks: a fuzzy set-based approach

The whole CS process is influenced by uncertainty. In

particular, SFO is affected by two different sources of

uncertainty of different nature. On the one hand, there is an

inherent uncertainty associated with the two different kinds

of objects involved in the process, i.e. a skull and a face

(see Fig. 4). On the other hand, there is also uncertainty

associated with the 3D–2D overlay process that tries to

superimpose a 3D model over a 2D image. In both, we can

distinguish between landmark location uncertainty and

landmark matching uncertainty. A complete description of

them is given in Ibáñez et al. (2011), Santamarı́a et al.

(2009b).

We summarize our previous proposal to deal with the

SFO sources of uncertainty as follows. Our approach is

based on allowing the forensic anthropologist to perform

an imprecise location of cephalometric landmarks. By

using imprecise landmarks, (s)he can locate the landmark

as a region instead of as a crisp point as usual. The size of

the region defined by the forensic expert will become a

measure of the landmark uncertainty: the broader the

region, the higher the uncertainty in the location of that

landmark. Of course, (s)he can both define precise and

imprecise cephalometric landmarks in a face photo, thus

keeping the chance to properly locate the unquestionably

identified ones.

Notice that, by marking landmarks in an imprecise way,

we manage to solve the problems related to three of the

four uncertainty sources analyzed (Ibáñez et al. 2011) at

the same time. First, the inherent uncertainty of the land-

mark location in the missing person photograph can be

properly tackled. In the same way, the forensic experts

would be able to deal with the location of landmarks whose

position they cannot determine accurately due to the pho-

tograph conditions with the proper level of confidence

(using imprecise regions of different sizes). As a conse-

quence, we will allow them to deal with the extremely

difficult task to increase the number of selected landmarks.

These additional landmarks are essential to face the co-

planarity problem in the automatic search of the best SFO

(Santamarı́a et al. 2009b).

The imprecise landmark location approach is based on

allowing the forensic experts to locate the cephalometric

landmarks using ellipses and on considering fuzzy sets to

model the uncertainty related to them. Besides, we have

also considered fuzzy distances to model the distance

between each pair of craniometric and cephalometric

landmarks.

Following the idea of fuzzy plane geometry in Buckley

and Eslami (1997) and of metric spaces in Diamond and

Kloeden (2000) we have defined a fuzzy landmark as a

fuzzy convex set of points having a nonempty core and a

bounded support. That is, all its a-levels are nonempty

bounded and convex sets. In our case, since we are dealing

with 2D photographs with an x� y resolution, we have

defined the fuzzy landmarks as 2D masks represented as a

matrix M with mx � my points (i.e., a discrete fuzzy set of

pixels). Each fuzzy landmark will have a different size

depending on the imprecision on its localization but at least

one pixel (i.e., crisp point related to a matrix cell) will have

membership with degree one.

These masks are easily built starting from two triangular

fuzzy sets ~V and ~H modeling the approximate vertical and

horizontal position of the ellipse representing the location of

the landmark, thus becoming two-dimensional fuzzy sets.
Fig. 4 Correspondences between facial and craniometric landmarks:

lateral (left) and frontal (right) views
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An example of these fuzzy cephalometric landmarks is

given in Fig. 5, where the corresponding membership

values (calculated using the product t-norm) of the pixels

of one of those landmarks is depicted on the right. Left and

rights bounds of the ~V and ~H fuzzy sets correspond to the

most left/right–upper/lower point of the ellipse, while the

mode correspond to the center of the ellipse.

Now we can calculate the distance between a point

(which will be the pixel constituting the projection of a 3D

craniometric landmark on the 2D face photo) and a fuzzy

landmark (the discrete fuzzy set of pixels representing the

imprecise position of the cephalometric landmark).

If we denote the distance from point x to the a-level set
~Fai

as di ¼ dðx; ~Fai
Þ (in this specific case, this is the min-

imum Euclidean distance from point x to the all the points

in ~Fai
), then the distance from the point to the fuzzy

landmark ~F can be expressed by Dubois and Prade (1983),

Bloch (1999):

d�ðx; ~FÞ
Pm

i¼1 di � aiPm
i¼1 ai

Therefore, the original definition of our evolutionary SFO

technique’s fitness function (Eq. 2) was modified in Ibáñez

et al. (2011) as follows2

Fuzzy ME ¼
PN

i¼1 d�ðf ðcliÞ; ~FiÞ
N

ð3Þ

where N is the number of considered landmarks; cli cor-

responds to every 3D craniometric landmark; f is the

function which defines the geometric 3D–2D transforma-

tion; f(cli) represents the position of the transformed skull

3D landmark cli in the projection plane, that is to say, a

crisp point; ~Fi represents the fuzzy set of points of each 2D

cephalometric landmark; and, finally, d�ðf ðCiÞ; ~FiÞ is the

distance between a point and a fuzzy set of points.

4 A cooperative coevolutionary algorithm tackling

the landmark location uncertainty in skull–face

overlay

Along this section we first introduce the coevolutionary

paradigm, its different types and main characteristics.

Then, we present our novel proposal, based on this para-

digm, to tackle the landmark location uncertainty in the

skull–face overlay stage.

4.1 Coevolutionary algorithms

EAs have been applied to many different types of difficult

problem domains, such as parameter optimization and

machine learning. Both the successes and failures of EAs

have led to many enhancements and extensions to these

systems. Some problems are characterized either by

potentially complex domains or by the difficulty or

impossibility to assess an objective fitness measure. A very

natural and increasingly popular extension of EAs for the

problem is the class of so-called coevolutionary algorithms

(CEAs) (Paredis 1995). In such algorithms, fitness itself

becomes a measurement of interacting individuals. This

assumption allows the potential for evolving greater com-

plexity by allowing pieces of a problem to evolve in tan-

dem. Besides, the potential for evolving solutions to

problems in which such a subjective fitness may, in fact, be

necessary (i.e., game playing strategies). Hence, a CEA is

an EA (or collection of evolutionary algorithms) in which

the fitness of an individual depends on the relationship

between that individual and other individuals (Wiegand

2003).

Depending on the nature of the interactions among

individuals we can distinguish between competitive and

cooperative CEAs. In the former, each species competes

with the rest (Rosin and Belew 1997), while, in the latter,

all the species collaborate to build a solution for the

problem (Potter and De Jong 2000). The originally stated

aim of cooperative CEAs (CCEAs) was to attack the

problem of evolving complicated objects by explicitly

breaking them into parts, evolving the parts separately, and

then assembling the parts into a working whole.

Fig. 5 Example of fuzzy location of cephalometric landmarks (on the

left) and representation of an imprecise landmark using fuzzy sets (on

the right)

2 Despite Fuzzy ME is not a fuzzy number but a number, we use the

same notation proposed in Ibáñez et al. (2011) to avoid

misunderstanding.
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This is the goal of the current proposal in which two

different but complementary problems arise. On the one

hand, we want to know the best set of transformation

parameters resulting in the best possible SFO (see Sect. 2).

On the other hand, SFO quality is measured based on the

distances between two sets of landmarks, where the loca-

tion of the cephalometric landmarks set is uncertain (see

Sect. 3). We only know that they are located inside a region

delimited by the forensic expert (imprecise landmark).

Hence, we can try to find the precise locations of the

cephalometric landmarks in that region. However, the only

way to determine them is by looking for the best SFO,

assuming that the optimal location of the landmarks

implies the chance to achieve the most precise SFO. That is

to say, we need to look, at the same time, for the best set of

transformation parameters and for the most precise ceph-

alometric landmarks locations.

To do so, we have implemented a CCEA where two

populations optimize the set of transformation parameters

and the location of the cephalometric landmarks, respec-

tively. The former population considers a real coding

scheme to represent the 12 registration transformation

parameters in Sect. 2. The latter deals with a variable-

length integer-valued chromosome, whose size corresponds

to the number of landmark pairs used. Both populations

need to collaborate/interact to construct a solution for the

main problem, that is to achieve the best possible SFO.

The question of how collaborators or competitors are

determined may be among the most important design

decisions for the successful application of CEAs (Wiegand

et al. 2001). The most obvious (and computationally

expensive) method to evaluate an individual in a coevo-

lutionary setting is to make it interact with all possible

collaborators or competitors from the other populations. In

the case of binary interactions, this is sometimes called

complete pairwise interaction. An alternative extreme is to

make an individual be only involved in a single interaction.

Such choice leaves open the obvious question of how to

pick the collaborator or competitor. Of course, between

these two extremes there is a whole host of possibilities

involving some subset of interactions. Again, collaborators/

competitors for such interactions may be chosen in a

variety of ways ranging from uniformly random, to fitness-

biased choice methods. There are mainly three attributes to

be specified for this choice, suggesting a wide range of

possible strategies:

• Interaction sample size: the number of collaborators from

each population to use for a given fitness evaluation.

• Interaction selective bias: the degree of bias of

choosing a collaborator/competitor. For example, an

individual could be selected either randomly or based

on the fitness value.

• Interaction credit assignment: the method of credit

assignment of a single fitness value from multiple

interaction-driven objective function results. The main

examples here are the minimum, the maximum, and the

mean of the fitness values of all the selected interactions.

4.2 Cooperative coevolutionary algorithms

for skull–face overlay

As said, our novel proposal to tackle the landmark location

uncertainty is based on CEAs. In particular, two variants of

CCEAs (actually, the same CCGA with different fitness

functions) are presented. in the following we define both

CCEAs as well as the common components they share.

4.2.1 Crisp fitness

Taking the analysis developed in Wiegand et al. (2001) as

base, we defined our collaboration mechanisms in the same

way, i.e., using a pool of best and random individuals of

one population to evaluate a specific individual of the other

population.

Therefore, assuming that P is the population of the

transformation parameters and L is the population of

landmark locations, the fitness function for each population

is as follows:

fP;CCGA�1 ¼ fc

PN
i¼1 k f ðcliÞ � fli

j k
N

 !
; 8j 2 fBL [ RLg

ð4Þ

and,

fL;CCGA�1 ¼ fc

PN
i¼1 k f ðcli

jÞ � fli k
N

 !
; 8j 2 fBP [ RPg

ð5Þ

where f is one of the credit assignment methods; BL and RL

are, respectively, the set of best and random individuals

selected as collaborators from population L; BP and RP are,

respectively, the set of best and random individuals

selected as collaborators from population P; fli
j refers to

every 2D facial landmark of individual j from population L;

and f ðcli
jÞ represents the projected skull 3D landmark cli in

the image/photo plane using the transformation parameters

coded in individual j from population P. The rest of

parameters are the same as in Eq. 2.

4.2.2 Fuzzy sets-based fitness

From the study of both fitness functions it is clear that there

is no term related with fuzzy set theory. The current

802 O. Ibáñez et al.
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coevolutionary approach uses imprecise landmarks which

are not modeled using fuzzy techniques. As a consequence,

only one Euclidean distance has to be calculated for each

pair of landmarks, thus reducing dramatically the number

of computational operations. However, this approach pre-

sents an important drawback; it is omitting an important

part of the information provided by the forensic expert.

Assuming the central pixel of the imprecise landmark to be

the most likely actual location of the landmark, the

remaining pixels inside the imprecise landmark should

decrease their membership (i.e., their possibility to be the

actual location) as they move further away from the center.

This is not the case in the coevolutionary approach where

all the points on the imprecise landmarks are equally taken

into account.

In order to take advantage of this information also in the

coevolutionary approach, we have developed a mixed

approach combining the use of fuzzy sets with the coevo-

lutionary model. In this proposal, the same 2D masks

calculated for the fuzzy landmarks (see Sect. 3) are used

for weighting each landmark. The new fitness functions are

as follows:

fP;CCGA�2 ¼ fc

PN
i¼1 k f ðcliÞ � fli

j k � Tð ~ViðxÞ; ~HiðyÞÞ
N

 !

8j 2 fBL [ RLg ð6Þ

and,

fL;CCGA�2 ¼ fc

PN
i¼1 k f ðcli

jÞ � fli k � Tð ~ViðxÞ; ~HiðyÞÞ
N

 !

8j 2 fBP [ RPg ð7Þ

where Tð ~ViðxÞ; ~HiðyÞÞ is a t-norm (product) applied on the

two triangular fuzzy sets ~Vi and ~Hi for the values x and y,

respectively. That is to say, the value of the 2D mask for

the specific location of landmark i:

4.2.3 Common components

In our implementation of the CCEA two-genetic algo-

rithms cooperate to achieve the best possible SFO. Thus,

we call our approaches CCGA-1 and CCGA-2 referring to

the same cooperative coevolutionary genetic algorithm

that uses two different sets of fitness functions (Eqs. 4–5

and 6–7, respectively). Both CCGAs uses a SBX cross-

over (Deb and Beyer 1999) [which reported very good

performance in Ibáñez et al. (2009)] for the transforma-

tion parameters population and two-point crossover for

the landmark locations population. Random initial popu-

lations and random mutation are used in both cases,

constraining the possible values for the landmark location

to all the pixels inside the region corresponding to the

imprecise landmark the forensic expert located in the

image.

5 Experiments

Our experimental study will involve six different SFO

problem instances corresponding to three real-world cases

previously addressed by the staff of the Physical Anthro-

pology Lab at the University of Granada (Spain) in col-

laboration with the Spanish scientific police.

All those identification cases were positively solved

following a computer-supported but manual approach for

SFO (Damas et al. 2011). We will consider the available

2D photographs of the missing people and their respective

3D skull models acquired at the lab by using its Konica-

Minolta� 3D Lasserscanner VI-910.

The experiments developed in this section are devoted to

study the performance of the coevolutionary approach to

model the imprecise location of cephalometric landmarks

within our SFO method in comparison with the previous

fuzzy sets-based proposal. With this aim, we first show the

parameter setting considered. Then, we introduce each of

the six selected real-world SFO problems to be tackled

together with the obtained results and their analysis.

Finally, we compare the performance of our coevolutionary

approach (using the two different fitness functions, CCGA-

1 and CCGA-2) against that of the RCGA (with the SBX

crossover) and the CMA-ES developed in Ibáñez et al.

(2009), both including the fuzzy modeling of imprecise

landmarks (Ibáñez et al. 2011).

5.1 Experimental design

Our coevolutionary approach is based on the cooperative

coevolution of species corresponding to each of the pop-

ulations P and L by means of two different genetic algo-

rithms (GAs). As the authors in (Wiegand et al. 2001)

pointed out, the ideal interaction sample size, selective

bias, and credit assignment depends on the problem char-

acteristics. Hence, we tried many different combinations of

parameter values in preliminary experimentations. In par-

ticular, we delimited them to the following set:

A cooperative coevolutionary approach dealing with the skull–face overlay uncertainty 803
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Generations = 600, 1,000

P size = 1,000

L size = 100, 150

P and L crossover probability = 0.9

P and L mutation probability = 0.2

P and L tournament size (for RCGA) = 2

SBX g parameter (for population P) = 1

Interaction sample size and selective bias

BP = 1, 2, 5

RP = 0, 1, 2

BL = 1, 2, 5

BL = 0, 1, 2

fc = m

where m corresponds to the minimum values from the

multiple interaction-driven objective function results.

Other interaction credit assignment were dismissed as

suggested in Wiegand et al. (2001).

After testing all these combinations we can conclude

that the CEA is quite robust to the parameter setting. Even

though the rest of the parameters provided similar results

we have selected the following combination as a good

performing one: generations (1,000), B size (150), BP (2),

RP (1), BL (1), RL (0).

For the case of the RCGA-SBX and the CMA-ES we

used the parameter values which resulted in the best per-

formance of each algorithm (Ibáñez et al. 2009; 2011). In

particular, for the case of the RCGA-SBX:

Generations = 600

Population size = 1,000

Crossover probability = 0.9

Mutation probability = 0.2

Tournament size (for RCGA) = 2

SBX g parameter (for RCGA) = 1

and for the case of CMA-ES:

Initial h (mutation distribution variance) = 0.1

k (population size, offspring number) = 100

l (number of parents/points for recombination) = 15

l (number of evaluations) = 560,000

Tournament size (for RCGA) = 2

Restart operator every 25,000 evaluations

Finally, 30 independent runs were performed for each

problem instance in order to avoid any possible bias in the

results and to compare the robustness of both proposals.

We would like to have a quantitative measure allowing

us to benchmark the achieved outcomes. Unfortunately, the

ME values obtained by each approach are not fully sig-

nificant to perform a comparison because of the different

objective functions to be minimized. In addition, there is no

direct correspondence between ME values and the visual

representations as was pointed out by the experts from the

Physical Anthropology Lab at the University of Granada

(Spain) in Ibáñez et al. (2011).

Due to the latter reasons, we adopted an alternative,

specifically designed image processing scheme to evaluate

the performance of every SFO approach called ‘‘area

deviation error’’ (ADE) (Ibáñez et al. 2011; Santamarı́a

et al. 2009). In ADE the percentage of the head boundary

that is not covered by the area of the projected skull is

computed as a measure of the quality of the overlay.

Fig. 6 Example of area deviation error procedure. From left to right,
original photographs (top) and projected skull (bottom), intermediate

images with the head boundary (top) and binary skull (bottom), and

final XOR image (right most) with the corresponding ADE value

below the image

Fig. 7 Case studies: photographs of the missing person with the

corresponding set of imprecise landmarks. First row first image

corresponds to case study 1. First row second image corresponds to

case study 2. The other four images (the last image of the first row and

the three images in the second row) belong to case study 3, poses 1, 2,

3 and 4, respectively
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Figure 6 shows an example of the application of this

evaluation procedure.

5.2 Case studies

As said, all the SFO instances tackled in this work are

real-world cases previously addressed by the Physical

Anthropology Lab at the University of Granada (Spain).

We briefly introduce them as follows.

The first case study happened in Málaga, Spain. The

facial photograph of this missing lady was provided by the

family and the final identification done by CS has been

confirmed. For the current experimentation, the forensic

experts manually selected a set of 15 2D cephalometric

landmarks on the face present in the photo, following an

imprecise approach (first photograph of Fig. 7).

The second real-world case corresponds to a Moroccan

woman whose corpse was found in the South of Spain.

There is a single available photograph corresponding to the

one in the alleged passport. In this case study, the forensic

experts identified 16 cephalometric landmarks following an

imprecise approach (second photograph of Fig. 7).

Finally, the third case study happened in Cádiz, Spain.

Four different photographs were provided by the relatives,

which acquired them at different moments and in different

poses and conditions. Hence, this case study consists of

four distinct SFO problem instances. The forensic experts

were able to locate 14, 16, 15, and 8 landmarks following a

imprecise landmark approach for poses 1, 2, 3 and 4,

respectively (third to sixth photograph of Fig. 7).

5.3 Coevolution versus fuzzy sets-based modeling

As said, we are going to compare the proposed CCGA

against two variants of our previous fuzzy sets-based

evolutionary approaches: f-RCGA and f-CMAES, based on

the RCGA-SBX and CMA-ES proposed in Ibáñez et al.

(2009). On the one hand, comparing the performance of

CCGA and f-RCGA allows us to clearly assess the

advantages suggested in this work. It seems to be the best

way to check how the performance of the coevolutionary

approach differs from the fuzzy-set approach, since the

search algorithm is the same in both cases. On the other

hand, f-CMAES has demonstrated to be the best algorithm

solving the SFO problem (Ibáñez et al. 2009, 2011) so it

could be the best benchmark to test the global performance

of the proposed CCGA.

Table 1 Case studies 1, 2, and 3 (poses 1, 2, 3, and 4)

Case Approach ADE

m M - r

1 f-CMAES 15.20 45.98 21.56 10.60

f-RCGA 15.30 19.86 17.01 0.96

CCGA-1 15.69 23.71 17.66 1.72

CCGA-2 14.82 19.58 16.67 1.03

2 f-CMAES 14.16 15.98 14.97 0.43

f-RCGA 14.19 19.22 16.12 1.18

CCGA-1 22.96 30.23 26.54 1.46

CCGA-2 14.37 17.42 15.90 0.80

3, 1 f-CMAES 14.54 20.65 16.50 1.14

f-RCGA 13.15 23.70 19.16 2.60

CCGA-1 18.76 35.83 26.96 5.63

CCGA-2 17.43 26.92 22.26 2.38

3, 2 f-CMAES 23.67 26.07 24.78 0.57

f-RCGA 21.71 28.80 25.31 1.83

CCGA-1 19.30 28.12 23.62 1.76

CCGA-2 21.78 29.83 26.35 1.95

3, 3 f-CMAES 17.32 20.62 18.97 0.88

f-RCGA 14.70 28.80 19.10 2.58

CCGA-1 17.34 28.18 23.88 2.34

CCGA-2 15.47 20.79 18.14 1.31

3, 4 f-CMAES 16.70 18.14 17.38 0.36

f-RCGA 15.44 18.98 17.30 0.83

CCGA-1 9.02 21.62 13.60 3.35

CCGA-2 14.02 21.05 16.23 1.87

Area deviation error of the automatic skull–face overlays obtained

using f-CMAES and f-RCGA and a coevolutionary approach with two

different fitness function, CCGA-1 and CCGA-2

Table 2 Ranking of the four approaches under study for the six real-world SFO problems tested

Approach/

case

rankmi
rankMi

rank-i
rank-

1 2 3, 1 3, 2 3, 3 3, 4 rankm 1 2 3, 1 3, 2 3, 3 3, 4 rankM 1 2 3, 1 3, 2 3, 3 3, 4

f-CMAES 2 1 2 4 3 4 2.66 4 1 1 1 1 1 1.50 4 1 1 2 2 4 2.33

f-RCGA 3 2 1 2 1 3 2.00 2 3 2 3 4 2 2.66 2 3 2 3 3 3 2.66

CCGA-1 4 4 4 1 4 1 3.00 3 4 4 2 3 4 3.33 3 4 4 1 4 1 3.50

CCGA-2 1 3 3 3 2 2 2.33 1 2 3 4 2 3 2.50 1 2 3 4 1 2 2.16

For each statistical value, minimum ðrankmi
Þ; maximum ðrankMi

Þ and mean ðrank-i
Þ; resulting from the 30 executions of each SFO problem

instance, the table ranks each algorithm with respect to the other three. rankm; rankM and rank- depicts the average ranking of the algorithms

according to the six problem instances with respect to the minimum, maximum and mean, respectively
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Table 1 presents the ADE values for the obtained

SFOs in the six cases considered, distinguishing between

fuzzy-evolutionary (CMA-ES, RCGA) and coevolutionary

(CCGA-1, CCGA-2) approaches. The minimum (m), max-

imum (M), mean (-), and standard deviation (r) values of

the 30 runs performed are shown for each case.

Our analysis will start by a direct comparison between

both coevolutionary approaches. Looking at the minimum

and mean values, the performance of the CCGA-2 is better

than that of the CCGA-1 in four of the six cases. In addi-

tion, maximum and standard deviation values are better in

five of the six cases in the former approach. Then, we can

Fig. 8 Best superimposition obtained using f-RCGA (first row), f-CMAES (second row), CCGA-1 (third row), and CCGA-2 (fourth row). From

left to right, case studies 1, 2, and 3 (poses 1–4)

Table 3 Mean run time needed to execute the fuzzy-evolutionary and the coevolutionary approaches over each of the SFO instances

Approach Run time

Case 1 Case 2 Case 3, 1 Case 3, 2 Case 3, 3 Case 3, 4

f-RCGA 650 1480 660 590 740 1650

f-CMAES 550 1900 630 820 970 2100

CCGA-1 16.10 16.80 13.50 15.60 16.50 16.10

CCGA-2 16.40 16.90 13.80 15.80 17.20 16.30
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conclude that CCGA-2 performs better than CCGA-1, that

is to say, the fitness function using fuzzy sets for weighting

each landmark achieves better results. Regarding the

comparison against the f-RCGA, they both perform

robustly (mean values), achieving really good minima. No

significant differences can be pointed out in the overall

behavior over the six cases tested.

Similar conclusions are drawn if we compare CCGA-2

and f-CMAES. On the one hand, CCGA-2 achieves better

minima in four of the six cases and better mean values in

half of the cases. On the other hand, f-CMAES achieves

better maximum and standard deviation values in five of

the six cases. Anyway, most of the numerical differences

are really small.

An overall comparison of the four approaches is

depicted in Table 2. It includes a ranking of their perfor-

mance for the minimum, mean and maximum values

obtained over the six skull–face overlay problems tackled.

From the analysis of this table it is clear the similar

performance of f-CMAES, f-RCGA, and CCGA-2. Each of

them performs as the best one in one of the categories,

M;m; and -; respectively. However, the CCGA-2

approach could be considered the best one since it performs

the second in two of the categories (M and m) and the first

in the other ð-Þ:
If we focus now on the visual SFO results (see Fig. 8)

the comparison among the four approaches becomes really

tough. Experts from the Physical Anthropology Lab at the

University of Granada visually inspected each case and

they cannot make conclusions regarding the superiority of

any of the methods.

Finally, Table 3 shows the run time needed by all the

approaches in each of the SFO instances. In contrast to the

previous analysis where there are no significant differences

among the analyzed approaches, the coevolutionary

approach is, at least, four times faster than the fuzzy-

evolutionary ones and up to ten times in some cases. These

big differences arise mainly because of the high compu-

tational effort needed to calculate each fuzzy distance

between each pair of crisp–fuzzy landmarks (operation

repeated every fitness evaluation). In addition, the run time

of the fuzzy approaches is higly influenced by the number

and size of the fuzzy landmarks. Notice that, despite the

use of fuzzy sets in the CCGA-2, it does not imply a sig-

nificant increment in the run time since this approach is

also avoids the calculation of fuzzy distances.

6 Concluding remarks and future works

In this paper we have proposed a novel and alternative

approach to deal with imprecise cephalometric landmarks

in the SFO process. By using a CCEA we are able to look

for both the best transformation parameters and the best

landmark locations at the same time.

Two different fitness functions were analyzed. One of

them measures the mean distance between the pairs of

landmarks. The other weights those distances by the cor-

responding value in a bidimensional fuzzy set that models

the imprecision in the location of each cephalometric

landmark. The resulting approach has been tested on six

complex real-world identification cases and it has been

compared with our two previous fuzzy-evolutionary

approaches using the ADE measure. Results are promising

due to the very short time required by the coevolutionary

process, being 5-10 times faster than the fuzzy-evolu-

tionary methods, and because of the high-quality overlays

obtained, as good as those achieved by the state-of-the-art

f-CMA-ES.

In addition, there is ground to improve the coevolu-

tionary paradigm. Other selective bias could be imple-

mented and tested like, for example, pareto-based ones

(Bucci and Pollack 2005). Another opportunity for future

work is to develop a coevolutionary version of the

CMA-ES algorithm.

Due to the inability of the ME to be in concordance with

the visual SFO results we are planning to design new the

fitness function

Finally, we are planning to tackle the inherent matching

uncertainty regarding each pair of cephalometric–cranio-

metric landmarks (see Sect. 3). With the support of the

forensic anthropologists collaborating with us and taking

Stephan and Simpson’s works (Stephan and Simpson

2008a, 2008b) as a base, we aim to deal with this partial

matching situation by using fuzzy sets and fuzzy distance

measures.
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coplanarity problem in 3D camera calibration by means of fuzzy

landmarks: a performance study in forensic craniofacial super-

imposition. In: IEEE international conference on computer

vision, Kyoto, Japan, pp 1686–1693

Santamarı́a J, Cordón O, Damas S (2010) A comparative study of

state-of-the-art evolutionary image registration methods for 3D

modeling. Comput Vis Image Underst 115(9):1340–1354

Stephan CN, Simpson EK (2008a) Facial soft tissue depths in

craniofacial identification (part I): an analytical review of the

published adult data. J Forensic Sci 53(6):1257–1272

Stephan CN, Simpson EK (2008b) Facial soft tissue depths in

craniofacial identification (part II): an analytical review of the

published sub-adult data. J Forensic Sci 53(6):1273–1279

Stephan CN (2009) Craniofacial identification: techniques of facial

approximation and craniofacial superimposition. In: Blau S,

Ubelaker DH (eds) Handbook of forensic anthropology and

archaeology. Left Coast Press, California, pp 304–321

Ubelaker DH (2000) A history of Smithsonian–FBI collaboration in

forensic anthropology, especially in regard to facial imagery.

Forensic Sc Commun 2(4):(online)

Wiegand RP (2003) An analysis of cooperative coevolutionary

algorithms. PhD thesis, George Mason University, Fairfax,

Virginia

Wiegand RP, Liles W, De Jong K (2001) An empirical analysis of

collaboration methods in cooperative coevolutionary algorithms.

In: Proceedings of the genetic and evolutionary computation

conference, pp 1235–1242
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