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In this work, we conduct a study considering a fuzzy rule-based multiclassification sys-
tem design framework based on Fuzzy Unordered Rule Induction Algorithm (FURIA).
This advanced method serves as the fuzzy classification rule learning algorithm to de-
rive the component classifiers considering bagging and feature selection. We develop
an exhaustive study on the potential of bagging and feature selection to design a final
FURIA-based fuzzy multiclassifier dealing with high dimensional data. Several parame-
ter settings for the global approach are tested when applied to twenty one popular UCI
datasets. The results obtained show that FURIA-based fuzzy multiclassifiers outperform
the single FURIA classifier and are competitive with C4.5 multiclassifiers and random
forests.
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1. Introduction

Multiclassification systems (MCSs) (also called multiclassifiers or classifier ensem-

bles) have been shown as very promising tools to improve the performance of single

classifiers when dealing with complex, high dimensional classification problems in

the last few years.29 This research topic has become especially active in the classical

machine learning area, considering decision trees or neural networks to generate the

component classifiers, but also some work has been done recently using different

kinds of fuzzy classifiers.4,9,30,32,37,45,52
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Fuzzy Unordered Rule Induction Algorithm (FURIA)23,24 is a powerful fuzzy

classification rule learning algorithm that can deal with a very common problem of

fuzzy rule-based classification systems (FRBCSs), the so-called curse of dimension-

ality.26 By combining advantages of the RIPPER algorithm10 with fuzzy logic, this

algorithm is able to generate simple and compact sets of fuzzy classification rules,

even when tackling datasets with a large amount of features. Apart from its ability

to deal with high dimensional datasets, this approach has shown a performance ad-

vantage in comparison to classical machine learning methods such like RIPPER10

and C4.5.38

An individual classifier must provide different patterns of generalization in order

to obtain a diverse set of classifiers composing a highly accurate ensemble.29,51

Otherwise, the ensemble would be composed of the same or similar classifiers and

would provide a similar accuracy to the single one. There are several techniques

in order to obtain diversity among the classifiers. Bagging7 and boosting41 are the

two most popular generic approaches to do so.19 There are also other more recent

proposals considering other ways to promote disagreement between the component

classifiers, with feature selection being an extended strategy.20 All in all, it turned

out that a combination between bagging and feature selection is a generic approach

leading to good MCS designs for any kind of classifier learning method.34,44

In this paper we aim to study the performance of FURIA-based fuzzy MCSs, and

propose a new framework being able to deal with high dimensional datasets. Our

proposal focuses on the combination of a quick FRBCS design method with bagging

and a quick feature selection method. We will show how this combination is both

efficient, due to its inherent parallelism, and accurate, thanks to the high quality of

the base classifier. Several FURIA-based fuzzy MCS composition designs are tested

including bagging, feature selection, and the combination of bagging and feature se-

lection. We considered three different types of feature selection algorithms: random

subspace,20 mutual information-based feature selection (MIFS),3 and the random-

greedy feature selection based on MIFS and the GRASP approach,18 although the

methodology is flexible to incorporate any other feature selection approach.

In order to test the accuracy of the proposed fuzzy MCSs, we conduct com-

prehensive experiments with 21 datasets taken from the UCI machine learning

repository and provide a deep study of the results obtained. Finally, our approach

is compared against two state-of-the-art MCS algorithms (bagging decion trees17

and random forests8) and also with an application of the fuzzy MCS generation

approach13,14 with other, less powerful fuzzy classifier derivation method.26

This paper is structured as follows. The next section presents a state of the

art about MCSs and fuzzy MCSs. In Sec. 3 the FURIA algorithm is described,

while Sec. 4 recalls our approach for designing FURIA-based fuzzy MCSs. The

experiments developed and their analysis are shown in Sec. 5. Finally, Sec. 6 collects

some concluding remarks and future research lines.
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2. Background and Related Work

This section explores the current literature related to the generation of fuzzy rule-

based multiclassification systems (FRBMCSs). The techniques used to generate

MCSs and fuzzy MCSs are described in Secs. 2.1 and 2.2, respectively.

2.1. Related work on MCSs

A MCS is the result of the combination of the outputs of a group of individually

trained classifiers in order to get a system that is usually more accurate than any

of its single components.29 These kinds of methods have gained a large acceptance

in the machine learning community during the last two decades due to their high

performance. Decision trees are the most common classifier structure considered

and much work has been done in the topic,2,17 although they can be used with any

other type of classifiers (the use of neural networks is also very extended, see for

example Ref. 33).

There are different ways to design a classifier ensemble. On the one hand, there

is a classical group of approaches considering data resampling to obtain different

training sets to derive each individual classifier. In bagging,7 they are independently

learnt from resampled training sets (“bags”), which are randomly selected with

replacement from the original training data set. Boosting methods41 sequentially

generate the individual classifiers (weak learners) by selecting the training set for

each of them based on the performance of the previous classifier(s) in the series.

Opposed to bagging, the resampling process gives a higher selection probability to

the incorrectly predicted examples by the previous classifiers.

On the other hand, a second group can be found comprised by a more diverse

set of approaches which induct the individual classifier diversity using some ways

different from resampling.54 Feature selection plays a key role in many of them

where each classifier is derived by considering a different subset of the original

features.51,53 Random subspace,20 where each feature subset is randomly generated,

is one of the most representative methods of this kind.

Finally, there are some advanced proposals that can be considered as combina-

tions of the two groups. The most extended one could be random forests,8 where the

individual classifiers are decision trees learnt from a resampled “bag” of examples,

a subset of random variables is selected at each construction step, and the best split

for those selected variables is chosen for that node.

The interested reader is referred to2,33 for two surveys for the case of decision

tree (both) and neural network ensembles (the latter), including exhaustive exper-

imental studies.

2.2. Previous work on fuzzy MCSs

The use of boosting for the design of fuzzy classifier ensembles has been considered

in some works, taking the weak learners as fuzzy variants of neural networks:36,52

as granular models,37 as neuro-fuzzy systems,42 as well as single fuzzy rules.15,21,39
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However, only a few contributions for bagging fuzzy classifiers have been

proposed considering, fuzzy adaptive neural networks,36 fuzzy neural networks

(together with feature selection),46 fuzzy clustering-based classifiers,50 neuro-fuzzy

systems,9 and fuzzy decision trees4,30 as component classifier structures.

Especially worth mentioning is the contribution of Bonissone et al.4 This ap-

proach hybridizes Breimann’s idea of random forests8 with fuzzy decision trees.28

Such resulting fuzzy random forest combines characteristics of MCSs with random-

ness and fuzzy logic in order to obtain a high quality system joining robustness,

diversity, and flexibility to not only deal with traditional classification problems

but also with imperfect and noisy datasets. The results show that this approach

obtains good performance in terms of accuracy for all the latter problem kinds.

In our previous studies,12,13,48,49 we proposed a MCS methodology based on

classical MCS design techniques such as bagging and feature selection with a fuzzy

rule-based classification system (FRBCS) as a base classifier. The fuzzy classifica-

tion rule learning algorithm considered was the basic heuristic method proposed by

Ishibuchi.26 A multicriteria genetic algorithm (GA) was used for a static compo-

nent classifier selection from FRBMCSs guided by several fitness functions based on

training error and likelihood, as well as bicriteria fitness functions based on training

error and likelihood or diversity measures.

Some other contributions based on the use of GAs should also be remarked.

On the one hand, an FRBCS ensemble design technique is proposed in Ref. 1 con-

sidering some niching GA-based feature selection methods to generate the diverse

component classifiers, and another GA for classifier fusion by learning the combi-

nation weights. On the other hand, another interval and fuzzy rule-based ensemble

design method using a single- and multiobjective genetic selection process is intro-

duced in.31,32 In this case, the coding scheme allows an initial set of either interval

or fuzzy rules, considering the use of different features in their antecedents, to be

distributed among different component classifiers trying to make them as diverse

as possible by means of two accuracy and one entropy measures. Besides, the same

authors presented a previous proposal in Ref. 27, where an EMO algorithm gen-

erated a Pareto set of FRBCSs with different accuracy-complexity trade-offs to be

combined into an ensemble.

3. FURIA

Fuzzy Unordered Rules Induction Algorithm (FURIA)23,24 is an extension of the

state-of-the-art rule learning algorithm called RIPPER,10 having its advantages

such like simple and comprehensible fuzzy rule base, and introducing new features.

FURIA provides three different extensions of RIPPER: i) it takes an advantage

of fuzzy rules instead of crisp ones, ii) it applies unordered rule sets instead of

rule lists, and iii) it proposes a novel rule stretching method in order to manage

uncovered examples. Below the said features of FURIA are reviewed.
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3.1. Unordered rule base instead of the list of rules

The first extension of FURIA is the following. It deals with a standard unordered

rule base (RB) instead of a decision list, as the latter provides one crucial disad-

vantage. Particularly, a list of rules favors a default class, that introduces a bias.

Here, for each class, a set of rules is generated using the one-vs.-rest strategy. Thus,

FURIA separates each class from the other classes. In consequence, there is no

default rule and the order of the rules is not important.

However, this new approach has two drawbacks. The first one concerns a conflict

which arises when having the same coverage of several rules from different classes.

The second one may take place when an example is not covered by any of the rules.

The first drawback is rather unlikely to occur, even though in case it occurs, it may

be resolved easily. The latter issue is solved by introducing a novel rule stretching

method as described below.

3.2. Fuzzification of the RIPPER rules

The fuzzification of the RIPPER (crisp) rules corresponds to the transformation

of the crisp values into the fuzzy ones, that is fuzzy sets with trapezoidal mem-

bership functions. Based on the training set the best fuzzy interval is generated.

Considering the intervals of the crisp rules Ii as the cores [bi, ci] of the fuzzy rule,

a learning process aims at determining the optimal size of the supports of each of

the antecedents [ai, di]. It must be pointed that only the subset Di
T of the training

set DT that have not been already covered by any of the antecedents (Aj ∈ FIj ,

j 6= i) is considered in order to build a single antecedent (Ai ∈ Ii):

Di
T = {x = (x1 · · ·xk) ∈ DT |FIj(xj) > 0for all j 6= i} ⊆ DT (1)

Then, the Di
T is divided into two subsets, the positive subset Di

T+ and the

negative subset Di
T− . The following measure, called rule purity, is used in order to

check the quality of the fuzzification:

pur =
pi

pi + ni

(2)

where

pi =
∑

x∈Di

T+

µAi
(x) ; ni =

∑

x∈Di

T−

µAi
(x)

The rule fuzzification procedure is greedy and it iterates over all antecedents

calculating the best fuzzification in terms of purity (see Eq. (2)). The candidate

values for a are those values laying on the left side from b belonging to Di
T , and

are expressed as: xi|x = (x1, . . . , xk) ∈ Di
T , xi < b. The candidate values for d are

those values laying on the right side from c belonging to Di
T , and are expressed

as: xi|x = (x1, . . . , xk) ∈ Di
T , xi > c. In case of a tie, the larger fuzzy set, the one

having a larger distance from the core, is selected. Then, the antecedent with the

highest purity value is selected to be fuzzified. The whole process ends up when
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all antecedents are fuzzified. This procedure is repeated only once, as it has been

noticed that in almost all cases convergence is obtained after the first iteration.

3.3. Fuzzy classification rule structure and fuzzy reasoning method

Fuzzy rules of FURIA are composed of a class Cj and a certainty degree CDj in

the consequent, the most extended fuzzy classification rule structure.11,26 The final

form of a rule is the following:

Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class Cj with CDj ; j = 1, 2, . . . , N .

The certainty degree of a given example x is defined as follows:

CDj =
2
|D

Cj

T
|

|DT | +
∑

x∈D
Cj

T

µ
Cj
r (x)

2 +
∑

x∈DT
µ
Cj
r (x)

(3)

where D
Cj

T stands for a subset of the training set in which the instances are affected

to the class Cj . The fuzzy reasoning method used is the so-called voting-based

method.11,25 In this approach, each fuzzy rule makes a vote for its consequent

class. The vote strength of the rule is calculated as the product of the firing degree

µ
Cj
r (x) and the certainty degree CDj . The final decision given as the output is the

class with the largest value of the accumulated vote, which is calculated as follows:

Vh =
∑

Rj∈RB

Cj=h

µCj
r (x) ∗ CDj (4)

where h is the class for which the accumulated vote is computed. In this approach,

all compatible fuzzy rules are responsible for the classification, which should provide

a higher robustness. It must be pointed that when there is no rule of any class

covering a given example x, a rule stretching procedure, explained in Sec. 3.4, is

executed.

3.4. Rule stretching

In case some examples of the training dataset not covered by any rule exist, a

procedure, called rule stretching or rule generalisation, is applied. This algorithm

enlarges the covering surface of the rules by deleting at least one antecedent from

each of the rules. The generalization procedure aims to reach a minimal state i.e.

only the minimal amount of antecedents are removed. In FURIA, rule stretching

treats antecedents in the same order in which they were learned. Thus, it intro-

duces implicitly a degree of importance among the antecedents, which decreases

the complexity of the approach. The final list is then obtained by cutting the entire

antecedents list at the point where an antecedent not satisfying a given example
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is encountered. To check that general rules are obtained, the following measure is

used:

p+ 1

p+ n+ 2
×

k + 1

m+ 2

where p and n are respectively the number of positive and negative examples covered

by the rule, while m is the size of the entire antecedents list and k is the size of

the generalized list. Note that the second part of the measure aims at discarding

heavily pruned rules, as pruning is rather decreasing the relevance of the rule.

The interested reader is referred to23,24 for more details regarding the description

of FURIA and its improvements with respect to the RIPPER algorithm.

4. Bagging FURIA-Based Fuzzy MCSs

In this section we will detail how the FURIA fuzzy MCSs are designed. A normalized

dataset is split into two parts, a training set and a test set. The training set is

submitted to an instance selection and a feature selection procedures in order to

provide individual training sets (the so-called bags) to train FURIA classifiers.

After the training, we get a FURIA-based fuzzy MCS, which is validated using the

training and the test errors, as well as a measure of complexity based on the total

number of component classifiers obtained from FURIA. The whole procedure is

graphically presented in Fig. 1.
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Fig. 1. Our framework: after the instance and the feature selection procedures, the component
fuzzy classifiers are derived by the FURIA learning method. Finally, the output is obtained using
a voting-based combination method.
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4.1. FURIA-based fuzzy MCS design approaches

In Refs. 34 and 44, it was shown that a combination between bagging and feature

selection composed a general design procedure which usually leads to good MCS

designs, regardless the classifier structure considered. Hence, we decided to follow

that idea and we integrate FURIA into a framework of that kind. We aim to com-

bine the diversity induced by the MCS design methods and the robustness of the

FURIA method in order to derive good performance fuzzy rule-based MCSs for

high dimensional problems. We also try a combination of FURIA with bagging and

feature selection separately in order to analyze which is the best setting for the

design of FURIA-based fuzzy MCSs.

The term bagging is an acronym of bootstrap aggregation and refers to the

first successful method proposed to generate MCSs.7 This approach was originally

designed for decision tree-based classifiers, however it can applied to any type of

model for classification and regression problems. Bagging is based on bootstrap and

consists of reducing the variance of the classification by averaging many classifiers

that have individually been tuned to random samples that follow the sample distri-

bution of the training set. The final output of the model is the most frequent value,

called voting, of the learners considered. Bagging is the most effective when dealing

with unstable classifiers, what means a small change in the training set can cause a

significant change in the final model. In addition, it is recommended when a given

dataset is composed of small amount of examples. Furthermore, bagging enables a

parallel and independent learning of the learners in the ensemble.

In this contribution, the bags are generated with the same size as the original

training set, as commonly done. Three different feature selection methods, random

subspace,20 mutual information-based feature selection (MIFS),3 and a random-

greedy feature selection method based on MIFS and the GRASP approach,18 are

considered. For each feature selection algorithm three different feature subsets of

different sizes, which are based on the initial number of features in the classification

problem, are tested.

Random subspace is a method in which a subset of features is randomly selected

from the original dataset. Alternatively, the greedy Battiti’s MIFS method is based

on a forward greedy search using the mutual information measure,43 with regard

to the class. This method orders a given set S of features by the information they

bring to classify the output class considering the already selected features. The

mutual information I(C,F ) for a given feature F is defined as:

I(C,F ) =
∑

c,f

P (c, f) log
P (c, f)

P (c)P (f)
(5)

where P (c), P (f) and P (c, f) are respectively the values of the density function

for the class, the feature variables, and the joint probability density. In the MIFS

method, a first feature f is selected as the one that maximizes I(C, f), and then the

features f that maximize Q(f) = I(C, f) − β
∑

s∈S I(f, s) are sequentially chosen
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until S reaches the desired size. β is a coefficient to reduce the influence of the

information brought by the already selected features.

The random-greedy variant is an approach where the set is generated by it-

eratively adding features randomly chosen from a restricted candidate list (RCL)

composed of the best τ percent features according to the Q measure at each selec-

tion step. Parameter τ is used to control the amount of randomness injected in the

MIFS selection. With τ = 0, we get the original MIFS method, while with τ = 1,

we get the random subspace method.

Random search such as random subspace for feature selection is a well-known

approach in the multiclassifiers research field.4,5,8,17,20 Nevertheless, the use of a

heuristic such as a randomized variant of greedy Battiti’s MIFS3 combined with

FURIA, which is a tree-based fuzzy rule generation approach, may lead to a perfor-

mance improvement. Note that the greedy Battiti’s MIFS leads always to the same

subset of features, thus this approach fails to provide MCSs with enough diver-

sity when considered as the only MCS approach, i.e., without being combined with

bagging. No matter which its size is, such ensemble will always provide the same re-

sult and will be skipped in the experimentation part regarding FURIA-based fuzzy

MCSs combined with feature selection.

Finally, no weights are considered to combine the outputs of the component

classifiers to take the final MCS decision, but a pure voting combination method is

applied: the ensemble class prediction will directly be the most voted class in the

component classifiers output set.

5. Experiments and Analysis of Results

This section presents all the experiments performed. Section 5.1 introduces the ex-

perimental setup. In Sec. 5.2 we check the good quality of single FURIA dealing

with high dimensional problems with many features. Section 5.3 presents the com-

bination of FURIA-based fuzzy MCSs with bagging, but without feature selection.

Section 5.4 is devoted to the construction of FURIA-based fuzzy MCSs combined

with feature selection only. Then, Sec. 5.5 shows results of FURIA-based fuzzy

MCSs combined with bagging and feature selection. Section 5.6 summarizes all the

experiments developed reporting an advantage of our FURIA-based fuzzy MCS

with bagging and compares them against some other well established MCS design

methodologies such as bagging decision trees, random forests, and Ishibuchi-based

fuzzy MCSs, which is based on the same fuzzy MCS design methodology but with

a different fuzzy classifier design method.

5.1. Experimental setup

To evaluate the performance of the generated FURIA-based fuzzy MCSs, we have

selected twenty one datasets with different characteristics concerning the number

of examples, features, and classes from the UCI machine learning repository (see

Table 1). In order to compare the accuracy of the considered classifiers, we used
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Table 1. Datasets considered.

Abbrev. Dataset #Examples #Attr #Classes

aba abalone 4178 7 28

bre breast 700 9 2

gla glass 214 9 7

hea heart 270 13 2

ion ionosphere 352 34 2

let letter 20000 16 26

mag magic 19020 10 2

opt optdigits 5620 64 10

pbl pblocks 5474 10 5

pen pendigits 10992 16 10

pho phoneme 5404 5 2

pim pima 768 8 2

sat sat 6436 36 6

seg segment 2310 19 7

son sonar 208 60 2

spa spambase 4602 57 2

tex texture 5500 40 11

veh vehicle 846 18 4

wav waveform 5000 40 3

win wine 178 13 3

yea yeast 1484 8 10

Dietterich’s 5×2-fold cross-validation (5×2-cv), which is considered to be superior

to paired k-fold cross validation in classification problems.16

Three different feature subsets of different sizes (called Small, Medium, and

Large), which are relative with respect to the initial size of features of the classifi-

cation problem, are tested for the FURIA-based fuzzy MCSs using feature selection.

The considered rule to select a feature subset size is following: if the size of an initial

feature set is smaller than 10, then the Small feature subset size is equal to 3, the

Medium feature subset size is equal to 4, and the Large feature subset size is equal

to 5. If the size of an initial feature set is between 10 and 20, then the Small feature

subset size is equal to 5, the Medium feature subset size is equal to 7, the Large

feature subset size is equal to 9. Finally, if a size of an initial feature set is larger

than 30, then the Small feature subset size is roughly equal to 10% of the initial

set, the Medium feature subset size is roughly equal to 20% of the initial set, and

the Large feature subset size is roughly equal to 30% of the initial set (see Table 2).

As described in Sec. 4.1, these features are to be selected by means of three

different approaches: the greedy Battiti’s MIFS filter feature selection method,3

the Battiti’s method with GRASP (with τ equal to 0.5, see Sec. 4.1), and random

subspace.20 Battiti’s method has been run by considering a discretization of the

real-valued attribute domains in ten parts and setting the β coefficient to 0.1.

The FURIA-based fuzzy MCSs generated are initially comprised by 3, 5, 7, and

10 classifiers in order to evaluate the impact of the ensemble size in the accuracy
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Table 2. Feature subset sizes for each of the datasets considered.

Dataset #Attr. Small feat. subset size Medium feat. subset size Large feat. subset size

abalone 7 3 4 5

breast 9 3 4 5

glass 9 3 4 5

heart 13 5 7 9

ionosphere 34 5 7 9

letter 16 5 7 9

magic 10 5 7 9

optdigits 64 6 12 18

pblocks 10 5 7 9

pendigits 16 5 7 9

phoneme 5 3 4 5

pima 8 3 4 5

sat 36 4 8 12

segment 19 5 7 9

sonar 60 6 12 18

spambase 57 6 12 18

texture 40 4 8 12

vehicle 18 5 7 9

waveform 40 4 8 12

wine 13 5 7 9

yeast 8 3 4 5

of the obtained MCS. A small number of component fuzzy classifiers (up to 10) is

considered in this first study. Larger numbers are left for future works as well as

the consideration of a classifier selection mechanism.

All the experiments have been run in a cluster at the University of Granada

on Intel quadri-core Pentium 2.4 GHz nodes with 2 GBytes of memory, under the

Linux operating system.

As there are many different variants and parameter values to be tested, analysis

of the obtained results will be performed in parts and following an incremental

approach for the sake of comprehensibility.

Despite of accuracy, which is not always believed to be the best choice, more

advanced metrics are considered. From a confusion matrix presented in Table 3,

which considers independently positive and negative class examples, one can obtain

four performance metrics considering positive and negative classes independently:

• True positive rate. It is defined as the percentage of positive examples correctly

classified as being of the positive class TPr =
TP

TP+FN
.

• True negative rate. It is defined as the percentage of negative examples correctly

classified as being of the negative class TNr =
TN

FP+TN
.

• False positive rate. It is defined as the percentage of negative examples incorrectly

classified as being of the positive class FPr = FP
FP+TN

.

• False negative rate. It is defined as the percentage of positive examples incorrectly

classified as being of the negative class FNr =
FN

TP+FN
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Table 3. Confusion matrix representing the metrics assessing a binary classification problem.

Prediction

Positive Class Negative Class

Real value
Positive Class True Positive (TP) False Negative (FN)

Negative Class False Positive (FP) True Negative (TN)

A well-known method of presenting the performance of classification is the

Receiver Operating Characteristic (ROC) curve,6 showing a trade-off between the

benefits (TPr) and costs (FPr) of a classifier. From that, the Area Under the ROC

Curve (AUC)22 can be obtained, which summarizes the performance of the classi-

fier. The AUC is calculated as follows:

AUC =
1 + TPr − FPr

2
(6)

Since we deal with multi-class problems in opposite to what the AUC metric was

designed for (in principle, it only serves for binary problems), we use the well-known

one-versus-all strategy. In this case, for each class we calculate the AUC treating

all the examples belonging to the given class as positive ones and the examples

belonging to any other class as the negative ones. In the final results we consider

the average AUC value.

We use this metric to perform the final comparison between the best choices

of FURIA-based fuzzy MCSs against some other well established MCS design

methodologies such as bagging decision trees and random forests, as well as against

Ishibuchi-based fuzzy MCSs.

5.2. Single FURIA-based fuzzy classifier for high dimensional

problems

In the first place, we have conducted experiments on a single FURIA-based fuzzy

classifier without feature selection in order to observe its behavior on the different

datasets selected. Notice that, some of them can be considered to be high dimen-

sional, either with respect to the number of features or with respect to the number

of examples.

We may observe that FURIA in isolation is able to deal with high dimensional

datasets with many features (for instance optdigits, which has 64 features) as well

as with many examples (for instance letter, which has 20.000 examples), providing

good quality results (see Table 4). Our aim in the reminder of this section is to

check if the use of fuzzy MCSs based on FURIA allows us to improve the latter

capability by obtaining a more accurate classification system.

5.3. Bagging FURIA-based fuzzy MCSs

In this subsection, we would like to analyze the behavior of bagging FURIA-based

fuzzy MCSs composed of a small number of classifiers. As said, ensembles of sizes
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Table 4. Results for a single FURIA-based fuzzy classifier without feature selection.

(a) First subset of datasets

FURIA single classifier — All features

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.781 0.023 0.336 0.141 0.041 0.038 0.143 0.633 0.018 0.003

test err. 0.805 0.049 0.377 0.227 0.163 0.123 0.157 0.683 0.033 0.027

(b) Second subset of datasets

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.132 0.193 0.042 0.008 0.154 0.043 0.007 0.331 0.043 0.004 0.433

test err. 0.160 0.245 0.122 0.042 0.298 0.070 0.055 0.364 0.187 0.056 0.441

3, 5, 7, and 10 are considered. Table 5 collects the obtained results (the best result

for each dataset is shown in boldface). As expected, it can be seen how the use

of bagging outperforms the single FURIA-based fuzzy classifier (Table 4) in 19

out of 21 cases for all sizes of the ensembles in terms of testing error. Overall, it

outperforms a single FURIA-based fuzzy classifier in 76 out of 84 cases (4 ensemble

sizes × 21 datasets). Pima and wine are the only datasets where the single FURIA-

based fuzzy classifier turned out to be a better choice.

Thus, we may conclude that FURIA-based fuzzy MCSs with bagging only is a

good approach.

Moreover, we would like to provide an analysis of the influence of the ensemble

size on the test error. We will compare the following ensemble size parameters in a

pairwise manner: 3 vs. 5; 5 vs. 7; and 7 vs. 10. Comparing the ensemble size of 3

against 5, it can be noticed that bagging FURIA-based fuzzy MCSs composed of

5 classifiers obtain the best results in 20 out of 21 cases (+1 tie). Then, comparing

the ensemble size of 5 against 7, it can be noticed that bagging FURIA-based fuzzy

MCSs composed of 7 classifiers obtain the best results in 15 out of 21 cases (+5

ties). Finally, comparing the ensemble size of 7 against 10, it can be noticed that

bagging FURIA-based fuzzy MCSs composed of 10 classifiers obtain the best results

in 15 out of 21 cases (+2 ties). It can be seen that globally, the larger the number

of classifiers, the lower the test error. However, in some cases (4 out of 21, +2

ties) bagging FURIA-based fuzzy MCSs composed of 7 classifiers outperform those

composed of 10 classifiers. Hence, the optimal number of component classifiers for

the bagging FURIA-based fuzzy MCSs seem to be an important parameter to keep

in mind when designing a classifier system of this kind. As said, we will consider

this issue in future works.

5.4. Comparison of two feature selection approaches for the

generation of FURIA-based fuzzy MCSs

In this subsection we present results from the experiment conducted concerning

the use of two different feature selection approaches to generate FURIA-based fuzzy
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Table 5. Results for FURIA-based fuzzy MCSs with bagging.

(a) First subset of datasets

FURIA — Bagging with all features

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.617 0.013 0.140 0.078 0.041 0.040 0.114 0.321 0.015 0.006

test err. 0.771 0.045 0.362 0.204 0.156 0.119 0.139 0.664 0.031 0.024

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.586 0.012 0.111 0.057 0.035 0.027 0.111 0.286 0.014 0.004

test err. 0.760 0.044 0.325 0.189 0.156 0.103 0.136 0.652 0.030 0.019

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.578 0.010 0.096 0.052 0.038 0.021 0.110 0.270 0.014 0.003

test err. 0.756 0.044 0.313 0.178 0.156 0.096 0.136 0.648 0.030 0.019

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.570 0.009 0.091 0.059 0.031 0.016 0.113 0.246 0.015 0.002

test err. 0.755 0.046 0.318 0.189 0.152 0.091 0.138 0.641 0.030 0.017

(b) Second subset of datasets

FURIA — Bagging with all features

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.090 0.115 0.037 0.013 0.069 0.032 0.012 0.098 0.044 0.018 0.252

test err. 0.144 0.259 0.115 0.041 0.249 0.064 0.050 0.294 0.171 0.067 0.439

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.085 0.098 0.029 0.009 0.049 0.028 0.008 0.080 0.030 0.014 0.235

test err. 0.141 0.253 0.108 0.039 0.238 0.062 0.039 0.284 0.164 0.061 0.426

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.084 0.092 0.026 0.007 0.035 0.026 0.006 0.063 0.024 0.011 0.229

test err. 0.138 0.250 0.106 0.036 0.232 0.061 0.037 0.282 0.158 0.069 0.416

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.086 0.075 0.025 0.006 0.018 0.028 0.004 0.051 0.017 0.006 0.223

test err. 0.141 0.246 0.105 0.035 0.230 0.061 0.036 0.276 0.156 0.060 0.408

MCSs, namely random and randomized greedy feature selection (see Sec. 4.1). Note

that, as mentioned in that section, greedy feature selection is not considered due

to its lack of diversity.

Tables 6, 9 and 12 presents a set of FURIA-based fuzzy MCSs based on Random-

greedy feature selection with Small, Medium, and Large feature subset sizes respec-

tively, while Tables 7, 10 and 13 present a set of FURIA-based fuzzy MCSs based on
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Table 6. Results for FURIA MCSs with Random-Greedy feature selection. Small feature subsets.

(a) First subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.779 0.027 0.274 0.124 0.048 0.265 0.170 0.628 0.018 0.065

test err. 0.804 0.044 0.389 0.198 0.147 0.301 0.179 0.628 0.032 0.110

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.781 0.027 0.256 0.118 0.051 0.181 0.168 0.628 0.018 0.053

test err. 0.803 0.041 0.377 0.189 0.142 0.222 0.178 0.628 0.032 0.092

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.778 0.026 0.231 0.121 0.050 0.174 0.167 0.628 0.018 0.048

test err. 0.802 0.040 0.366 0.192 0.134 0.213 0.176 0.628 0.032 0.085

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.784 0.027 0.225 0.122 0.043 0.154 0.169 0.628 0.018 0.048

test err. 0.806 0.043 0.352 0.188 0.140 0.193 0.178 0.628 0.032 0.088

(b) Second subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.203 0.216 0.142 0.027 0.108 0.139 0.118 0.298 0.241 0.005 0.478

test err. 0.217 0.252 0.166 0.059 0.264 0.149 0.175 0.351 0.271 0.065 0.544

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.199 0.215 0.129 0.026 0.083 0.133 0.075 0.286 0.206 0.008 0.468

test err. 0.212 0.248 0.150 0.059 0.254 0.143 0.124 0.350 0.240 0.055 0.539

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.199 0.215 0.123 0.024 0.084 0.132 0.071 0.280 0.188 0.006 0.448

test err. 0.212 0.248 0.143 0.055 0.252 0.144 0.119 0.349 0.219 0.059 0.525

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.200 0.215 0.118 0.026 0.065 0.135 0.057 0.285 0.158 0.004 0.434

test err. 0.214 0.248 0.138 0.056 0.249 0.145 0.100 0.349 0.196 0.055 0.509

Random subspace feature selection with Small, Medium, and Large feature subset

sizes respectively (the best result for each dataset is shown in boldface). Each table

shows different sizes of MCSs from 3 to 10, namely 3, 5, 7, and 10.

A comparison between FURIA-based fuzzy MCSs based on Random-greedy fea-

ture selection and FURIA-based fuzzy MCSs based on Random subspace feature
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Table 7. Results for FURIAMCSs with Random subspace feature selection. Small feature subsets.

(a) First subset of datasets

FURIA — Random subspace feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.792 0.031 0.265 0.147 0.053 0.416 0.178 0.630 0.021 0.053

test err. 0.815 0.047 0.395 0.228 0.163 0.446 0.186 0.631 0.035 0.096

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.792 0.026 0.212 0.142 0.049 0.311 0.169 0.628 0.020 0.029

test err. 0.814 0.041 0.363 0.244 0.159 0.347 0.179 0.628 0.035 0.062

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.787 0.026 0.207 0.138 0.048 0.282 0.166 0.628 0.022 0.021

test err. 0.809 0.039 0.384 0.235 0.157 0.315 0.175 0.628 0.034 0.047

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.783 0.027 0.204 0.129 0.041 0.252 0.201 0.628 0.021 0.020

test err. 0.808 0.039 0.380 0.217 0.154 0.285 0.207 0.628 0.035 0.045

(b) Second subset of datasets

FURIA — Random subspace feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.183 0.223 0.174 0.064 0.145 0.180 0.141 0.284 0.354 0.011 0.489

test err. 0.200 0.255 0.200 0.114 0.291 0.187 0.203 0.375 0.385 0.064 0.527

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.174 0.221 0.129 0.034 0.120 0.170 0.097 0.279 0.343 0.005 0.458

test err. 0.193 0.254 0.149 0.073 0.292 0.177 0.151 0.361 0.370 0.054 0.513

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.170 0.218 0.119 0.036 0.092 0.160 0.082 0.271 0.321 0.003 0.505

test err. 0.189 0.259 0.140 0.076 0.271 0.164 0.132 0.354 0.349 0.040 0.554

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.177 0.211 0.116 0.030 0.060 0.165 0.061 0.264 0.247 0.003 0.517

test err. 0.195 0.249 0.135 0.071 0.246 0.171 0.108 0.343 0.275 0.042 0.573

selection with Small, Medium, and Large feature subset sizes respectively in is

presented in Tables 8, 11 and 14. These tables are formulated in terms of a sum-

marized matrix showing the number of wins, ties, and loses obtained for the two

feature selection algorithms for each ensemble size.
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Table 8. Comparison of results for each of the feature selection approaches for Small feature

subset size of FURIA-based fuzzy MCSs generated with feature selection only in the form of a
summarized matrix.

Random-greedy vs. Random

# Classif. W T L

3 17 0 4

5 13 2 6

7 14 1 6

10 13 1 7

Overall 57 4 23

We will do three types of analyses of the obtained results. In the first analysis,

we will compare the two different feature selection algorithms between them, in the

second we will compare the different sizes of feature selection subsets considered,

and finally we will benchmark the FURIA-based fuzzy MCS derived by the best

previous feature selection approach against the single FURIA-based fuzzy classifier.

5.4.1. Feature selection approaches

In our first analysis, we are analyzing the influence of the use of the two different

feature selection algorithms. We will consider Small, Medium, and Large feature

subsets separately. We will first focus on Small feature subsets (Table 8). From this

table, it can be noticed that the Random-greedy approach seems to perform better

when considering Small feature subsets overall.

Let us consider now the analysis of Medium feature subsets (Table 11). From this

table, it can be noticed that the conclusion drawn in the previous paragraph is not as

clear as in the previous case. Notice that, the performance of the Random subspace

approach improves as long as the number of component classifiers is increased

obtaining better results when considering the ensemble size 10.

Finally, let us consider Large feature subsets (Table 14). From this table, it can

be noticed that the Random subspace approach again performs better as long as

the ensemble size is increased.

In summary, taking into account all the ensemble sizes, the Random-greedy

approach obtains the best results in 139 out of 252 cases (+24 ties), while Random

subspace does so in 89 cases (+24 ties). The summary of the results is presented in

Table 15 in terms of a summarized matrix showing the number of wins, ties, and

loses obtained for the two feature selection algorithms for each ensemble size. In

view of these results, we will consider Random-greedy as the best choice from now

on.

5.4.2. Feature selection subset sizes

In our second analysis, we are comparing the different sizes (Small, Medium,

and Large) for the considered feature selection subsets in order to determine the

influence of this parameters. From the results reported in Table 16, it can be
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Table 9. Results for FURIA MCSs with Random-Greedy feature selection. Medium feature

subsets.

(a) First subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.786 0.029 0.209 0.118 0.042 0.092 0.163 0.630 0.016 0.014

test err. 0.812 0.043 0.373 0.198 0.160 0.155 0.174 0.631 0.029 0.050

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.785 0.025 0.192 0.117 0.037 0.080 0.164 0.628 0.016 0.011

test err. 0.810 0.040 0.352 0.193 0.154 0.139 0.175 0.629 0.029 0.045

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.779 0.022 0.190 0.113 0.037 0.068 0.163 0.628 0.016 0.013

test err. 0.805 0.042 0.353 0.185 0.142 0.124 0.174 0.628 0.029 0.046

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.781 0.021 0.199 0.118 0.037 0.064 0.164 0.628 0.017 0.012

test err. 0.807 0.043 0.363 0.196 0.145 0.119 0.175 0.628 0.029 0.045

(b) Second subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.159 0.208 0.083 0.022 0.052 0.102 0.029 0.260 0.118 0.008 0.400

test err. 0.184 0.244 0.129 0.051 0.272 0.114 0.087 0.336 0.187 0.059 0.481

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.154 0.212 0.077 0.030 0.045 0.098 0.022 0.252 0.105 0.005 0.398

test err. 0.182 0.247 0.123 0.062 0.252 0.111 0.069 0.331 0.176 0.063 0.481

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.155 0.213 0.075 0.019 0.046 0.097 0.016 0.245 0.095 0.004 0.398

test err. 0.183 0.245 0.119 0.045 0.249 0.110 0.058 0.332 0.169 0.062 0.480

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.157 0.213 0.073 0.019 0.033 0.099 0.013 0.243 0.089 0.004 0.400

test err. 0.184 0.247 0.117 0.041 0.252 0.111 0.051 0.328 0.164 0.065 0.482

noticed that the Large feature subsets for generating FURIA-based fuzzy MCSs

significantly outperform the other sizes. This is a sensible result keeping in mind

that FURIA incorporates an advanced feature selection criterion based on an infor-

mation gain measure. This conclusion is confirmed in Table 17 showing average and

standard deviation values computed for each of the feature selection approaches for

the different ensemble sizes.
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Table 10. Results for FURIA MCSs with Random subspace feature selection. Medium feature

subsets.

(a) First subset of datasets

FURIA — Random subspace feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.804 0.030 0.216 0.138 0.054 0.260 0.154 0.628 0.018 0.010

test err. 0.825 0.043 0.372 0.227 0.170 0.324 0.164 0.628 0.032 0.046

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.787 0.028 0.200 0.140 0.046 0.154 0.154 0.628 0.017 0.006

test err. 0.810 0.043 0.361 0.244 0.161 0.216 0.164 0.628 0.030 0.030

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.783 0.027 0.196 0.121 0.038 0.143 0.147 0.628 0.016 0.004

test err. 0.807 0.042 0.363 0.213 0.156 0.203 0.158 0.628 0.029 0.023

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.767 0.027 0.179 0.130 0.036 0.115 0.158 0.628 0.016 0.003

test err. 0.795 0.043 0.346 0.218 0.153 0.173 0.167 0.628 0.029 0.021

(b) Second subset of datasets

FURIA — Random subspace feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.157 0.225 0.088 0.029 0.042 0.133 0.027 0.268 0.268 0.004 0.466

test err. 0.182 0.259 0.132 0.069 0.235 0.144 0.085 0.338 0.311 0.060 0.510

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.155 0.216 0.077 0.025 0.025 0.103 0.019 0.251 0.204 0.004 0.451

test err. 0.181 0.257 0.122 0.066 0.228 0.112 0.069 0.328 0.247 0.049 0.503

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.148 0.214 0.074 0.022 0.013 0.101 0.015 0.244 0.185 0.003 0.438

test err. 0.173 0.257 0.119 0.057 0.208 0.110 0.059 0.326 0.226 0.044 0.493

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.149 0.213 0.072 0.020 0.004 0.101 0.012 0.244 0.171 0.002 0.421

test err. 0.176 0.254 0.117 0.054 0.198 0.110 0.053 0.322 0.215 0.036 0.475

Considering the conclusions obtained in the first analysis (see previous subsec-

tion) and the current ones, from now on we will select the Random-greedy feature se-

lection approach with Large feature subsets when dealing with FURIA-based fuzzy

MCSs with feature selection in isolation. In Table 17 it can be seen that FURIA-

based fuzzy MCSs based on Random-greedy outperform FURIA-based fuzzy MCSs
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608 K. Trawiński, O. Cordón & A. Quirin

Table 11. Comparison of results for each of the feature selection approaches for Medium feature

subset size of FURIA-based fuzzy MCSs generated with feature selection only in the form of a
summarized matrix.

Random-greedy vs. Random

# Classif. W T L

3 13 1 7

5 11 2 8

7 10 5 6

10 7 4 10

Overall 41 12 31

based on Random subspace for all the feature subset sizes. Notice that, the global

average and standard deviation values, which are presented in the last column of

the table, also show how Random-greedy presents an advantage over the latter

approach.

5.4.3. Benchmarking against the single FURIA-based fuzzy classifier

In our third analysis, we are comparing the FURIA-based fuzzy MCS derived by

the best previous feature selection approach against the single FURIA-based fuzzy

classifier. In view of Table 18, it can be noticed that the performance of FURIA-

based fuzzy MCS derived by the Random-greedy is lower than those obtained by the

bagging FURIA-based fuzzy MCS without feature selection (see Sec. 5.3). While

the latter approach outperformed the single classifier in 76 out of 84 cases, the

former one only does so in 64 cases. This performance decrease is related to the

already mentioned inner feature selection mechanism on FURIA, which could make

bagging better than an additional feature selection approach to induce diversity in

a FURIA-based fuzzy MCS. This issue will be analyzed more deeply in Sec. 5.6.

5.5. Combination of FURIA with bagging and feature selection

In this subsection, we present the results of the FURIA-based fuzzy MCSs obtained

from the combination of bagging and the three feature selection algorithms consid-

ered (see Sec. 4.1). In the previous subsection we have skipped Greedy Battiti’s

MIFS because of its inability to induce an appropriate diversity, however here it

could become a good choice when combined with bagging. This experiment is made

with the aim to check if, as expected, the additional diversity induced when com-

bining both MCS design methodologies allows us to generate the most accurate

ensembles as happened with other kinds of classifiers.13,14

Each table (Tables from 19 to 29) presents a set of FURIA-based fuzzy MCSs

with different ensemble sizes. The combination of each feature selection algorithm

with a different feature subset size is shown in a different table.

A comparison between FURIA-based fuzzy MCSs based on bagging and each

feature selection algorithm with Small, Medium, and Large feature subset sizes
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Table 12. Results for FURIA MCSs with Random-Greedy feature selection. Large feature subsets.

(a) First subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.772 0.023 0.196 0.104 0.041 0.052 0.140 0.629 0.015 0.006

test err. 0.797 0.040 0.356 0.200 0.150 0.121 0.153 0.632 0.030 0.036

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.770 0.021 0.198 0.105 0.042 0.041 0.139 0.628 0.015 0.004

test err. 0.796 0.041 0.363 0.204 0.152 0.105 0.152 0.630 0.029 0.030

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.761 0.020 0.204 0.108 0.039 0.039 0.139 0.628 0.015 0.004

test err. 0.789 0.043 0.361 0.206 0.152 0.102 0.151 0.629 0.028 0.027

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.757 0.018 0.208 0.107 0.036 0.037 0.139 0.627 0.015 0.003

test err. 0.787 0.043 0.364 0.202 0.149 0.101 0.151 0.628 0.028 0.026

(b) Second subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.133 0.205 0.063 0.019 0.034 0.084 0.010 0.229 0.074 0.004 0.362

test err. 0.161 0.246 0.121 0.043 0.247 0.098 0.054 0.322 0.174 0.058 0.438

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.131 0.203 0.057 0.018 0.032 0.078 0.007 0.227 0.067 0.003 0.362

test err. 0.160 0.245 0.114 0.040 0.255 0.091 0.046 0.313 0.169 0.050 0.447

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.132 0.204 0.055 0.017 0.025 0.075 0.006 0.228 0.065 0.004 0.358

test err. 0.160 0.244 0.113 0.039 0.245 0.088 0.044 0.316 0.167 0.048 0.446

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.135 0.205 0.053 0.018 0.022 0.079 0.006 0.223 0.062 0.004 0.361

test err. 0.163 0.246 0.110 0.039 0.250 0.091 0.041 0.311 0.165 0.056 0.448

respectively in terms of a summarized matrix showing the number of wins, ties,

and loses obtained for the three feature selection algorithms for each ensemble size

is presented in Tables from 22, 26, and 30 to 33.

We will do three types of analyses taking into account the test errors ob-

tained. In the first analysis, we will compare the performance of the three different
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610 K. Trawiński, O. Cordón & A. Quirin

Table 13. Results for FURIA MCSs with Random subspace feature selection. Large feature

subsets.

(a) First subset of datasets

FURIA — Random subspace feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.772 0.024 0.163 0.129 0.035 0.115 0.142 0.629 0.015 0.005

test err. 0.804 0.046 0.341 0.229 0.161 0.195 0.157 0.631 0.029 0.031

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.760 0.022 0.142 0.108 0.029 0.057 0.140 0.628 0.014 0.003

test err. 0.792 0.042 0.320 0.206 0.152 0.127 0.153 0.628 0.028 0.022

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.759 0.021 0.142 0.110 0.033 0.051 0.139 0.628 0.014 0.002

test err. 0.793 0.037 0.324 0.204 0.147 0.119 0.152 0.628 0.028 0.018

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.754 0.018 0.146 0.107 0.029 0.042 0.140 0.628 0.014 0.002

test err. 0.786 0.037 0.316 0.206 0.147 0.105 0.153 0.628 0.028 0.015

(b) Second subset of datasets

FURIA — Random subspace feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.123 0.207 0.063 0.015 0.030 0.086 0.011 0.234 0.161 0.007 0.426

test err. 0.155 0.251 0.125 0.048 0.233 0.099 0.060 0.318 0.225 0.059 0.503

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.122 0.213 0.058 0.013 0.013 0.077 0.007 0.222 0.131 0.007 0.380

test err. 0.153 0.256 0.116 0.042 0.214 0.089 0.047 0.315 0.201 0.061 0.454

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.120 0.213 0.055 0.015 0.010 0.074 0.005 0.220 0.119 0.005 0.370

test err. 0.153 0.254 0.114 0.046 0.206 0.089 0.044 0.316 0.190 0.057 0.438

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.123 0.207 0.052 0.015 0.005 0.075 0.005 0.217 0.102 0.002 0.364

test err. 0.156 0.253 0.110 0.044 0.198 0.090 0.041 0.310 0.180 0.054 0.432

feature selection algorithms, in the second analysis we will compare the different

sizes (Small, Medium, and Large) for the feature selection subsets, and finally we

will benchmark the FURIA-based fuzzy MCS derived by the best previous feature

selection approach against the single FURIA-based fuzzy classifier.
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Table 14. Comparison of results for each of the feature selection approaches for Large feature

subset size of FURIA-based fuzzy MCSs generated with feature selection only in the form of a
summarized matrix.

Random-greedy vs. Random

# Classif. W T L

3 14 0 7
5 12 1 8
7 9 3 9

10 6 4 11

Overall 41 8 35

Table 15. Comparison of results for each of the feature selection approaches for all feature subset
sizes of FURIA-based fuzzy MCSs generated with feature selection only in the form of a summa-
rized matrix.

Random-greedy vs. Random

# Classif. W T L

3 44 1 18
5 36 5 22
7 33 9 21

10 26 9 28

Overall 139 24 89

Table 16. Comparison of results for each of the feature subset sizes of FURIA-based fuzzy MCSs
generated with feature selection only in the form of a summarized matrix.

Small Medium Large

# Classif. W T L W T L W T L

3 2 1 39 5 1 36 34 0 8
5 5 1 36 5 1 36 31 1 10
7 3 2 37 2 2 38 34 1 7

10 6 3 33 2 3 37 31 3 8

Overall 16 7 145 14 7 147 130 5 33

Table 17. Average results for each of the feature selection approaches of FURIA-based fuzzy
MCSs generated with feature selection only.

F.S. approach 3 Cl. 5 Cl. 7 Cl. 10 Cl. Global

Random-greedy avg. 0.232 0.225 0.222 0.221 0.225

std. dev. 0.199 0.200 0.200 0.200 0.200

Random avg. 0.249 0.234 0.229 0.223 0.234
std. dev. 0.202 0.200 0.202 0.201 0.201

Table 18. Comparison of results for the Random-greedy feature selection approach for Large
feature subset size of FURIA-based fuzzy MCSs generated with feature selection only compared
with single FURIA in the form of a summarized matrix.

Random-greedy vs. Single

# Classif. W T L

3 15 0 6
5 16 2 3
7 17 2 2

10 16 1 4

Overall 64 5 15
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Table 19. FURIA-based fuzzy MCSs for small ensemble sizes with bagging and Greedy feature

selection. Small feature subsets.

(a) First subset of datasets

FURIA — Greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.735 0.030 0.197 0.136 0.044 0.254 0.162 0.532 0.018 0.061

test err. 0.790 0.051 0.375 0.209 0.155 0.300 0.176 0.662 0.034 0.113

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.697 0.027 0.170 0.124 0.045 0.243 0.158 0.529 0.018 0.051

test err. 0.764 0.049 0.360 0.196 0.157 0.290 0.174 0.653 0.034 0.103

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.690 0.025 0.140 0.107 0.050 0.239 0.156 0.532 0.018 0.047

test err. 0.764 0.047 0.337 0.187 0.155 0.286 0.171 0.645 0.033 0.101

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.684 0.025 0.136 0.098 0.047 0.235 0.158 0.538 0.018 0.044

test err. 0.759 0.047 0.337 0.191 0.152 0.281 0.171 0.637 0.033 0.099

(b) Second subset of datasets

FURIA — Greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.176 0.160 0.128 0.019 0.084 0.125 0.095 0.208 0.165 0.028 0.417

test err. 0.204 0.250 0.155 0.044 0.268 0.142 0.166 0.346 0.237 0.074 0.519

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.172 0.157 0.123 0.016 0.059 0.122 0.085 0.194 0.156 0.014 0.408

test err. 0.203 0.244 0.151 0.040 0.249 0.140 0.156 0.340 0.230 0.058 0.515

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.168 0.158 0.121 0.015 0.045 0.122 0.079 0.187 0.154 0.009 0.400

test err. 0.200 0.241 0.149 0.038 0.251 0.139 0.150 0.340 0.227 0.055 0.509

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.168 0.156 0.118 0.014 0.038 0.121 0.079 0.183 0.153 0.003 0.392

test err. 0.199 0.241 0.147 0.037 0.253 0.140 0.149 0.329 0.228 0.045 0.511

5.5.1. Feature selection approaches

In our first analysis, we are comparing the three different feature selection algo-

rithms among them.

Looking at all Small, Medium, and Large feature subsets (Tables 22, 26, and 30)

it can be noticed the same conclusion. The three different feature selection ap-

proaches perform quite similarly.
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Table 20. FURIA-based fuzzy MCSs for small ensemble sizes with with bagging and Random–

greedy feature selection. Small feature subsets.

(a) First subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.779 0.028 0.162 0.116 0.042 0.227 0.156 0.588 0.018 0.065

test err. 0.804 0.045 0.371 0.202 0.152 0.278 0.171 0.650 0.034 0.110

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.781 0.026 0.139 0.103 0.038 0.151 0.154 0.587 0.018 0.053

test err. 0.803 0.044 0.351 0.195 0.147 0.203 0.169 0.640 0.034 0.092

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.778 0.023 0.131 0.096 0.035 0.137 0.154 0.594 0.017 0.048

test err. 0.802 0.042 0.345 0.189 0.143 0.188 0.168 0.633 0.033 0.085

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.784 0.024 0.123 0.100 0.032 0.120 0.157 0.605 0.019 0.048

test err. 0.806 0.043 0.334 0.197 0.143 0.167 0.171 0.630 0.035 0.088

(b) Second subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.175 0.165 0.142 0.033 0.080 0.139 0.118 0.195 0.241 0.005 0.391

test err. 0.204 0.253 0.166 0.069 0.283 0.149 0.175 0.337 0.271 0.065 0.494

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.171 0.163 0.129 0.028 0.058 0.133 0.075 0.172 0.206 0.008 0.387

test err. 0.202 0.245 0.150 0.065 0.281 0.143 0.124 0.325 0.240 0.055 0.490

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.166 0.160 0.123 0.022 0.049 0.132 0.071 0.159 0.188 0.006 0.369

test err. 0.197 0.245 0.143 0.059 0.265 0.144 0.119 0.318 0.219 0.059 0.483

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.166 0.151 0.118 0.022 0.028 0.135 0.057 0.151 0.158 0.004 0.358

test err. 0.197 0.240 0.138 0.060 0.254 0.145 0.100 0.321 0.196 0.055 0.476

In view of the results obtained it is rather hard to point out one of the so-

lutions. Table 31 summarizes the obtained results in the form of a summarized

matrix showing the number of wins, ties, and loses for three feature selection algo-

rithms for each ensemble size. In view of the overall results, collected in the best

row of the table, we can maybe highlight the performance of the Greedy feature
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Table 21. FURIA-based fuzzy MCSs for small ensemble sizes with with bagging and Random

subspace feature selection. Small feature subsets.

(a) First subset of datasets

FURIA — Random subspace feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.792 0.028 0.210 0.125 0.056 0.384 0.160 0.620 0.021 0.053

test err. 0.815 0.050 0.418 0.226 0.175 0.431 0.176 0.649 0.037 0.096

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.792 0.027 0.169 0.111 0.046 0.272 0.153 0.618 0.018 0.029

test err. 0.814 0.046 0.361 0.223 0.160 0.323 0.167 0.639 0.035 0.062

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.787 0.026 0.161 0.096 0.044 0.233 0.148 0.620 0.017 0.021

test err. 0.809 0.041 0.358 0.210 0.156 0.283 0.163 0.632 0.035 0.047

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.783 0.026 0.134 0.101 0.038 0.200 0.181 0.621 0.018 0.020

test err. 0.808 0.041 0.346 0.203 0.149 0.251 0.195 0.630 0.036 0.045

(b) Second subset of datasets

FURIA — Random subspace feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.159 0.194 0.174 0.047 0.073 0.180 0.141 0.188 0.354 0.011 0.472

test err. 0.191 0.270 0.200 0.106 0.309 0.187 0.203 0.367 0.385 0.064 0.554

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.157 0.179 0.129 0.028 0.053 0.170 0.097 0.165 0.343 0.005 0.405

test err. 0.187 0.262 0.149 0.075 0.270 0.177 0.151 0.348 0.370 0.054 0.495

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.148 0.180 0.119 0.026 0.028 0.160 0.082 0.163 0.321 0.003 0.409

test err. 0.180 0.266 0.140 0.075 0.250 0.164 0.132 0.334 0.349 0.040 0.506

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.152 0.165 0.116 0.018 0.013 0.165 0.061 0.143 0.247 0.003 0.412

test err. 0.183 0.261 0.135 0.066 0.258 0.171 0.108 0.322 0.275 0.042 0.500

selection approach to generate FURIA-based fuzzy MCSs when combined with bag-

ging. Nevertheless, the results are still not so conclusive. We will try to draw more

categorical conclusions in the next subsection.
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Table 22. Comparison of results for each of the feature selection approaches for Small feature

subset size of FURIA-based fuzzy MCSs generated with bagging and feature selection in the form
of a summarized matrix.

Greedy Random-greedy Random

# Classif. W T L W T L W T L

3 9 1 11 7 1 13 4 0 17

5 6 1 14 7 1 13 7 0 14

7 6 1 14 6 1 14 8 0 13

10 7 1 13 7 2 12 5 1 15

Overall 28 4 52 27 5 52 24 1 59

5.5.2. Feature selection subset sizes

In our second analysis, we are comparing different sizes (Small, Medium, and Large)

for feature selection subsets. From results reported in Table 32, it can be noticed

that the use of Large feature subsets for generating FURIA-based fuzzy MCSs

considering both bagging and feature selection allows us to significantly outperform

the other feature subset sizes.

Considering a comparison between these three feature selection approaches for

Large feature subsets (i.e., recalling Table 30) it is still ambiguous to determine

which approach is the best one. Although the Greedy feature selection approach

seems to obtain the best performance, this conclusion is deceptive as it is strongly

biased by the combinations with the smallest number of classifiers, which are the

worst performing ones overall.

Because of all the latter facts, let us examine the best overall results for all the

combinations (Tables 19 to 21, 23 to 25, 27 to 29, best result for each dataset shown

in boldface). Both FURIA-based fuzzy MCSs considering bagging with Random-

greedy feature selection and bagging with Random subspace feature selection ob-

tained the best overall performance in 6 out of 21 cases (+4 ties), whereas FURIA-

based fuzzy MCSs considering bagging and Greedy feature selection does so 4 times

(+3 ties). In view of this analysis and that developed in the previous subsection,

from now on we will take into account only the Random-greedy feature selection

with Large feature subsets, when dealing with FURIA-based fuzzy MCSs with bag-

ging and feature selection.

This conclusion is confirmed in Table 33 presenting average and standard de-

viation values computed for each of the feature selection approaches for different

ensemble sizes. It can be seen that FURIA-based fuzzy MCSs based on Random-

greedy outperform FURIA-based fuzzy MCSs based on the other two feature selec-

tion approaches in all the cases. Considering the global average and standard devi-

ation values, which are presented in the last column of the table, Random-greedy

also presented advantage over the other two approaches, although the differences

with respect to the Greedy method are not very significant.
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Table 23. FURIA-based fuzzy MCSs for small ensemble sizes with bagging and Greedy feature

selection. Medium feature subsets.

(a) First subset of datasets

FURIA — Greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.690 0.023 0.184 0.112 0.045 0.117 0.144 0.505 0.017 0.025

test err. 0.779 0.045 0.366 0.190 0.167 0.192 0.167 0.660 0.034 0.067

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.665 0.021 0.150 0.093 0.042 0.103 0.143 0.493 0.015 0.019

test err. 0.763 0.045 0.338 0.185 0.158 0.180 0.164 0.652 0.034 0.062

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.659 0.021 0.132 0.088 0.039 0.097 0.141 0.495 0.014 0.017

test err. 0.760 0.043 0.331 0.181 0.152 0.175 0.162 0.642 0.033 0.059

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.659 0.021 0.132 0.088 0.039 0.097 0.141 0.495 0.014 0.017

test err. 0.760 0.043 0.331 0.181 0.152 0.175 0.162 0.642 0.033 0.059

(b) Second subset of datasets

FURIA — Greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.130 0.137 0.068 0.018 0.073 0.093 0.029 0.148 0.079 0.027 0.332

test err. 0.167 0.256 0.127 0.045 0.263 0.113 0.080 0.329 0.187 0.079 0.482

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.125 0.133 0.062 0.015 0.054 0.091 0.021 0.126 0.067 0.008 0.307

test err. 0.166 0.245 0.122 0.042 0.251 0.110 0.074 0.321 0.180 0.062 0.472

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.120 0.136 0.058 0.014 0.047 0.088 0.018 0.110 0.061 0.009 0.302

test err. 0.163 0.244 0.118 0.039 0.252 0.109 0.070 0.321 0.177 0.059 0.471

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.121 0.124 0.055 0.013 0.032 0.090 0.016 0.103 0.057 0.003 0.302

test err. 0.162 0.243 0.117 0.038 0.260 0.109 0.068 0.317 0.175 0.055 0.466
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Table 24. FURIA-based fuzzy MCSs for small ensemble sizes with with bagging and Random–

greedy feature selection. Medium feature subsets.

(a) First subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.786 0.019 0.163 0.095 0.040 0.089 0.144 0.496 0.016 0.014

test err. 0.812 0.045 0.380 0.203 0.161 0.164 0.166 0.661 0.032 0.050

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.785 0.017 0.126 0.082 0.042 0.067 0.142 0.478 0.015 0.011

test err. 0.810 0.044 0.364 0.198 0.155 0.139 0.164 0.650 0.032 0.045

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.779 0.014 0.121 0.077 0.039 0.052 0.141 0.486 0.014 0.013

test err. 0.805 0.042 0.340 0.194 0.148 0.121 0.163 0.642 0.031 0.046

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.781 0.017 0.112 0.079 0.031 0.044 0.142 0.486 0.015 0.012

test err. 0.807 0.043 0.321 0.185 0.146 0.112 0.163 0.636 0.031 0.045

(b) Second subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.133 0.135 0.083 0.023 0.073 0.102 0.029 0.148 0.118 0.008 0.325

test err. 0.169 0.251 0.129 0.053 0.260 0.114 0.087 0.325 0.187 0.059 0.465

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.128 0.127 0.077 0.025 0.054 0.098 0.022 0.120 0.105 0.005 0.304

test err. 0.166 0.246 0.123 0.058 0.256 0.111 0.069 0.312 0.176 0.063 0.459

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.123 0.125 0.075 0.019 0.032 0.097 0.016 0.104 0.095 0.004 0.292

test err. 0.162 0.247 0.119 0.044 0.245 0.110 0.058 0.304 0.169 0.062 0.453

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.126 0.120 0.073 0.016 0.024 0.099 0.013 0.098 0.089 0.004 0.292

test err. 0.163 0.240 0.117 0.044 0.245 0.111 0.051 0.309 0.164 0.065 0.453
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Table 25. FURIA-based fuzzy MCSs for small ensemble sizes with with bagging and Random

subspace feature selection. Medium feature subsets.

(a) First subset of datasets

FURIA — Random subspace feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.804 0.027 0.187 0.093 0.039 0.233 0.134 0.529 0.016 0.010

test err. 0.825 0.048 0.379 0.222 0.166 0.324 0.154 0.657 0.035 0.046

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.787 0.023 0.138 0.076 0.032 0.121 0.134 0.517 0.015 0.006

test err. 0.810 0.044 0.339 0.221 0.157 0.210 0.152 0.645 0.034 0.030

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.783 0.021 0.126 0.058 0.032 0.096 0.127 0.519 0.015 0.004

test err. 0.807 0.039 0.333 0.215 0.151 0.185 0.146 0.640 0.033 0.023

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.767 0.022 0.101 0.056 0.028 0.073 0.139 0.514 0.015 0.003

test err. 0.795 0.041 0.330 0.203 0.148 0.159 0.156 0.634 0.033 0.021

(b) Second subset of datasets

FURIA — Random subspace feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.122 0.162 0.088 0.026 0.071 0.133 0.027 0.141 0.268 0.004 0.469

test err. 0.166 0.277 0.132 0.074 0.274 0.144 0.085 0.321 0.311 0.060 0.555

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.117 0.155 0.077 0.018 0.040 0.103 0.019 0.110 0.204 0.004 0.396

test err. 0.163 0.253 0.122 0.066 0.243 0.112 0.069 0.311 0.247 0.049 0.494

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.107 0.148 0.074 0.016 0.025 0.101 0.015 0.091 0.185 0.003 0.371

test err. 0.155 0.255 0.119 0.056 0.235 0.110 0.059 0.299 0.226 0.044 0.483

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.111 0.139 0.072 0.013 0.020 0.101 0.012 0.080 0.171 0.002 0.328

test err. 0.155 0.248 0.117 0.055 0.216 0.110 0.053 0.289 0.215 0.036 0.456
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Table 26. Comparison of results for each of the feature selection approaches for Medium feature

subset size of FURIA-based fuzzy MCSs generated with bagging and feature selection in the form
of a summarized matrix.

Greedy Random-greedy Random

# Classif. W T L W T L W T L

3 7 2 12 7 2 12 5 0 16

5 6 1 14 5 2 14 7 3 11

7 7 0 14 6 0 15 8 0 13

10 3 2 16 8 2 11 8 1 12

Overall 23 5 56 26 6 52 28 4 52

5.5.3. Benchmarking against the single FURIA-based fuzzy classifier

In our third analysis, we are comparing the FURIA-based fuzzy MCSs derived by

the best previous feature selection approach combined with bagging against the

single FURIA-based fuzzy classifier. In view of Table 34, it can be noticed that

overall, FURIA-based fuzzy MCSs generated from Bagging and Random-greedy

feature selection outperform the single classifier in 70 out of 84 cases (+3 ties),

an intermediate number between those of the other two variants analyzed in the

previous Secs. 5.3 (bagging only, 76) and 5.4 (feature selection only, 64).

5.6. Final comparison of FURIA-based fuzzy MCSs

This subsection presents a joint comparison of all the FURIA-based fuzzy MCSs

variants proposed. The main aim of this contribution is to obtain FURIA-based

fuzzy MCSs which, apart from improving the accuracy of the single FURIA-based

fuzzy classifier, are able to be competitive with the state-of-the-art MCSs when

dealing with high dimensional datasets. In principle, it seems that the best choice

is a combination between bagging and a feature selection algorithm to obtain well-

performing FURIA-based fuzzy MCS, as it should induce a high amount of diversity

into the base classifiers.34,44 In order to test that assumption we will compare this

FURIA-based fuzzy MCS approach, that from now on will be called the reference

approach, against the remaining variants resulting from FURIA-based fuzzy MCS

generation methodology, i.e. the use of bagging and feature selection in isolation.

In addition, in order to test the performance of our approach, we compare it

with two state-of-the-art algorithms: C4.5 decision tree38 MCSs generated from

bagging,17 and random forests.8 Moreover, we compare it against an application of

the fuzzy MCS design approach with other, less powerful, fuzzy classifier deriva-

tion method.13,14 For that we choose Ishibuchi’s fuzzy classification rule generation

method.26

We will therefore develop two different types of analyses, a first one comparing

the different proposed approaches to generate FURIA-based fuzzy MCSs in order

to determine the best performing one, and a second one comparing the best choices

of FURIA-based fuzzy MCSs with C4.5 decision tree ensembles, random forests,

and Ishibuchi-based fuzzy MCSs.
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Table 27. FURIA-based fuzzy MCSs for small ensemble sizes with bagging and Greedy feature

selection. Large feature subsets.

(a) First subset of datasets

FURIA — Greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.657 0.020 0.163 0.095 0.039 0.053 0.115 0.511 0.015 0.015

test err. 0.769 0.051 0.360 0.199 0.161 0.124 0.140 0.664 0.031 0.049

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.642 0.018 0.123 0.090 0.040 0.039 0.114 0.499 0.014 0.011

test err. 0.762 0.047 0.348 0.196 0.157 0.111 0.139 0.654 0.031 0.044

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.625 0.017 0.116 0.073 0.038 0.034 0.114 0.502 0.014 0.009

test err. 0.756 0.044 0.337 0.187 0.153 0.104 0.139 0.643 0.030 0.043

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.622 0.017 0.114 0.074 0.035 0.029 0.116 0.501 0.014 0.008

test err. 0.753 0.045 0.335 0.184 0.147 0.100 0.140 0.639 0.030 0.041

(b) Second subset of datasets

FURIA — Greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.085 0.135 0.049 0.020 0.070 0.072 0.017 0.123 0.058 0.022 0.278

test err. 0.141 0.254 0.121 0.045 0.248 0.091 0.053 0.318 0.169 0.070 0.432

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.085 0.124 0.043 0.017 0.051 0.069 0.012 0.099 0.048 0.009 0.270

test err. 0.137 0.246 0.115 0.043 0.263 0.087 0.048 0.309 0.162 0.057 0.423

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.085 0.117 0.040 0.015 0.037 0.067 0.010 0.080 0.044 0.007 0.263

test err. 0.136 0.243 0.112 0.039 0.239 0.084 0.046 0.303 0.157 0.052 0.418

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.086 0.109 0.038 0.014 0.026 0.068 0.009 0.071 0.039 0.002 0.257

test err. 0.138 0.240 0.111 0.039 0.242 0.087 0.045 0.300 0.156 0.049 0.416
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Table 28. FURIA-based fuzzy MCSs for small ensemble sizes with with bagging and Random–

greedy feature selection. Large feature subsets.

(a) First subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.772 0.016 0.155 0.094 0.041 0.054 0.114 0.446 0.015 0.006

test err. 0.797 0.043 0.368 0.200 0.152 0.128 0.141 0.666 0.031 0.036

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.770 0.016 0.132 0.084 0.044 0.037 0.114 0.423 0.014 0.004

test err. 0.796 0.044 0.348 0.198 0.147 0.108 0.139 0.656 0.030 0.030

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.761 0.014 0.122 0.079 0.040 0.031 0.113 0.421 0.014 0.004

test err. 0.789 0.042 0.344 0.179 0.146 0.102 0.138 0.646 0.030 0.027

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.757 0.014 0.106 0.077 0.035 0.026 0.115 0.410 0.014 0.003

test err. 0.787 0.043 0.334 0.187 0.145 0.096 0.139 0.640 0.030 0.026

(b) Second subset of datasets

FURIA — Random-greedy feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.088 0.123 0.063 0.020 0.072 0.084 0.010 0.125 0.074 0.004 0.286

test err. 0.141 0.256 0.121 0.046 0.255 0.098 0.054 0.318 0.174 0.058 0.436

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.087 0.122 0.057 0.015 0.056 0.078 0.007 0.098 0.067 0.003 0.269

test err. 0.139 0.245 0.114 0.042 0.250 0.091 0.046 0.310 0.169 0.050 0.431

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.084 0.115 0.055 0.013 0.032 0.075 0.006 0.081 0.065 0.004 0.263

test err. 0.138 0.246 0.113 0.040 0.241 0.088 0.044 0.300 0.167 0.048 0.425

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.086 0.109 0.053 0.014 0.027 0.079 0.006 0.072 0.062 0.004 0.249

test err. 0.139 0.235 0.110 0.037 0.246 0.091 0.041 0.292 0.165 0.056 0.423



June 24, 2011 8:37 WSPC/118-IJUFKS S0218488511007155
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Table 29. FURIA-based fuzzy MCSs for small ensemble sizes with with bagging and Random

subspace feature selection. Large feature subsets.

(a) First subset of datasets

FURIA — Random subspace feature selection

3 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.772 0.017 0.139 0.080 0.043 0.102 0.120 0.444 0.016 0.005

test err. 0.804 0.043 0.375 0.202 0.165 0.202 0.145 0.665 0.033 0.031

5 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.760 0.017 0.099 0.073 0.041 0.047 0.115 0.417 0.015 0.003

test err. 0.792 0.040 0.339 0.199 0.158 0.132 0.139 0.656 0.031 0.022

7 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.759 0.015 0.087 0.066 0.035 0.034 0.114 0.420 0.014 0.002

test err. 0.793 0.040 0.318 0.195 0.157 0.116 0.139 0.644 0.030 0.018

10 classifiers

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.754 0.015 0.075 0.062 0.026 0.025 0.117 0.410 0.015 0.002

test err. 0.786 0.041 0.319 0.191 0.147 0.103 0.140 0.638 0.030 0.015

(b) Second subset of datasets

FURIA — Random subspace feature selection

3 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.093 0.134 0.063 0.019 0.070 0.086 0.011 0.117 0.161 0.007 0.365

test err. 0.146 0.269 0.125 0.050 0.258 0.099 0.060 0.312 0.225 0.059 0.479

5 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.086 0.126 0.058 0.014 0.037 0.077 0.007 0.101 0.131 0.007 0.314

test err. 0.139 0.257 0.116 0.045 0.231 0.089 0.047 0.298 0.201 0.061 0.446

7 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.084 0.117 0.055 0.015 0.018 0.074 0.005 0.083 0.119 0.005 0.305

test err. 0.138 0.253 0.114 0.051 0.214 0.089 0.044 0.290 0.190 0.057 0.436

10 classifiers

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.085 0.095 0.052 0.011 0.016 0.075 0.005 0.076 0.102 0.002 0.290

test err. 0.136 0.253 0.110 0.047 0.216 0.090 0.041 0.284 0.180 0.054 0.431

For our first analysis, we benchmark the average and standard deviation values

as well as the best individual results for each dataset computed for the results

obtained by the reference approach against all FURIA-based fuzzy MCS variants

presented above.
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Table 30. Comparison of results for each of the feature selection approaches for Large feature

subset size of FURIA-based fuzzy MCSs generated with bagging and feature selection in the form
of a summarized matrix.

Greedy Random-greedy Random

# Classif. W T L W T L W T L

3 13 3 5 2 4 15 2 1 18

5 7 1 13 8 1 12 5 1 15

7 9 1 11 5 2 14 5 2 14

10 6 1 14 5 3 13 7 3 11

Overall 35 6 43 20 10 54 19 7 58

Table 31. Comparison of results for each of the feature selection approaches for all feature subset
sizes of FURIA-based fuzzy MCSs generated with bagging and feature selection in the form of a
summarized matrix.

Greedy Random-greedy Random

# Classif. W T L W T L W T L

3 29 6 28 16 7 40 11 1 51

5 19 3 41 20 4 39 19 3 41

7 22 2 39 17 3 43 21 2 40

10 16 4 43 20 7 36 20 5 38

Overall 86 15 151 73 21 158 71 11 170

Table 32. Comparison of results for each of the feature subset sizes of FURIA-based fuzzy MCSs
generated with bagging and feature selection in the form of a summarized matrix.

Small Medium Large

# Classif. W T L W T L W T L

3 5 1 57 4 0 59 53 1 9

5 6 4 53 7 2 54 45 5 13

7 7 1 55 8 1 54 47 1 15

10 7 4 52 7 4 52 44 4 15

Overall 25 10 217 26 7 219 189 7 56

Table 33. Average results for each of the feature selection approaches of FURIA-based fuzzy
MCSs generated with bagging and feature selection.

Bag. + F.S. 3 Cl. 5 Cl. 7 Cl. 10 Cl. Global

Greedy avg. 0.231 0.224 0.220 0.218 0.223

std. dev. 0.197 0.194 0.193 0.192 0.194

Random-gredy avg. 0.231 0.223 0.217 0.214 0.221

std. dev. 0.200 0.199 0.198 0.198 0.199

Random avg. 0.253 0.231 0.224 0.218 0.232

std. dev. 0.206 0.201 0.200 0.198 0.201
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Table 34. Comparison of results for the Random-greedy feature selection approach for Large

feature subset size of FURIA-based fuzzy MCSs generated with feature selection only compared
with single FURIA in the form of a summarized matrix.

Random-greedy vs. Single

# Classif. W T L

3 15 0 6

5 17 1 3

7 18 1 2

10 19 1 1

Overall 69 3 12

Table 35. Average and standard deviation values for the different FURIA-based MCS approaches
over all the considered datasets.

3 Cl. 5 Cl. 7 Cl. 10 Cl. Global

Bagging avg. 0.210 0.201 0.198 0.197 0.202

std. dev. 0.204 0.200 0.198 0.197 0.196

Feat. sel. avg. 0.240 0.229 0.225 0.222 0.229

std. dev. 0.200 0.199 0.200 0.199 0.199

Bag. + Feat. sel. avg. 0.238 0.226 0.220 0.217 0.225

std. dev. 0.200 0.197 0.196 0.195 0.197

Firstly, we are comparing average and standard deviation values computed for

each of the FURIA-based fuzzy MCSs considering all the parameters selected for

the different ensemble sizes. These two values constitute a measure of the aver-

age performance of the different variants over all considered datasets. Table 35

collects these results where the last column provides global statistics for each of

the approaches. Considering all the ensemble sizes and also the global average

values, bagging FURIA-based fuzzy MCSs significantly outperform the other two

approaches. From this comparison, it seems that the use of the bagging approach

in isolation is the best choice. As it has been already mentioned, this could be due

to the internal feature selection provided by FURIA. In that case, inducing diver-

sity by an external feature selection is not a good option, since it decreases the

information provided to the classifier.

Secondly, in order to compare FURIA-based approaches, we gather the best

result of each approach for each dataset independently of the parameter choice

such as number of classifiers, feature subset size, and feature selection method. The

results are presented in Table 36, which consists of statistics (5× 2-cv training and

testing errors) and algorithm parameters (feature selection algorithm — feat. sel.,

feature subset size — feat. subset. size, number of classifiers — nr of cl.) for each

of the twenty one datasets. The three feature selection algorithms are considered,

Greedy —G, Random-greedy— RG, and Random subspace — R, where the feature

subset size may be Small — S, Medium — M, and Large — L. The best accuracy

obtained for each given dataset is emphasized in bold font.



June 24, 2011 8:37 WSPC/118-IJUFKS S0218488511007155

Fuzzy Multiclassification Systems Combining FURIA 625

Table 36. Results for the best choices of each different approach for FURIA-based fuzzy MCS

for each dataset.

(a) First subset of datasets

FURIA single classifier — All features

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.781 0.023 0.336 0.141 0.041 0.038 0.143 0.633 0.018 0.003
test err. 0.805 0.049 0.377 0.227 0.163 0.123 0.157 0.683 0.033 0.027

FURIA-based MCSs obtained from bagging only.

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.570 0.010 0.096 0.052 0.031 0.016 0.110 0.246 0.015 0.002
test err. 0.755 0.044 0.313 0.178 0.152 0.091 0.136 0.641 0.030 0.017
nr of cl. 10 7 7 7 10 10 7 10 10 10

FURIA-based MCSs obtained from feature selection only.

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.754 0.018 0.146 0.113 0.050 0.037 0.139 0.627 0.014 0.002
test err. 0.786 0.037 0.316 0.185 0.134 0.101 0.151 0.628 0.028 0.015

feat. sel. R R R RG RG RG RG RG R R
feat. sub. size L L L M S L L L L L
nr of cl. 10 10 10 7 7 10 10 10 10 10

FURIA-based MCSs obtained from bagging and feature selection.

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.622 0.021 0.087 0.079 0.032 0.026 0.113 0.621 0.015 0.020
test err. 0.753 0.039 0.318 0.179 0.143 0.096 0.138 0.630 0.030 0.015

feat. sel. G R R RG RG RG RG R R R
feat. sub. size L M L L S L L S L L
nr of cl. 10 7 7 7 10 10 7 10 10 10

(b) Second subset of datasets

FURIA single classifier — All features

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.132 0.193 0.042 0.008 0.154 0.043 0.007 0.331 0.043 0.004 0.433
test err. 0.160 0.245 0.122 0.042 0.298 0.070 0.055 0.364 0.187 0.056 0.441

FURIA-based MCSs obtained from bagging only.

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.084 0.075 0.025 0.006 0.018 0.028 0.004 0.051 0.017 0.006 0.223
test err. 0.138 0.246 0.105 0.035 0.230 0.061 0.036 0.276 0.156 0.060 0.408

nr of cl. 7 10 10 10 10 10 10 10 10 10 10

FURIA-based MCSs obtained from feature selection only.

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.120 0.204 0.052 0.018 0.005 0.075 0.006 0.217 0.089 0.002 0.364
test err. 0.153 0.244 0.110 0.039 0.198 0.088 0.041 0.310 0.164 0.036 0.432
feat. sel. R RG R RG R RG RG R RG R R
feat. sub. size L L L L L L L L M M L
nr of cl. 7 7 10 10 10 7 10 10 10 10 10

FURIA-based MCSs obtained from bagging and feature selection.

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.085 0.109 0.052 0.014 0.018 0.067 0.005 0.076 0.039 0.020 0.257
test err. 0.136 0.235 0.110 0.037 0.214 0.084 0.041 0.284 0.156 0.036 0.416
feat. sel. R RG R RG R G RG R G R G
feat. sub. size L L L L L L L L L M L
nr of cl. 10 10 10 10 7 7 10 10 10 10 10
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In view of those results, FURIA-based MCSs obtained from bagging obtain

the best global result in 10 out of 21 cases (+1 tie), placing FURIA-based MCSs

obtained from feature selection in the second place with 5 out of 21 best results

(+2 ties). Finally, FURIA-based MCSs obtained from bagging and feature selection

outperformed the other two FURIA-based approaches in only 3 out of 21 cases (+3

ties).

Hence, it seems that FURIA-based MCSs obtained from bagging is the best

choice, especially when dealing with high dimensional datasets such like letter,

magic, sat, segment, spambase, texture, and waveform. However, it is difficult to say

that only bagging FURIA-based MCSs deals well with high dimensional datasets,

since FURIA-based MCSs obtained from feature selection obtains the best results

for optdigits and pendigits. FURIA-based MCSs obtained from joint bagging and

feature selection, which was originally considered as the reference approach, turned

out to be a rather secondary choice performing well only with a few datasets (e.g.

pendigits, and waveform).

Finally, let us develop here a comparison between FURIA-based fuzzy MCSs

and the single FURIA classifier. It can be noticed that, in every case, FURIA-

based MCSs overcome the single classifier. Besides, each of the three variants does

so in 19 out of 21 cases.

In our second analysis, we are comparing the best choices of FURIA-based fuzzy

MCSs with two state-of-the-art algorithms, bagging C4.5 MCSs and random forests,

as well as with the use of the same methodology combined with a different fuzzy

classifier generation method, Ishibuchi-based fuzzy MCS. The obtained results are

presented in Table 37, which consists of 5× 2-cv train and test error values. In all

algorithms, we only consider the best obtained result in terms of accuracy for each

dataset and highlighted the best values in boldface.

The following conclusions arise comparing FURIA-based fuzzy MCSs to C4.5

MCSs, random forests, and Ishibuchi-based fuzzy MCS: our approach outperforms

the other algorithms in 11 out of 21 cases, while random forests obtains the best

result in the 7 cases (+1 tie). Ishibuchi-based fuzzy MCSs obtain the best result

twice, while C4.5 MCSs only obtains one tie. Note that our approach shows the best

performance in 5 out of 10 high dimensional datasets (sonar, optdigits, pendigits,

texture, waveform).

We were also interested in answering the question: would another evaluation

metric change the latter conclusion? To do so, Table 38 shows a comparison of the

same four methods based on the AUC metric values. In view of those results, similar

observations are found. FURIA-based fuzzy MCSs outperform the other algorithms

in 9 out of 21 cases (+2 ties), while random forests obtains the best result in the 7

cases (+2 tie). C4.5 MCSs achieve the best result four times, while Ishibuchi-based

fuzzy MCSs do so only once.
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Table 37. A comparison of the best choice for different approaches for FURIA-based fuzzy MCSs

against the best choice of bagging C4.5 MCSs, random forests, and Ishibuchi-based fuzzy MCSs.

(a) First subset of datasets

FURIA-based MCSs

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.622 0.018 0.096 0.052 0.050 0.016 0.110 0.627 0.014 0.002

test err. 0.753 0.037 0.313 0.178 0.134 0.091 0.136 0.628 0.028 0.015

feat sel. G R — — RG — — RG R R

feat. sub. size L L — — S — — L L L

nr of cl. 10 10 7 7 7 10 7 10 10 10

C4.5 ensembles with bagging

aba bre gla hea ion let mag opt pbl pen

tra. err. 0.118 0.017 0.075 0.053 0.021 0.018 0.052 0.105 0.012 0.005

test err. 0.772 0.043 0.306 0.194 0.149 0.103 0.134 0.697 0.030 0.028

nr of cl. 10 7 10 10 10 10 10 10 10 10

random forests

tra. err. 0.002 0.001 0.001 0.001 0.001 0.000 0.003 0.003 0.002 0.000

test err. 0.777 0.041 0.282 0.211 0.140 0.080 0.134 0.695 0.031 0.016

nr of cl. 7 7 10 10 10 10 10 10 10 10

Ishibuchi-based fuzzy MCSs

tra. err. 0.732 0.010 0.279 0.093 0.047 0.411 0.199 0.612 0.073 0.054

test err. 0.751 0.056 0.379 0.213 0.129 0.420 0.202 0.629 0.075 0.062

nr of cl. 3 7 7 10 7 10 7 3 7 10

feat. sel. R R G R RG RG R R RG R

(b) Second subset of datasets

FURIA-based MCSs

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.085 0.109 0.025 0.006 0.005 0.028 0.004 0.051 0.017 0.002 0.223

test err. 0.136 0.235 0.105 0.035 0.198 0.061 0.036 0.276 0.156 0.036 0.408

feat sel. R RG — — R — — — — RG —

feat. sub. size L L — — L — — — — M —

nr of cl. 10 10 10 10 10 10 10 10 10 10 10

C4.5 ensembles with bagging

pho pim sat seg son spa tex veh wav win yea

tra. err. 0.044 0.056 0.021 0.009 0.024 0.025 0.007 0.047 0.015 0.020 0.119

test err. 0.131 0.253 0.112 0.042 0.247 0.067 0.051 0.289 0.193 0.097 0.415

nr of cl. 10 10 10 10 10 10 10 10 10 10 10

random forests

tra. err. 0.001 0.003 0.002 0.001 0.002 0.001 0.000 0.002 0.001 0.000 0.005

test err. 0.119 0.264 0.104 0.034 0.239 0.060 0.040 0.269 0.185 0.048 0.438

nr of cl. 10 10 10 10 10 10 10 10 10 10 10

feat. sel. R R G R RG RG R R RG R

Ishibuchi-based fuzzy MCSs

tra. err. 0.197 0.181 0.172 0.163 0.065 0.221 0.248 0.335 0.166 0.021 0.442

test err. 0.208 0.238 0.175 0.166 0.245 0.223 0.256 0.398 0.181 0.056 0.482

nr of cl. 3 7 7 10 0 10 7 3 7 10 7

feat. sel. G G RG RG RG G RG RG RG G G
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Table 38. A comparison of the best choice for different approaches for FURIA-based fuzzy MCSs

against the best choice of bagging C4.5 MCSs, random forests, and Ishibuchi-based fuzzy MCSs
in terms of AUC.

(a) First subset of datasets

FURIA-based MCSs

aba bre gla hea ion let mag opt pbl pen

train AUC 0.693 0.993 0.895 0.927 0.999 0.991 0.802 0.724 0.950 0.999
test AUC 0.548 0.970 0.770 0.785 0.875 0.951 0.772 0.476 0.874 0.991

feat. sub. size — L L — M — — — L L
nr of cl. 7 7 7 7 7 10 5 3 7 10
feat. sel. — R R — RG — — — R R
approach bag FS B.+FS bag FS bag bag bag FS B.+FS

C4.5 ensembles with bagging

aba bre gla hea ion let mag opt pbl pen

train AUC 0.866 0.990 0.925 0.931 0.986 0.990 0.912 0.757 0.948 0.997
test AUC 0.545 0.955 0.771 0.782 0.831 0.945 0.797 0.485 0.876 0.984
nr of cl. 10 7 7 7 7 10 7 3 3 7

random forests

aba bre gla hea ion let mag opt pbl pen

train AUC 0.999 0.998 0.998 0.962 0.997 1.000 0.994 0.930 0.994 1.000
test AUC 0.543 0.962 0.771 0.756 0.822 0.957 0.809 0.488 0.868 0.991

nr of cl. 10 5 7 3 5 10 7 3 10 10

Ishibuchi-based fuzzy MCSs

AUC train 0.475 0.953 0.766 0.905 0.967 0.833 0.929 0.837 0.855 0.976
AUC test 0.487 0.939 0.684 0.783 0.822 0.737 0.779 0.516 0.683 0.965
nr of cl. 3 7 7 10 7 10 7 3 7 10

feat. sel. R R G R RG RG R R RG R

(b) Second subset of datasets

FURIA-based MCSs

pho pim sat seg son spa tex veh wav win yea

train AUC 0.872 0.917 0.975 0.996 0.994 0.960 0.998 0.955 0.934 0.998 0.838
test AUC 0.804 0.877 0.907 0.978 0.874 0.915 0.982 0.765 0.909 0.970 0.705
feat. sub. size L S — — M — — — S M
nr of cl. 7 7 10 10 7 7 10 10 10 10 10
feat. sel. G R — — R — — — RG R
approach B.+FS FS — — FS — — — FS B.+FS

C4.5 ensembles with bagging

pho pim sat seg son spa tex veh wav win yea

train AUC 0.942 0.950 0.981 0.994 0.969 0.968 0.996 0.952 0.986 0.981 0.874
test AUC 0.833 0.748 0.906 0.973 0.752 0.924 0.973 0.761 0.866 0.903 0.732

nr of cl. 7 7 10 10 7 7 10 7 7 10 10

random forests

pho pim sat seg son spa tex veh wav win yea

train AUC 0.997 0.997 0.999 1.000 0.998 0.998 1.000 0.998 0.998 1.000 0.996
test AUC 0.843 0.744 0.912 0.978 0.778 0.924 0.980 0.775 0.871 0.954 0.701
nr of cl. 7 7 10 10 7 7 10 10 7 10 10

Ishibuchi-based fuzzy MCSs

pho pim sat seg son spa tex veh wav win yea

AUC train 0.801 0.567 0.912 0.847 0.790 0.997 0.820 0.827 0.688 0.974 0.693
AUC test 0.749 0.708 0.847 0.871 0.744 0.624 0.859 0.737 0.791 0.960 0.674
nr of cl. 7 7 7 10 10 5 10 10 7 10 7
feat. sel. G G RG RG RG G RG RG RG G G



June 24, 2011 8:37 WSPC/118-IJUFKS S0218488511007155

Fuzzy Multiclassification Systems Combining FURIA 629

5.7. Overall conclusions

From the results obtained in the developed experiments we may conclude that

the design of FURIA-based fuzzy MCSs is a competitive approach with respect

to the classical state-of-the-art MCS design methods. Note that the same fuzzy

MCS design methodology with a poor fuzzy classifier generation method does not

provide good results. Hence, further research in this topic could lead to a promising

methodology to design accurate fuzzy MCSs.

Basically, the global insights of our proposal are:

• A framework based on a quick and accurate fuzzy classification rule learning

algorithm, namely FURIA, can be competitive if not better than two state-of-

the-art machine learning classifier ensembles.

• The proposed FURIA-based fuzzy MCSs are accurate and can be directly applied

on high dimensional datasets, high in terms of large number of attributes, number

of instances, and/or number of classes, thanks to the fact we use FURIA as a

component classifier.

• Due to the application of bagging to the MCSs, we obtained an approach being

able to run the classifiers in parallel, thus being time efficient.

• FURIA-based fuzzy MCSs with bagging clearly outperform FURIA-based fuzzy

MCSs with feature selection and FURIA-based fuzzy MCSs with bagging and

feature selection. Thus, it is the recommended MCSs combination method.

• From the feature selection approaches Random-greedy turned out to be the

best approach. This conclusion is not so clear, though. Notice that, considering

FURIA-based fuzzy MCSs with bagging and feature selection average results for

Greedy feature selection are not much worst than the ones with Random-greedy

feature selection.

• Overall, it can be noticed that the larger the number of classifiers forming the

fuzzy MCS, the lower the test error. Mostly, MCSs composed of 10 classifiers

obtain the lowest test error, although in some cases MCSs composed of 7 classifiers

outperformed the ones composed of 10.

6. Concluding Remarks

In this study, we proposed a methodology in which a bagging approach together

with a feature selection technique is used to train FURIA-based fuzzy classifiers in

order to obtain a fuzzy rule-based MCS. We used a single winner-based method on

top of the base classifiers. This design allows our system to be both efficient by its

inherent parallelism and accurate by the high quality of the base classifier when

dealing with high dimensional datasets.

We tested FURIA-based fuzzy MCSs with bagging, feature selection, and the

combination of both of them. By using the abovementioned techniques, we aimed

to obtain fuzzy MCSs dealing with high dimensional data.
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We have conducted comprehensive experiments over 21 datasets taken from the

UCI machine learning repository. It turned out that FURIA-based fuzzy MCSs

was the best performing approach from all the methods considered. Moreover, we

showed that the obtained results are promising and provide a performance advan-

tage in comparison with two state-of-the-art algorithms.

One of the next steps we will consider in the short future is to develop classi-

fier selection using evolutionary multiobjective optimization algorithms to look for

an optimal size of the ensemble. This MCS design approach, called overproduce-

and-choose strategy (OCS)35,40 is based on the generation of a large number of

component classifiers and of the subsequent selection of the subset of them best

cooperating. By doing so, the performance of FURIA-based fuzzy MCSs could be

improved, while decreasing the number of classifiers in the ensemble, thus obtain-

ing different trade-offs between accuracy and complexity.47 The other extension

to follow is to study alternative fuzzy reasoning methods to combine the results

of the individual members of the ensemble, trying to combine classifiers in a dy-

namic manner,40 in a way that a classifier or a set of them is responsible just for a

particular data region.
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