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Abstract—Fuzzy decision trees are widely employed to face
classification problems since they combine the high interpretabil-
ity given by the decision tree and the capability of management
of the uncertainty inherent to fuzzy logic.

However, the success of fuzzy systems in general depends,
to a large degree, on the choice of the membership functions.
For this reason, we propose to model the linguistic labels by
means of Interval-Valued Fuzzy Sets to take into account the
ignorance related to their definition. On the other hand, we
define an evolutionary method to tune the shape of the Interval-
Valued Fuzzy Sets looking for the best ignorance degree that each
Interval-Valued Fuzzy Set represents.

In this contribution, we will make use of the fuzzy ID3 algo-
rithm as a base technique from which to apply our methodology.
The experimental study shows how our methodology enhances
the performance of the base fuzzy decision tree. Furthermore,
we compare our approach with respect to four state-of-the-art
fuzzy decision trees and C4.5 as a representative algorithm for
crisp decision trees. The goodness of our proposal is tested on a
large collection of data-sets and it is supported by an exhaustive
statistical analysis.

Keywords—Linguistic Fuzzy Rule-Based Classification Sys-
tems, Interval-Valued Fuzzy Sets, Ignorance functions, Tuning,
Fuzzy Decision Tree, Classification.

I. INTRODUCTION

Classification problem is one of the most studied problems
in machine learning and data mining [1]. In order to face this
task, a classifier needs to be induced by means of a learning
algorithm. The classifier is a model encoding a set of criteria
that allows a data instance to be assigned to a particular class
depending on the value of certain variables. Different kinds
of models, such as fuzzy rule-based classification systems
or Fuzzy Decision Trees (FDTs), can be used to represent
classifiers.

Specifically, FDTs are a suitable solution to face classifica-
tion problems due to the good synergy between the handling
of the uncertainty provided by fuzzy logic [2] and the good
interpretability given by decision trees [3]. Among the large
number of techniques proposed in the specialized literature for
designing FDTs [4], [5], the fuzzy ID3 algorithm [6] is widely
employed since it is a popular and efficient method to construct
a FDT [7].
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In fuzzy systems, like FDTs, the definition of the member-
ship functions used to represent the linguistic labels is truly
significant. When defining the fuzzy partitions, either through
expert knowledge or homogeneously over the input space, it
is possible to have an ignorance degree (lack of information)
which makes their definition difficult. The theory of Interval-
Valued Fuzzy Sets (IVFSs) [8] has proved to be a suitable
tool to model this ignorance [9]. Specifically, we have shown
that the use of IVFSs is useful to improve the performance of
fuzzy rule-based classification systems [10].

In this contribution, we propose to model the linguistic
labels of the classifier by means of IVFSs. To do so, we use
a new parametrized construction method of IVFSs that starts
from the fuzzy sets composing the knowledge base of the
system. The length of each IVFS is proportional to the degree
of ignorance related to the definition of the corresponding
membership function, which is measured using weak ignorance
functions. We must point out that we introduce the IVFSs after
the induction process and we study their influence in the fuzzy
reasoning mechanism, which has to be modified to take into
account this modeling of the linguistic labels. As a result, a
good management of the uncertainty is provided for the system
while its interpretability is maintained.

Additionally, we propose the definition of an evolutionary
methodology that allows to compute the optimal ignorance
degree that each IVFS represents. To do so, we modify the
parameters used in the IVESs construction method to weight
the degree of ignorance and consequently, we tune the length
of the IVFSs. In this manner, the membership functions will
be fine-tuned leading to an improvement of the performance
of the system in a general framework.

The aim of our study is to show the goodness of our
proposed methodology using the fuzzy ID3 algorithm as the
base technique. To do so, we will compare our approach
with respect to both the base FDT and with four state-of-
the-art FDTs, namely the simple pattern tree [11], a look-
ahead approach [12], the FDT proposed by Janikow in [13]
and a method which fuzzifies the Gini index [14]. Further-
more, we will also compare our methodology with C4.5 [15]
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as a reference algorithm of crisp decision trees. In order
to obtain well-founded conclusions, we have considered 20
numerical data-sets from the KEEL data-set repository [16]
(http://www keel.es/dataset.php). The measure of performance
is based on accuracy rate and the study is supported by the
proper statistical analysis, as suggested in the literature [17],
[18], [19].

The work is arranged as follows: Section II provides some
preliminary concepts of IVFSs and also describes the gen-
eration of IVFSs employing weak ignorance functions. The
induction process of the fuzzy ID3 algorithm together with the
modifications carried out in the reasoning mechanism, due to
the use of IVFSs, are shown in Section III. In Section IV we
describe in detail our methodology to tune the membership
functions by means of GAs and the evolutionary method is
also explained. Then, the experimental study is presented in
Section V and we finish the work with some concluding
remarks in Section VI.

II. LINGUISTIC LABELS MODELED BY MEANS OF
INTERVAL-VALUED FUzZzZY SETS

In this work we propose to model the linguistic labels by
means of IVFSs in order to take into account the ignorance
related to the definition of the membership functions.

In this section, we remind some theoretical concepts which
are necessary to understand the remainder of this contribution.
Then, we define the construction method of IVFSs starting
from given fuzzy sets in which we employ weak ignorance
functions to measure the ignorance associated with the def-
inition of the membership functions. Finally, we present our
new methodology to model the linguistic labels by means of
IVFSs.

A. Preliminaries

Let us denote by L([0, 1]) the set of all closed subintervals
in [0, 1], that is,

L([0,1]) = {x = [z,7]|(z,7) € [0,1]* and z < T}.

We also denote 0, = [0,0] and 1 = [1,1].

Definition 1: An interval-valued fuzzy set (IVFS) [20], [21]
(or interval type 2 fuzzy set) A on the universe U # ) is a
mapping A : U — L([0,1]), such that

A(uy) = [A(us), A(u;)] € L([0,1]), for all u; € U.

We denote by FS(U) the set of all fuzzy sets on U and by
IVFS(U) the set of all IVFSs on U. We also denote by W
the length of the interval under consideration, that is

W(A(u;)) = A(u;) — A(uy).

To order the IVFSs we use the order relation defined by Xu
and Yager [22]. Using this relationship on L([0, 1]) is easy to
see that the smallest element of L([0,1]) is Oy, and the largest
is 1L~

We will now recall the extension of t-norms and t-conorms
in [0,1] (see [23]) to IVFSs [20], [24].

Definition 2: A function T : (L([0,1]))?> — L([0,1]) is
said to be an interval-valued t-norm (IV t-norm) if it is
commutative, associative, increasing in both arguments (with
respect to the order x <y y if and only z < y and T < 7),
and has the neutral element 1. In the same w_ay, a function
S : (L([0,1]))? — L([0,1]) is said to be an interval-valued
t-conorm (IV t-conorm) if it is commutative, associative,
increasing, and has the neutral element Op,.

Definition 3: a) An IV t-norm is said to be t-representable
if there are two t-norms T, and T} in [0, 1] so that T(x,y) =
[Ta(z,y), Ty (x, )] for all x, y € L([0,1]).

b) An IV t-conorm is said to be s-representable if there
are two t-conorms S, and S, in [0,1] so that S(x,y) =
[Sa(z,y), Sp(Z,7)] for all x, y € L([0,1]).

We will use Tr, 7, to denote the t-representable IV t-norm
that can be represented by 7}, and T}, as defined above. Sim-
ilarly, a specific s-representable IV t-conorm will be denoted
SS@,Sb'

In this work we only use t-representable IV t-norms and
s-representable IV t-conorms.

Let [z, 7], [y, 7] be two intervals in R so that x < y and T <
7, the rules of interval arithmetic employed in this contribution
are as follows:

o Addition: [z,Z] + [y, 7] = [z + v,

o Subtraction: [z,7] — [y,7] = [z

o Multiplication: [z, 7] [y, 7] = [z *y, T * 7).

« Division: [z,7]/[y, Y] = [z/7,T/y] assuming 0 < y.
We defined a weak ignorance function from the concept of
ignorance function given in [9] as follows:

Definition 4: A weak ignorance function [25] is a mapping
g:[0,1] = [0,1]

that satisfies:
(g g(z) =g(1—x) for all z € [0, 1];
(g2) g(z) =0if and only if z =0 or x = 1;
(g3) 9(0.5) = 1.
Example 1: g(x) =2 - min(z,1 — ) is a weak ignorance
function.

B. Construction of Interval-Valued Fuzzy Sets of Fixed Length
From a Fuzzy Set

Our aim in this section is to construct an IVFS starting
from any given fuzzy set. To do so, we define a function G
parametrized by 6 and 7, which satisfy a determined set of
properties. These properties allow to obtain intervals in such
a way that their length is proportional to the ignorance degree
and the initial membership degree is within the interval.

Proposition 1: Let 6,7 € [0,1] with § > v > § - x. The
function

G :[0,1]* — L([0,1]) given by

G(z,y,6,7) =[z-1-0y)z-(1-5-y)+7 y)
satisfies the following properties:

D z e G(z,y,8,7);

2) W(G(z,y,6,7)) =7 y;

)
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Fig. 1: Initial constructed IVFS.

3) If z =0, then G(0,y,d,7) =
4) If y = 0, then G(x,0,9,~
5) If § = ~, then:

Q(xaya 5a5) +a(1 - LY, 5a 5) =1

G(z,y,6,0) + G(1 — x,y,0,d) = 1.
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|
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According to the previous proposition, we define Theorem 1
as the new construction of IVFSs.
Theorem 1: Let A € FS(U). If for each u; € U we take
9(A(u;)), 0(u;), v(u;) € [0, 1], then the set
AIV = {(ul,AIV(ul))\ul c U} where
Ay (ui) = G(A(ui), g(A(us)), 6 (us), v(ui))

is an IVFES on U.

2

C. Modeling Linguistic Labels by means of Interval-Valued
Fuzzy Sets

In this section, we describe our methodology to generate
linguistic labels modeled by means of IVFESs starting from
given fuzzy sets.

We use the initial fuzzy sets (dashed line in Fig. 1 whose
expression is shown in Eq. (3)) as the base to construct
the IVFSs (solid line in Fig. 1) by means of Theorem 1.
In the initial construction of the IVFSs, we consider the
middle degree of ignorance. Therefore, we initialize §(u;) =
~v(u;) = 0.5 for all u; € U since, according to Theorem 1, the
minimum value of both parameters is 0 and the maximum is
1.

0, ifuiga,

pa(u;) = 2= (u; —a), if a<u; <% and b +# q, @
2o (u; —b), if %2 <w; <bandb+#a,
0’ lfbgu'u

III. Fuzzy ID3 WITH INTERVAL-VALUED FUzZY SETS

In this section, we describe the induction process of the
fuzzy ID3 algorithm and then we introduce our methodology,
that is, the construction of the IVFSs and the modifications
carried out both in the computation of the relative frequencies
and in the reasoning mechanism.

A. Fuzzy ID3 Induction

Let the universe of objects be described by n attributes
A=AD A An attribute A®) takes my, values of fuzzy
subsets Agk),Aék), ,A,(Jii There are a total of N training
instances. Based on the attributes, an object is classified into
m classes Cp,Cs, ...,C,,. We use the symbol M(-) to denote
the cardinality of a given fuzzy set. The key to the fuzzy ID3
algorithm is to select the expanded attribute, which can be
performed in the following steps [7]:

(1) For each attribute value (fuzzy subset) Agk),(i
1,2,...,mg), to compute its relative frequencies with
respect to class Cj, (j = 1,2,...,m):

M(A® ne;)

4
M(AP) @

P 0) =

K3

(2) For each attribute value (fuzzy subset) Agk),(i =
1,2,...,mg), to compute its fuzzy classification entropy:

Entr") = Z ¥ ()log (0¥ (5)), 5)

j=1

(3) To compute the average fuzzy classification entropy of
the kth attribute:

Ex=) <
oy m(Ar)

(4) Select such an integer kg, that

Entr®). ©6)

Ey, = arg min(Ey) 7
1<k<n

With a given evidence significance level «, a truth level

threshold 5 and being A the set of attributes of the problem,

the induction process consists of the following steps [6]:

(1) Execute the a-cut of the set of fuzzified examples with
the evidence significant level.

(2) Measure the average fuzzy classification entropy associ-
ated with each attribute and select the attribute with the
smallest average fuzzy classification entropy as the root
decision node.

(3) Delete all empty branches of the decision node. For
each nonempty branch of the decision node, compute the
relative frequencies of all objects within the branch into
each class. If the relative frequency of one class is above
the given threshold [, terminate the branch as a leaf.
Otherwise, do further research if an additional attribute
will further partition the branch (i.e. generate more than
one nonempty branch). If yes, select the attribute with
the smallest average fuzzy classification entropy as a new
decision node from the branch. If not, terminate this
branch as a leaf. At the leaf, each class will has its relative
frequency.

(4) Repeat step 3 for all newly generated decision nodes until
no further growth is possible (i.e. all the attributes have
been used), the decision tree then is complete.
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B. Fuzzy ID3 with Interval-Valued Fuzzy Sets: A New Fuzzy
Reasoning Method

The fuzzy sets composing the data base of the FDT,
generated by the algorithm previously described, are created
homogeneously over the input space. These fuzzy sets are
employed as the starting point to construct the IVFSs using
the construction method presented in Section II-C.

The modeling of the linguistic labels by means of IVFSs
implies two main modifications. The relative frequencies of the
classes in each leaf must be elements of L([0, 1]). To do so, we
compute the relative frequencies (Eq. (4)) associated with the
lower and the upper bounds respectively. On the other hand,
the reasoning mechanism, used to classify novel examples, is
adapted as follows:

In a FDT, a path is the connection from the root node to
each leaf. Suppose that the FDT contains / leaves, consequently
I paths (Path®,i = 1,2,...,1). For each leaf, the path i has
N; nodes (Pathi, Pathb, ...,Path’; ). Let e be an example
to be classified in one of the m classes. We must recall
that each node is modeled by means of an IVFS, there-
fore, Pathj (ey) = [Path} (er), Pathi(ex)] € L([0,1]) with
k =1,...,N;,. The interval-valued fuzzy reasoning mechanism
follows the following 4 key steps:

o To compute the matching degree between each path and
the new example. We apply a t-representable IV t-norm
as the conjunction among the nodes in each path.

M, =Tr ), Patht (e1)], ...,

as

7, ([Path’ (e
[Pathl}vi(eNi)’ Path?\f,(eN,)D =

[Tu(Pathi(e1), ..., Pathy (en,)),

Ty(Pathi(e1), ..., Pathly (en,))],i = 1,2,...,1

« To compute the certainty of each class in each leaf. We
apply a t-representable IV t-norm to weight the matching
degree of the example along the paths with the relative
frequencies of the leaves.

C@’I’t; = TTC,Td([%’ M}? [&(])a@(])}) =

[TC(%’&O))’Td(MaTTZ(j))LJ =1,..mi=1,..,1

« To compute the total certainty of each class. We employ
the interval addition to aggregate certainties of the same
class in all the paths.

l
Total_Certainty; = Z [Certj-, Certﬂ,j =1,...m
i=1

o Classify the example in the class which maximizes the
total certainty following the relationship presented below.

For any interval [z, 7], [y,7] on R, we use the following
relationship based on the score and accuracy functions given
in [22] (see Subsection II-A): let s([z,T]) = z + T and
s([y,7]) = y+7 be the scores of [z, 7] and [y, 7] respectively.

Let h([z,Z]) =T —
degrees of [z,T| and
o If s([z,7T]) < s

o If s([z,T]) = s

a) If h([z, T

b) if h(fz, T

x and h([y,y]) = 7 — y be the accuracy
7] respectively. Then

[y,7

([y,9]), then [z,7] < [y,7];
([y,9]), then

) = h([y,7]), then [z,7] = [y,7];
) < h([g, 7]), then [z,7] < [y,7].

v, 7
ly, 7

IV. GENETIC TUNING OF THE LINGUISTIC LABELS

Membership functions, which are usually obtained by nor-
malization process or defined by experts, remains fixed during
the induction process. Consequently, they could not be per-
fectly adapted to the context of each problem. To solve this
problem, it can be appropriate to carry out a post-processing
tuning step in which membership functions are tuned leading
to a better adaptation of the system to the specific problem we
are dealing with.

The optimization post-processing step is often performed
by means of a GA. The hybridization between fuzzy logic
and GAs leads to Genetic Fuzzy Systems (GFSs) [26], which
are basically fuzzy systems augmented by learning processes
based on evolutionary computation. GFS approaches are usu-
ally divided into two processes, tuning and learning. Specif-
ically, the genetic tuning process consists of automatically
selecting the best system parameters for improving the per-
formance of the initial model without modifying the rule base.

In the remainder of this section we will first introduce
the tuning approach of the linguistic labels and then we
will describe in detail the evolutionary model for tuning the
membership functions.

A. Ignorance Weighting Factor Tuning

The initial set-up of the linguistic labels, which are modeled
by IVESs, could not be well-suited for the specific problem
we are dealing with. Therefore, it seems necessary to tune the
shape of each IVFS, which is determined by the parameters
employed in the IVFSs construction method (Section II-B).

As we have introduced in Subsection II-C, we consider the
middle degree of ignorance for the initial construction of all
the IVFSs (6§ = v = 0.5). However, the ignorance degree can
vary depending on the linguistic label, since the amount of
available information to define each fuzzy term may not be
the same.

Therefore, we propose the application of a genetic tuning
step in which we adapt the parameters § and  (see Theo-
rem 1), keeping the restriction 6 > v > § - x. Consequently,
the amount of ignorance that each IVES represents will vary
depending on how the membership function suits the problem.

Fig. 2 depicts the behaviour of the proposed tuning ap-
proach. The original IVFS is shown in light gray whereas its
final shape (afterwards the genetic tuning) is depicted in dark
gray. We observe that the shape of the final IVFS is thinner
than that of the initial IVFS.

B. Evolutionary Model

In order to apply the genetic tuning, we will consider the
use of CHC algorithm [27]. This algorithm is a classical
evolutionary model which presents a good trade-off between
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Fig. 2: Ignorance weighting factor genetic tuning. The final
values of the parameters are: § = 0.1, v = 0.1.

diversity and convergence, being a good choice in complex
problems. The components needed to design this process are
explained below:

1) Coding Scheme: A real coding is considered. Let us
consider the following number of labels per variable:
(m!,m2,...,m"), with n being the number of variables.
0 and v € [0, 1] represent the genes used to encode the
parameters which weight the degree of ignorance. Then,

the representation of the chromosome is as follows:

CET = (511a V115 eees 511711 s Y1im?y
521a V215 -0y 52m2a Y2m?2s -y

5n1a7n1a

) 5nm" s Ynmn )

Therefore, the chromosome length is equal to two times
the number of variables times the number of linguistic
labels.

2) Chromosome Evaluation: The fitness function is the
classification accuracy.

3) Initial Gene Pool: The initial pool is obtained initializing
three individuals having all of the genes with values of 0,
0.5 and 1, corresponding with the situations of minimum,
middle and maximum degree of ignorance respectively.
The remaining individuals will have initialized all the
genes randomly in their respective domains.

4) Crossover Operator: We consider the Parent Centric
BLX (PCBLX) operator, which is based on the BLX-q.
We consider the incest prevention mechanism, checking
and modifying an initial threshold, in order to apply the
PCBLX operator.

5) Restarting approach: When the threshold value is lower
than zero, all the chromosomes are regenerated at ran-
dom in their respective domains. Furthermore, the best
global solution found is included in the population to
increase the convergence of the algorithm as in the elitist
scheme.
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V. EXPERIMENTAL STUDY

This study is oriented towards analysing the goodness of our
evolutionary tuning method applied to the FDT generated by
the fuzzy ID3 algorithm. To do so, we develop an experimental
analysis in which we compare our methodology with respect
to several state-of-the-art FDTs and also with C4.5.

In this section, we present the experimental set-up in first
place. Next, we briefly describe the FDTs for the comparison
together with the parameters employed in the study. Then we
introduce the statistical tests used and finally, we present the
results together with the corresponding analysis.

A. Experimental Set-Up

We have selected a wide benchmark of 20 numerical data-
sets selected from the KEEL data-set repository [16], which are
publicly available on the corresponding web page ! including
general information about them, partitions for the validation
of the experimental results and so on. Table I summarizes the
properties of the selected data-sets, showing for each data-
set the number of examples (#Ex.), the number of attributes
(#Atts.) and the number of classes (#Class.). We must point
out that the magic, page-blocks, ring and shuttle data-sets have
been stratified sampled at 10% in order to reduce their size
for training. In the case of missing values, (cleveland and
wisconsin), those instances have been removed from the data-
set.

TABLE I: Summary Description for the employed data-sets.

Id. Data-set #Ex.  #Atts.  #Class.
app  Appendicitis 106 7 2
bal Balance 625 4 3
bup  Bupa 345 6 2
cle Cleveland 297 13 5
eco Ecoli 336 7 8
gla  Glass 214 9 6
hab  Haberman 306 3 2
hea Heart 270 13 2
iri Iris 150 4 3
mag  Magic 1,902 10 2
new  New-Thyroid 215 5 3
pag  Page-blocks 548 10 5
pim  Pima 768 8 2
rin Ring 740 20 2
shu Shuttle 2,175 9 7
tae Tae 151 5 3
tit Titanic 2,201 3 2
win ~ Wine 178 13 3
wis Wisconsin 683 9 2
yea  Yeast 1484 8 10

A 5-folder cross-validation model was considered in order
to carry out the different experiments. That is, we split the data-
set into 5 random partitions of data, each one with 20% of the
patterns, and we employ a combination of 4 of them (80%) to
train the system and the remaining one to test it. Furthermore,
the process was repeated 3 times using a different seed to
obtain a sample of 15 results, which have been averaged for
each data-set.

Uhttp://www.keel.es/dataset.php



B. Fuzzy Decision Trees for Comparison and Parameters Set-
Up

In this work, we have considered four FDTs in order to
compare our methodology with respect to different approaches

of the literature. Next, we briefly describe each FDT together
with their specific configuration values:

o The first approach fuzzifies the Gini index [14]. This
method uses the SLIQ decision tree as the base algorithm,
which uses the Gini index as the split measure, and
fuzzifies its decision boundaries during the tree induction.
The configuration is as follows:

Number of labels per variable: 3 labels.

Threshold = 0.85.

— Maximum number of patterns in a leaf: 5% of the
number of patterns.

— Maximum depth: number of attributes.

o The second approach is the look-ahead method [12]. This
method attempts to establish a decision node by analyzing
both a split measure and the classifiability of instances
that are split along branches of the node. The specific
values of its configuration are:

— Number of labels per variable: 3 labels.
— Split measure: Information Gain.

— Number of neighbours: 3.

— Weighting factor: 1.

e The third proposal is the FDT proposed by Janikow
in [13]. This is a classical FDT widely employed in the
specialized literature whose configuration is as follows:

— Number of labels per variable: 3 labels.
— Conjunction operator: product T-norm.

« Finally, we have selected the simple pattern tree algo-
rithm [11]. This approach, instead of constructing one
tree, whose leaves have a probability distribution express-
ing the membership of each class, constructs one tree per
class using aggregation and similarity functions. We have
chosen the following configuration:

— Aggregation functions: min and max operators.

— Similarity function: the similarity related with the
root mean square error.

— Number of labels per variable: 3 labels.

The specific configuration for the fuzzy ID3 algorithm with
and without IVFSs (presented in Table II) and the ones of the
selected FDTs in this work, have been selected experimentally
since they provide the best performance for each method.
Regarding the genetic tuning process presented in Section 1V,
it employs populations composed by 50 individuals, 30 bits per
gen in order to perform the gray codification and the number
of evaluations is 5.000 times the number of attributes.

C. Statistical Tests for Performance Comparison

In this work, we use some hypothesis validation techniques
in order to give a statistical support to the result analysis. We
will use a non parametric test, because the initial conditions
that guarantee the reliability of the parametric tests cannot be

TABLE II: Parameter specification for the FDTs.

Fuzzy ID3

Number of labels per variable: 3 labels
Conjunction operator: product t-norm
Evidence significance level = 0.4
Truth level threshold = 0.95

Fuzzy ID3 with IVFSs
Ignorance function: 2 - min(z, 1 — x)
Conjunction operator: product IV t-norm
0=05
v =0.5

fulfilled [17], [18]. We employ the Wilcoxon rank test [28]
as non parametric statistical procedure to make comparisons
between two algorithms; we use the Friedman aligned ranks
test [29] to detect statistical differences among a group of
results and the Holm post-hoc test [30] to find the algorithms
that reject the equality hypothesis with respect to a selected
control method.

These tests are suggested in the studies presented in [17],
[18], [19], where its shown that their use in the field of machine
learning is highly recommended. A complete description of
the test and software for its use can be found on the website:
http://sci2s.ugr.es/sicidm/.

D. Analysis of the Behaviour of the Evolutionary Tuning
Method.

Table III shows the classification accuracy provided by our
methodology and the different approaches considered in this
work, specifically:

o F-ID3_IVFS_ET: the fuzzy ID3 algorithm with IVFSs
and the evolutionary tuning method.

o F-ID3: the standard fuzzy ID3 algorithm.

o SPT: the simple pattern tree algorithm.

o LA: the look-ahead approach with the information gain
heuristic.

o Fgini: the approach in which authors fuzzify the Gini
index.

o Janikow: the classical FDT.

o C4.5: the well known decision tree.

Results are grouped in pairs for training and test, where the
best global result for each data-set is stressed in bold-face.

From the results of Table III, it can be observed that
our methodology enhances the performance of the fuzzy ID3
algorithm in most of the data-sets. Furthermore, the goodness
of our evolutionary tuning model is shown since it increases
the initial performance of the fuzzy ID3 algorithm in such a
way that the results obtained by the remaining FDTs are clearly
outperformed, as it achieves the best global performance and
provides the best performance in 11 of the 17 data sets.
This situation is confirmed in Fig. 3, where the rankings of
the different approaches are presented, showing that the best
ranking is provided by our evolutionary tuning method.

In order to detect significant differences among the results
of the different approaches, we carry out the Friedman aligned
rank test. This test obtains a p-value near to zero (0.004),
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TABLE III: Results in Train (Tr.) and Test (Tst) achieved by the different decision trees.

Data  F-ID3_IVFS_ET F-ID3 SPT LA Janikow Fgini C4.5

Set Tr. T'st Tr. Tst Tr. Tst Tr. Tst Tr. Tst Tr. Tst Tr. Tst

App 93.16 86.80 90.57 8494 80.19 80.22 9127 84.85 89.39 86.84 80.19 80.22 90.09 84.98

Bal 96.60 90.72 91.72 90.08 7896 7792 90.32 88.32 91.72 90.08 89.40 88.64 89.72 77.28

Bup 79.93 67.25 61.52 5826 6399 6029 79.78 61.74 60.65 58.84 88.62 66.67 83.84 66.09

Cle 93.18 55.88 87.29 53.87 53.87 5388 94.69 49.83 97.64 50.50 89.06 53.19 8341 51.82

Eco 82.14 77.69 80.21 76.80 67.11 66.67 80.73  75.90 77.98 76.79 89.88 7739 91.74 78.28

Gla 71.57 60.80  60.17 52.80 6040 57.52 85.86 68.24 75.12 64.04 4626 43.02 9194 68.73

Hab 79.90 72.87 75.08 7190 7598 74.17 7843 73.52 74.51 7288 7990 74.83 76.06 7222

Hea 94.81 78.52 93,52  79.26 81.57 75.19 9843 7593 98.52 78.52 9093 7296 9296  79.26

Iri 98.83 96.00 93.07 9533 97.17 98.67 9750 96.00 95.67 96.00 83.67 83.33 97.83 93.33

Mag 82.75 78.91 9550 7828 78.12 7823 8640 78.44 78.52 7755 7998 77.18 8722 79.81

New 97.79 9488 7980 91.16 91.86 91.63 96.05 93.95 86.05 85.58 9349 93.02 9837 9l1.16

Pag 95.03 94.16  92.67 92.15 9297 9124 95.67 93.79 93.75 92.51 91.70 9124 9895 95.07

Pim 83.56 7643 92.84 7577 7620 7434 88.25 73.57 77.54 7434 8538 7578 85.81 74.09

Rin 97.09 90.81 7995 4959 80.78 7811 9476  77.03 95.00 90.14 88.55 8486 97.13 82.70

Shu 97.74 97.98 98.74  90.57 9272 92,64 97.72 97.33 83.31 8331 99.46 9949 99.66 99.54

Tae 70.86 5895 6340 5499 5530 4899 7136 53.61 68.38 57.61 5628 5034 78.15 54.99

Tit 78.33 7833 7833 7833 7764 7778 7833 7833 78.33 7833 6737 66.65 7848 77.78

Win 100.00 98.87 99.59 97.75 91.85 8933 9845 92.11 100.00 97.71 94.10 9040 99.02 94.90

Wis 98.28 96.04  90.63 9458 96.85 9620 96.85 95.02 98.43 96.49 9440 93.56 9843 95.03

Yea 63.01 57.41 9590 5546 3556 34.16 6299 51.29 46.60 4454 2138 2095 82.18 55.80

Mean 88.03 80.46 81.02 76.09 7645 74.86 88.19 77.94 83.35 77.63 8050 74.19 90.05 78.64
% to make a pairwise comparison between both approaches. We

81.37 . . . .
8 744 can observe that the null hypothesis of equivalence is rejected
704 6 oo in favour of the evolutionary tuning method with a high level
1 %635 of confidence.
50 4
1 s TABLE V: Wilcoxon Test to compare the C4.5 algorithm (R™)
z: against the evolutionary tuning method (R™).
hy Comparison Rt R- Hypothesis (o = 0.05) p-value
0 .
?6? e o« NS o ?v\*ﬂ C4.5 vs. F-ID3_IVFS_ET 44 166  Rejected for F-ID3_IVFS_ET 0.023
?‘\0’5/

Fig. 3: Rankings of the different fuzzy decision trees.

which implies that there are significant differences between
the results. For this reason, we can apply a post-hoc test
to compare our methodology against the remaining FDTs.
Specifically, a Holm test is applied, which is presented in
Table IV. The statistical analysis reflects that all of the FDTs
considered in this study are outperformed by our approach.

TABLE IV: Holm test to compare the evolutionary tuning
method with all the FDTs. The evolutionary tuning model is
used as the control method.

i Algorithm z P afi Hypothesis (o = 0.05)

5 SPT 474  2.15E-6 0.01 Rejected for F-ID3_IVFS_ET
4 Fgini 4.10 4.05E-5 0.0125 Rejected for F-ID3_IVFS_ET
3 F-ID3 3.07 0.002 0.017 Rejected for F-ID3_IVFS_ET
2 LA 2.76 0.006 0.025 Rejected for F-ID3_IVFS_ET
1 Janikow 2.37 0.018 0.05 Rejected for F-ID3_IVFS_ET

Regarding C4.5, the results presented in Table III also show
that our evolutionary tuning approach achieves a significant
global improvement. A Wilcoxon test (Table V) will help us

VI. CONCLUSION

In this work we have proposed a methodology to improve
the performance of FDTs by means of IVFSs and a post-
processing genetic tuning step. To do so, we have modeled the
linguistic labels by means of IVFSs to take into account the
ignorance related to the definition of the membership functions.
The degree of ignorance is weighted by two parameters and,
in this manner, the shapes of the IVFSs are determined. This
parametrization allows us to analyse the most appropriate set-
up of the IVFSs partitions by means of a post-processing
genetic tuning step. In this manner, we compute the best
ignorance degree that each IVFS represents.

The experimental study has shown the quality of our
approach since, applied to the FDT generated by the fuzzy
ID3 algorithm, allows to outperform both the results of the
base FDT and the ones of several state-of-the-art FDTs. We
must highlight that our proposed approach also enhances the
results of a reference algorithm in data mining like C4.5. The
results obtained with this methodology allow us to determine,
with the corresponding statistical support, that the proposed
synergy is very useful to solve classification tasks.
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