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a b s t r a c t

The problem of choosing a subset of elements with maximum diversity from a given set is known as the
maximum diversity problem. Many algorithms and methods have been proposed for this hard combina-
torial problem, including several highly sophisticated procedures. By contrast, in this paper we present a
simple iterated greedy metaheuristic that generates a sequence of solutions by iterating over a greedy
construction heuristic using destruction and construction phases. Extensive computational experiments
reveal that the proposed algorithm is highly effective as compared to the best-so-far metaheuristics for
the problem under consideration.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The maximum diversity problem (MDP) consists of determining a
subset M of a given cardinality from a set N of elements, in such a
way that the sum of the pair-wise distances between the elements
of M is the maximum possible. The definition of distance between
elements is customized to specific applications. The MDP arises in
various contexts, including the location of undesirable or mutually
competing facilities, aiding decision analysis with multiple objec-
tives, composing jury panels, genetic engineering, ecological, med-
ical and social sciences, animal and plant genetics, and ethnicity
(see [9,18,27,28] for more details on these and some other
applications).

More precisely, let N = {e1, . . . ,en} be a set of elements and d(ei,ej)
be the distance between elements ei and ej (d(ei,ej) will be denoted
by dij as well). Then, the MDP consists in determining a subset
M � N of given cardinality m (m < n), so that the sum of the dis-
tances between the elements in M is the maximum possible. The
problem may be formulated as the following quadratic zero-one
integer program [23]:

Maximize z ¼ 1
2

Xn

i¼1

Xn

j¼1

dij � xi � xj;

Subject to
Xn

i¼1

xi ¼ m; xi 2 f0;1g; i ¼ 1; . . . ;n;
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where xi is a binary variable indicating whether an element ei is se-
lected to be a member of the subset M.

Glover et al. [17] showed that this problem is NP-hard.
Although there are exact procedures based on the branch and
bound method [27] and mathematical programming approaches
[30] to provide solutions for this problem, they are unable to solve
large MDP instances. Therefore, different metaheuristics were pro-
posed to obtain high quality solutions for this kind of instances.
They include memetic algorithms [21], scatter search [13,19], tabu
search [4,5,28], estimation of distribution algorithms [39], genetic
algorithms [11], and variable neighborhood search [7]. Another
approach that has received considerable attention in the solution
of the MDP is greedy randomized adaptive search procedure (GRASP)
[2,3,9,15,36,37].

Although many algorithms and methods have been presented
for this hard combinatorial problem, iterated greedy (IG) algo-
rithms have not been applied to it previously to the best of our
knowledge. IG [20] is a very simple and effective metaheuristic
recently developed for combinatorial optimization problems that
follows a very simple principle, is easy to implement and can show
excellent performance; in fact, it has exhibited state-of-the-art
performances for a considerable number of problems [8,10,12,20,
25,38,32,33,42]. IG generates a sequence of solutions by iterating
over greedy constructive heuristics using two main phases:
destruction and construction. During the destruction phase, some
solution components are removed from a previously constructed
complete candidate solution. The construction procedure then
applies a greedy constructive heuristic to reconstruct a complete
candidate solution. Once a newly re-constructed solution has been
obtained, an acceptance criterion is applied to decide whether it
will replace the incumbent solution or not. Besides, an optional
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local search phase for improving the initial solution and the
re-constructed solution can be added before the main loop and
the acceptance test, respectively.

In this paper, we explore the behavior of the IG metaheuristic
for the MDP. With the aim of providing a very competitive IG in-
stance, we propose an IG model for this problem and present an
extensive computational comparison of different instances that
are distinguished by (1) the number of solution components that
are removed from the current solution, (2) the local search method,
and (3) the acceptance criterion.

The remainder of this paper is structured as follows. In Section
2, we give an overview of the existing research on metaheuristics
for the MDP. In Section 3, we describe the proposed IG. In Section
4, we present empirical studies, which are designed to: (1) to ana-
lyze the influence of the parameters and settings associated with
our proposal, (2) to obtain a tuned IG being able to show a robust
operation for test problems with different characteristics, and (3)
to compare its results with those of other approaches from the lit-
erature. Finally, in Section 5, we discuss conclusions and further
work.
2 The results of a wider comparison between this algorithm and other metaheu-
ristics may be found at the following web site: http://heur.uv.es/optsicom/mdp/.
2. Metaheuristics for the MDP

Metaheuristics have shown to be very successful in finding high
quality solutions to the MDP. Early implementations of simulated
annealing and tabu search (TS) were made by Kincaid [22]. Compu-
tational results, considering three sets of problem instances of size
25, showed that TS performed somewhat better than simulated
annealing. Another TS model, called multiple TS, was designed by
Macambira [26] for MDP instances with up to 100 elements. A dif-
ferent implementation of TS for small MDP instances (of a size un-
der 50) was suggested by Alidaee et al. [1]. Their method is
centered on the use of strategic oscillation, which directly or indi-
rectly underlies many TS implementations [16]. This method alter-
nates between constructive phases that progressively set variables
to 1 and destructive phases that increasingly set variables to 0.

In the recent past, there has been an increasing interest in solv-
ing the MDP using the GRASP approach, and, as a result, many algo-
rithms have been designed by combining different construction
and local search heuristics. Among the earliest approaches we find
the GRASP of Ghosh [15]. The solution construction phase performs
m iterations to obtain a solution. In each iteration one element is
selected according to an estimation of its contribution to the final
diversity. The improvement phase implements a straightforward
hill-climbing heuristic based on performing the best available ex-
change (replacing an element in the solution with another that
does not belong to the solution). The algorithm was tested on small
problem instances with up to 40 elements.

Andrade et al. [3] designed a GRASP whose solution construc-
tion phase limits the choice of the new element to a restricted can-
didate list. It orders the elements with respect to a suitable greedy
function, selects the best m ones and removes those whose value
presents a difference larger than the average from the following
element in the given order. The improvement phase is the same
as in the previous algorithm. Andrade et al. showed results for in-
stances randomly created with up to 250 elements. In particular,
the algorithm was able to find some solutions better than the ones
found by the algorithm by Ghosh. Later, Andrade et al. [2] proposed
a variant of GRASP by adding a path relinking post-processing,
which allowed better results to be achieved.

Silva et al. [36] implemented three GRASP constructions: KLD,
KLDv2, and MDI, and two local search procedures: GhA and SOMA,
where GhA is the method proposed by Ghosh [15]. They were
extensively tested over a benchmark set of randomly generated in-
stances with up to 500 elements. The computational experiments
showed that: (1) when running time is very short, KLD coupled
with GhA produces the best quality solutions, (2) when longer run-
ning times are admissible, KLDv2 coupled with GhA is the best
method, and (3) GRASP instances that use KLD or KLD-v2 construc-
tion algorithms and GhA or SOMA local search algorithms signifi-
cantly improve the average performance of the algorithms by
Ghosh [15] and Andrade et al. [3]. Nonetheless, as shown in their
experimentation and confirmed in [9], all these methods present
extremely long running times when solving medium-size in-
stances. In a later work, Silva et al. [37] presented new construction
procedures for the MDP that include existing enhanced features
proposed for GRASP: filtering of constructed solutions [31] and
reactive GRASP [29]. In addition, they introduced a path-relinking
technique to their GRASP heuristics.

Santos et al. [35] hybridize GRASP with data mining methods.
Simply put, after GRASP executes a significant number of itera-
tions, the data mining process extracts patterns from an elite set
of solutions that guide the following GRASP iterations. The GRASP
used to develop the hybrid strategy is based on the KLD strategy
presented in [36].

Duarte and Martı́ [9] developed four constructive methods
based on TS that incorporate memory structures, and four mem-
ory-less constructions based on GRASP methodology. They were
combined with two new improvement methods: an efficient local
search (I_LS), which is a variant of the method of Ghosh, and a
short-term TS improvement phase. Overall, experiments with
120 MDP instances (with up to 2000 elements) clearly proved
the effectiveness of the use of memory in both construction and
improvement phases for solving this problem.

Aringhieri et al. [4] proposed a TS-based GRASP algorithm in
which TS is initialized by a trivial constructive procedure, but it
adds the tabu mechanism and suitable intensification and diversi-
fication devices to enhance the search in the improvement phase.
Their simulation results (with instances with up to 500 elements)
showed that the TS-based GRASP achieved both better results and
much shorter computational time than to those reported for previ-
ous GRASP algorithms.

Hybrid evolutionary algorithms have also been a tool of choice
for dealing with the MDP. In [21], Katayama et al. presented a
memetic algorithm (an evolutionary algorithm incorporating local
search) that applies a k-flip local search method based on variable
depth search. To investigate the effectiveness of this approach, the
authors carried out experiments with problem instances of up to
n=2500, and observed that the algorithm is particularly effective
for large instances. However, they did not present any comparison
with other approaches in the literature. Gallego et al. [13] studied
several hybridized procedures within the scatter search frame-
work. The authors found that their algorithm obtained better solu-
tions than the ones achieved by KLD and KLDv2 [36] and
Tabu_D2 + LS_TS [9], when tackling MDP instances with n = 500.2

One of the most appealing contemporary metaheuristic
approaches for the MDP is iterated TS (ITS), which was proposed
by Palubeckis [28]. This algorithm has two phases: solution pertur-
bation and TS phases. Computational results for problem instances
involving up to 5000 elements indicated that its performance sur-
passes that of other algorithms, such as Tabu_D2 + LS_TS [9], by an
impressive margin.

Recently, Brimberg et al. [7] implemented a simple variable
neighborhood search approach for this problem that they found
to be superior to other metaheuristics, including ITS [28], scatter
search [13], KLD and KLD-v2 [36], and Tabu_D2 + LS_TS [9] in solv-
ing the set of MDP test instances used by Palubeckis.

http://heur.uv.es/optsicom/mdp/


Fig. 1. Pseudocode algorithm for IG-MDP.
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Finally, Wang et al. [39] developed a discrete competitive Hop-
field neural network based on the estimation of distribution algo-
rithms. The algorithm was tested on 120 benchmark problems
with the size ranging from 100 to 5000. Simulation results evi-
denced that the proposal was better than or competitive with other
metaheuristic algorithms such as ITS [28], the TS-based GRASP
algorithm [4], Tabu_D2 + LS_TS [9], and KLD combined with path-
relinking [37].

3. IG for the MDP

In this section, we explore the adaptation of the IG framework
to obtain high quality solutions to the MDP. Firstly, in Section
3.1, we describe the greedy constructive and destructive algo-
rithms that play a fundamental role in our IG. Then, in Section
3.2, we provide a general overview of the overall algorithm. Finally,
in Section 3.3, we provide details for the improvement methods
proposed in the literature for the MDP, which will be employed
in the local search phase of our IG.

3.1. Greedy constructive and destructive algorithms

In this section, we describe the greedy constructive and
destructive algorithms, C2 and D2, proposed by Glover et al. [18],
which may be used to build feasible solutions for the MDP (i.e., a
solution containing m elements). In order to do this, we firstly de-
fine the contribution of an element ei 2 N to a set S # N as:

Dðei; SÞ ¼
X

ej2S

dðei; ejÞ; i ¼ 1; . . . ;n:

The C2 algorithm selects one element at a time and adds it to the
current partial solution, Sp, until m elements are included. Specifi-
cally, C2 adds, at each step, the element in NnSp with the maximum
contribution value across all elements, Dmax. By contrast, starting
with all the elements selected (Sp = N), the D2 algorithm removes,
at each step, the component of Sp with the minimum contribution
value, Dmin. In both cases, we can easily update D(ei,Sp) for each ei,
i = 1, . . . ,n by adding the value Dmax to it or subtracting the Dmin va-
lue from it, respectively. We should point out that given a feasible
solution S, the objective function value z can be obtained from the
D values with the expression:

z ¼ 1
2

X

ei2S

Dðei; SÞ:

In the following, we denote by Greedy-Add (S,n) the greedy con-
struction procedure that introduces n elements in a set S, by per-
forming n iterations of the C2 algorithm.

3.2. General scheme of the proposed IG

An outline of our proposal, called IG-MDP, is depicted in Fig. 1.
IG-MDP starts from some complete initial solution S (Steps 1 and 2)
and then iterates through a main loop in which first a partial
candidate solution Sd is obtained by removing a fixed number of
solution components from a complete candidate solution S
(destruction phase, Step 5) and next a complete solution Sc is re-
constructed starting with Sd (construction phase, Step 6). A local
search phase is added for improving the re-constructed solution
(Step 7). Before continuing with the next loop, an acceptance crite-
rion decides whether the solution returned by the local search pro-
cedure, Sls, becomes the new incumbent solution (Step 10). The
process iterates through these two phases until some termination
conditions (e.g. maximum number of iterations, or maximum com-
putation time allowed) have been met. The best solution, Sb, gener-
ated during the iterative process is kept as the overall result.
The specific features of IG-MDP are:

� It starts with the solution resulting from the application of a
local search procedure on the solution returned by the D2 algo-
rithm (Section 3.1). Duarte and Martı́ [9] observed that this
algorithm is very suitable to generate initial solutions for the
MDP.
� The procedure Random-Drop (S, nd) removes nd (a parameter of

the algorithm) components from the current solution. These
components are selected at random. Most IG instances in the
literature follow this strategy for the destruction phase
[33,34,40].
� The procedure Greedy-Add (Section 3.1) is employed for the

construction phase.
� We have explored the following acceptance criteria:

– ‘Replace if better’ acceptance criterion (RB). The new solution
is accepted only if it provides a better objective function
value [41].

– Random walk acceptance criterion (RW). An IG algorithm
using the RB acceptance criterion may lead to stagnation sit-
uations of the search due to insufficient diversification [33].
At the opposite extreme is the random walk acceptance cri-
terion, which always applies the destruction phase to the
most recently visited solution, irrespective of its objective
function value. This criterion clearly favors diversification
over intensification, because it promotes a stochastic search
in the space of local optima.

� For the local search phase, we have investigated different
improvement methods proposed in the literature for the MDP.
They are described in Section 3.3.

3.3. Improvement methods

Next, we describe the most representative improvement meth-
ods proposed in the literature for the MDP:

� Best-improvement local search (Best) [15]. It is based on the
1-interchange move. Given a solution S, this move exchanges a
single element s 2 S with a single element t 2 N nS.
Thus, the result of this move is S0 = S [ {t}n{s}. It is possible to
efficiently evaluate such a move without recomputing the
objective function from scratch. Let z be the value of the objec-
tive function for solution S. The value z0 of the new solution S0 is
obtained by subtracting the total contribution of the old ele-
ment s (that is D(s,S)) and adding the total contribution of the
new element t (that is D(t,S) � d(s, t)), that is, more formally:
z0 ¼ z� Dðs; SÞ ¼ Dðt; SÞ � dðs; tÞ:
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The move yielding the largest positive improvement in the objec-
tive function is selected and applied. After each move, the values
D(si,S0), i = 1, . . . , n, may be calculated as follows:
Dðei; S
0Þ ¼ Dðei; SÞ � dðei; sÞ ¼ dðei; tÞ:
The method performs moves while the objective value increases
until no further improvement is possible. We should point out that
this local search was the preferred improvement method for many
GRASP instances proposed in the literature for the MDP [2,3,9,36].

� First-improvement local search (First) [7]. In this local search, a
first improvement strategy is considered, that is, the first 1-
interchange move yielding an improvement in the objective
function is selected and applied.
� Improved local search (I_LS) [7]. Duarte and Martı́ [9] modified

the Best improvement technique to increase its efficiency. First,
I_LS selects the element slowest 2 S with the lowest contribution
to S, i.e.,
Dðslowest; SÞ ¼ min
i¼1;...;n

Dðsi; SÞ:
Then, instead of scanning the whole set NnS searching for the best
exchange associated with slowest, the authors restrict their method
to performing the first improving move (without examining the
remaining elements in NnS). If there is no improving move associ-
ated with slowest, we resort to the next element with the lowest con-
tribution to S and so on. I_LS performs iterations until no further
improvement is possible.

� Fast Lin–Kernighan algorithm for the MDP (FastLK). Previous
improvement methods are based on the N1 neighborhood. Lar-
ger sized neighborhoods, such as the Nk neighborhood
(1 < k < n), may yield better local optima, but the effort needed
to search the neighborhood is computationally too expensive.
Lin-Kernighan algorithms are based on efficiently searching a
small fraction of the large neighborhood [24]. A basic imple-
mentation of this algorithm for the MDP is described as follows.
Given a starting solution S, a sequence of k solutions (k = min
(m,n �m)) is generated by these two steps:

1. Perform the 1-interchange move with the highest contribution
to the objective function.

2. Repeat Step 1 k times so that the elements cannot be chosen
to be inserted in S or removed from S if they have been used
at one of the previous iterations of Step 1.

The best solution in the sequence is adopted as a new initial
solution for the next iteration. Such a process is repeated until
no better solution is found. We should point out that an instance
of the Lin–Kernighan algorithm for the MDP may be found in
[21]. In this case, the authors suggested a strategy to reduce the
running time of the algorithm by stopping the process for generat-
ing the sequence of solutions when the best solution found so far in
the sequence has not been updated for more than nit iterations.
Table 1
MDP instances considered for the experiments.

Name Ref. n m

Type2 [9] 500 50
Type1_22 [9] 2000 200
mdp0500 [21] 500 50, 100, 1
mdp0750 [21] 750 75, 150, 2
mdp1000 [21] 1000 100, 200,
mdp2500 [21] 2500 250, 500,
b2500 [6,28] 2500 1000
p3000 [28] 3000 1500
p5000 [28] 5000 2500
They proposed the adoption of a parameter value nit ¼ m
5 for large

MDP instances. We have incorporated this strategy to the
Lin–Kernighan algorithm described above, obtaining the FastLK
improvement algorithm.

4. Computational experiments

In this section, we describe the experiments carried out in order
to study the behavior of the IG-MDP model presented in the previ-
ous section. Firstly, we detail the experimental setup and statistical
method applied (Section 4.1), then, we analyze the results obtained
from different experimental studies carried out with IG-MDP. Our
aim is: (1) to analyse the influence of the parameters and settings
associated with the algorithm (Section 4.2), (2) to obtain a tuned
IG-MDP instance being able to show a robust operation for test
problems with different characteristics, and 3) to compare the re-
sults of the tuned IG-MDP with ones of other metaheuristic ap-
proaches for the MDP from the literature (Section 4.4).

4.1. Experimental setup

The codes of all the studied algorithms were compiled with
Dev-C++ 4.9.8.0. All runs were made on a 2.5 GHz Pentium Dual-
Core with 3 GB of RAM running Windows Vista Business. To eval-
uate the performance of IG-MDP, 76 medium-large MDP instances
were selected from the literature. Table 1 shows their names, ref-
erences where a detailed description may be found, associated n
and m values, number of instances, and the maximum CPU time
limits allotted for each run of the studied algorithms (they were ta-
ken from [28], with the exception of the ones for the mdp in-
stances). All algorithms were run 10 times on each problem
instance.

Non-parametric tests have been used to compare the results of
different search algorithms [14]. Given that the non-parametric
tests do not require explicit conditions to be conducted, it is rec-
ommended that the sample of results should be obtained following
the same criterion, which is, to compute the same aggregation (we
have considered the average of the best objective function value
found at the end of each run) over the same number of runs for
each algorithm and problem. Specifically, we have considered
two alternative methods based on nonparametric tests to analyze
the experimental results:

� The first method is the application of the Iman and Davenport
test and the Holm method as a post hoc procedure. The first test
may be used to see whether there are significant statistical dif-
ferences among the algorithms in a certain group of test algo-
rithms. If differences are detected, then Holm’s test is
employed to compare the best algorithm (control algorithm)
against the remaining ones.
� The second method is the utilization of the Wilcoxon matched-

pairs signed-ranks test. With this test, the results of two algo-
rithms may be directly compared.
Number inst. Time limit (s)

20 20
20 20

50, 200 4 20
25, 300 4 20
300, 400 4 20
750, 1000 4 1200

10 1200
5 1200
5 1200
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4.2. Study of IG-MDP with different parameters

The aim of this section is to investigate the effect of different
parameters and strategies used in IG-MDP. Particularly, we at-
tempt to find the combinations of acceptance criteria, improve-
ment method, and nd (number of solution components that are
removed from the current solution) that result in high perfor-
mance. (Note that only some few possible combinations are ex-
plored, so performance may be further improved by examining
more possible combinations/ values).

In Table 2 we have summarized the results obtained by these
algorithms following the methodology suggested by Palubeckis
[28]. For each algorithm A and set of problem instances, in column
AD-B we include the average difference (over all instances in the
set) between the best known values (reported by Palubeckis
[28]) and the best solutions found by the algorithm A, and in the
case of the column AD-Av, we outline the average difference be-
tween the best known values and the average values of 10 runs
of the algorithm A (clearly, low values for these two measures indi-
cate that results of an algorithm are close to the best ones). In addi-
tion, the table shows the average rankings obtained by the IG-MDP
versions. This measure is obtained by computing, for each problem
instance, the ranking rj of the observed results for algorithm ver-
sion j assigning to the best of them the ranking 1, and to the worst
the ranking nv (nv is the number of versions of the algorithm).
Then, an average measure is obtained from the rankings of this
algorithm version for all test problems. For example, if a certain
algorithm achieves rankings 1, 3, 1, 4, and 2, on five problem in-
stances, the average ranking is 1þ3þ1þ4þ2

5 ¼ 11
5 . In order to analyze

these results, we have applied the Iman-Davenport’s test (the level
of significance considered was 0.05). We have observed the exis-
tence of significant differences among the rankings (the statistical
value is 154.63 and the critical one 1.5488). Then, we have com-
pared the best ranked algorithm (RW,I_LS,0.75�m) with the other
IG-MDP versions, by means of Holm’s test. Table 2 contains all
the computations associated with this procedure with p = 0.05.
The last column indicates whether the Holm’s test finds statistical
differences between the control algorithm and the corresponding
algorithm. If the corresponding p-value is smaller than the ad-
Table 2
Average rankings, results, and comparison (Holm’s test) between the IG-MDP instances.

IG-MDP Av. Ran. Type1_22 p3000

(Acc. crit. - LS - nd) AD-B AD-Av AD-B

RB Best 0.25�m 22.64 418.9 569.74 4619.4
RB I_LS 0.25�m 22.16 425.7 560.49 4902.8
RB First 0.25�m 22.14 417.6 562.85 4377.6
RB FastLK 0.25�m 20.12 411 498.52 5007
RW FastLK 0.25�m 19.82 418.4 493.42 4833
RW Best 0.25�m 18.72 326.2 479.32 3458.8
RW I_LS 0.25�m 17.96 353.7 483.345 3061.8
RW First 0.25�m 17.8 332.75 469.57 3502.4
RB FastLK 0.5�m 14.52 290 372.845 2987.6
RB Best 0.5�m 14 216.8 373.75 2279
RW FastLK 0.5�m 13.16 252.55 355.045 2791.8
RB I_LS 0.5�m 12.72 227.9 359.215 2150.4
RB FastLK 0.75�m 12.68 155.3 308.015 2540.2
RB First 0.5�m 12.55 239.1 357.03 1857
RB Best 0.75�m 9.44 128.35 262.25 1938.4
RW Best 0.75�m 9.12 91.1 217.89 3416.4
RW FastLK 0.75�m 8.48 136.65 252.955 1619.2
RW Best 0.5�m 6.44 140.4 236.07 148.4
RW First 0.5�m 5.92 121.7 234.2 151.2
RB First 0.75�m 5.16 95.15 207.735 14.6
RB I_LS 0.75�m 5 82.9 200.78 24.8
RW I_LS 0.5�m 4.24 108.55 204.66 �155.8
RW First 0.75�m 2.64 31.15 115.65 1012.4
RW I_LS 0.75�m 2.56 27.9 97.87 1712.6
justed a, the test detects significant differences between them,
which means that the control algorithm is better.

We point out the following from Table 2:

� Quite surprisingly, the three best algorithms use the RW accep-
tance criterion. As a matter of fact, it is unusual to find IG mod-
els in the literature employing this strategy (most of them show
a bias towards maintaining high quality solutions). Thus, we
may remark that the combination of the diversification of RW
and the intensification of the improvement procedure produces
beneficial effects on the IG-MDP performance.
� IG-MDP instances based on the fastest improvement algo-

rithms, I_LS and First, have obtained significant performance
results. When a maximum CPU time limit is imposed, the use
of an efficient improvement algorithm may allow a high num-
ber of cycles to be accomplished, favoring the exploration of
the search space.
� The combinations (RW,I_LS,0.75�m) and (RW,I_LS,0.5�m) offer

the best AD-Av and AD-B values for the two sets of problem
instances. Both are based on the RW acceptance criterion and
the I_LS improvement method and differ on the nd value. Partic-
ularly, meaningful advantage is achieved with the first combi-
nation for the Type1_22 instances (in fact, it was the best
ranked IG variation). The combination with nd = 0.5�m obtained
surprisingly good results for the p3000 instances. Particularly,
the AD-B measure is negative, which means that this algorithm
found solutions for these instances that are better than the best
known solutions reported in [28].

4.3. Tuned IG-MDP algorithm

Regarding the results in Table 2, and with the aim of producing
a robust operation for the IG-MDP algorithm, we have built an in-
stance based on RW and I_LS that varies randomly the value of nd

in [0.5�m,0.75�m] at each iteration. It will be called tuned IG-MDP
(TIG).

Now, we attempt to detect the differences among TIG and the
best IG-MDP algorithms (the IG algorithms for which Holm’s test
did not detect significant differences in Table 2) by means of
Holm’s test

AD-Av z p-value a/i Diff.?

7897.4 10.04 1.02E�23 0.002 yes
7321.3 9.8 1.13E�22 0.002 yes
7321.4 9.79 1.24E�22 0.002 yes
6632.88 8.78 1.63E�18 0.002 yes
6483.7 8.63 6.14E�18 0.002 yes
5374.14 8.08 6.48E�16 0.002 yes
4612.08 7.7 1.36E�14 0.002 yes
5349.52 7.62 2.54E�14 0.003 yes
4092.82 5.98 2.23E�09 0.003 yes
3654.72 5.72 1.07E�08 0.003 yes
3742.74 5.3 1.16E�07 0.003 yes
3458.34 5.08 3.77E�07 0.004 yes
4573.28 5.06 4.19E�07 0.004 yes
3120.86 4.999 5.73E�07 0.005 yes
3518.16 3.44 5.82E�04 0.005 yes
4838.22 3.279 0.001 0.006 yes
2954.96 2.96 0.003 0.007 yes
1169.14 1.94 0.052 0.008 no

840.82 1.68 0.092 0.01 no
1228.38 1.3 0.193 0.012 no
1665.14 1.22 0.222 0.016 no

408.48 0.84 0.4 0.025 no
2012.68 0.04 0.968 0.05 no
2435.18



Table 3
TIG vs. best standard IG-MDP algorithms (Wilcoxon’s test with p-value = 0.05 and critical value = 89).

Standard IG Wilcoxon’s test Type1_22 p3000

(Acc. criterion - LS - nf
d) R+ R� Diff.? AD-B AD-Av AD-B AD-Av

RW Best 0.5�m 322.0 3.0 yes 140.4 236.07 148.4 1169.14
RW First 0.5�m 321.0 4.0 yes 121.7 234.2 151.2 840.82
RB First 0.75�m 325.0 0.0 yes 95.15 207.735 14.6 1228.38
RB I_LS 0.75�m 325.0 0.0 yes 82.9 200.78 24.8 1665.14
RW I_LS 0.5�m 302.0 23.0 yes 108.55 204.66 �155.8 408.48
RW First 0.75�m 294.0 31.0 yes 31.15 115.65 1012.4 2012.68
RW I_LS 0.75�m 243.0 82.0 yes 27.9 97.87 1712.6 2435.18
TIG 20.1 92.39 191.4 631.38

Table 4
TIG versus VNS using Wilcoxon’s test (p-value = 0.05).

Problem Inst. R+ R� Critical value Diff.?
(TIG) (VNS)

Type2 177 33 52 yes
Type1_22 210 0 52 yes
mdp 133 3 29 yes
b2500, p3000, p5000 210 0 52 yes

Table 5
TIG versus ITS using Wilcoxon’s test (p-value = 0.05).

Problem Inst. R+ R� Critical value Diff.?
(TIG) (ITS)

Type2 171 39 52 yes
Type1_22 210 0 52 yes
mdp 134.5 1.5 29 yes
b2500, p3000, p5000 195 15 52 yes

Table 6
Results of TIG, ITS, and VNS on all problem instances.

Problem TIG ITS VNS

AD-B AD-Av AD-B AD-Av AD-B AD-Av

Type2 0 4.72 0 81.9 0 46.02
Type1_22 20.1 92.39 111.6 275.6 160.9 356.95
mdp 5.18 70.79 61.13 225.67 134.38 421.54
b2500 465 993.32 473.2 1532.56 2535 4254.3
p3000 191.4 631.38 321.2 1370.36 1624.4 3406.92
p5000 648.8 1876.2 2990.8 6183.04 4662.8 7825
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Wilcoxon’s test. Table 3 summarizes the results of this procedure
for p = 0.05, where the values of R+ (associated to TIG) and R� of
the test are specified. The fourth column indicates whether Wilco-
xon’s test found statistical differences between these algorithms. If
min(R+,R�) is less than or equal to the critical value, this test de-
tects significant differences between the algorithms, which means
that an algorithm outperforms its opposite. Particularly, if this oc-
curs and R� = min(R+,R�), then TIG is statistically better than the
other algorithm.

TIG has the upper hand in the statistical comparison over all
other IG instances. Thus, we may conclude that this fine-tuned
IG-MDP algorithm may produce a robust operation for test prob-
lems with different characteristics.

4.4. TIG vs. state-of-the-art metaheuristics for the MDP

In a recent publication, Brimberg et al. [7] present a simple
variable neighborhood search (VNS) approach to the MDP that
was found to be superior to other metaheuristics (see Section
2). Thus, we assume that VNS is, up to now, the best performing
metaheuristic for the MDP. Since in [7] ITS was found to be the
best competitor for VNS and, it is considered to be one of the
best algorithms for this problem [39], we also compared our
TIG to it. The objective of this section is to pit TIG against VNS
and ITS. Firstly, we describe, in depth, the general scheme of
these two algorithms.

VNS is a metaheuristic that systematically exploits the idea of
neighborhood change (from a given set of neighborhood structures
Nk, k = 1, . . . ,kmax), both in the descent to local minima and in the
escape from the valleys, which contain them. Brimberg et al. [7]
propose a simple VNS algorithm specifically developed to tackle
the MDP. It mainly consists of the following three phases, which
work on a single candidate solution, the current solution, Sc:

� Generation phase: Firstly, a method is executed to generate an
initial solution Sc. It is a random procedure sampling uniformly
the search space.
� Improvement phase: Sc undergoes a refinement process by the

first-improvement local search (Section 3.3).
� Shaking phase: It is performed to escape from the valley where

Sc lies. This method applies k times a 1-interchange move (at
random) on Sc. For the algorithm to have a reactive behavior,
the parameter k is adjusted dynamically depending on the qual-
ity of the solutions obtained. At the beginning of the run, and
every time the improvement process outperforms the best solu-
tion found, k is set to one; otherwise, k is set to k + 1. When k
exceeds kmax, a new iteration starts, and k gets back to 1. The
authors recommended kmax = min{m,n �m}.

In this VNS, the generation phase is performed once, at the
beginning of the optimization process, then, shaking and improve-
ment phases are iterated until an imposed time limit is reached.
The current solution is updated whenever the improvement phase
obtains a better solution.

ITS [28] was designed to address the need to increase the effi-
ciency of TS for the MDP by incorporating a powerful search diver-
sification mechanism. ITS alternates between two phases: solution
perturbation and TS. Each time, the second of them is applied to
the solution from the first phase. The employed TS is a short-term
memory tabu list without aspiration criterion. In addition, in the
case of finding, during the run of TS, a better solution than the pre-
vious best solution, a local search procedure (a standard routine
performing an ascent from the given point to a local optimum) is
applied to this new solution. The method to perturb a solution S
consists of generating, at random, a point up to a maximum dis-
tance kmax from S (a parameter), which becomes a new initial solu-
tion for TS. It is interesting to point out that ITS uses different
neighborhoods in the perturbation, not systematically (as VNS
does) but at random.

We should point out that ITS, VNS, and TIG were run under the
same computational conditions (machine, programming language,



Table 7
Comparison between best known results.

Ins. ITS TIG VNS Ins. ITS TIG VNS

Type1_22.1 114271 114271 114211 b2500–1 1153068 1153014 1151144
Type1_22.2 114327 114327 114064 b2500–2 1129310 1128492 1124394
Type1_22.3 114195 114195 114131 b2500–3 1115538 1115142 1112346
Type1_22.4 114093 114093 114000 b2500–4 1147840 1147260 1145192
Type1_22.5 114196 114196 114054 b2500–5 1144756 1144420 1143016
Type1_22.6 114265 114265 114238 b2500–6 1133572 1133296 1131062
Type1_22.7 114361 114361 114361 b2500–7 1149064 1148616 1147138
Type1_22.8 114327 114327 114115 b2500–8 1142762 1142616 1138750
Type1_22.9 114199 114199 114183 b2500–9 1138866 1138592 1135812
Type1_22.10 114229 114229 114205 b2500–10 1153936 1153578 1153118
Type1_22.11 114214 114199 114123 p3000–1 6501999 6501569 6500376
Type1_22.12 114214 114199 114093 p3000–2 18272568 18272043 18270504
Type1_22.13 114233 114233 114120 p3000–3 29867138 29867138 29864823
Type1_22.14 114216 114216 114065 p3000–4 46914817 46914806 46912779
Type1_22.15 114240 114239 114239 p3000–5 58095034 58095120 58093171
Type1_22.16 114335 114335 114168 p5000–1 17508071 17507722 17505292
Type1_22.17 114255 114255 114126 p5000–2 50101514 50102477 50098434
Type1_22.18 114408 114408 114391 p5000–3 82038723 82038177 82030273
Type1_22.19 114201 114201 113897 p5000–4 129411337 129411237 129406255
Type1_22.20 114349 114349 114179 p5000–5 160597469 160597077 160596072

4 The new best known results are 6502255, 18272570, 29867140, 46914900, and
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compiler, and time limits; see Section 4.1) in order to enable a fair
comparison between them. We have used the source code of ITS
provided by the author3 and implemented the other two algorithms
in C.

For the different problem instances, Tables 4 and 5 have the re-
sults of the comparison of TIG and these two algorithms, by means
of Wilcoxon’s test (the R+ are associated with our algorithm). The
AD-B and AD-Av measures for these algorithms may be found in Ta-
ble 6. From these Tables, we clearly notice that TIG obtained
improvements with respect to the other algorithms, which are al-
ways statistically significant (because all R� values are lower than
both R+ ones and critical values). In summary, this experimental
analysis shows that TIG is currently a state-of-the-art method for
solving the MDP, which evidences the great potential of the IG
metaheuristic as a search algorithm for this problem.

Other performance criteria, different from AD-B and AD-Av,
have been suggested in the literature to assess the performance
of metaheuristics for the MDP. One of them consists of quantifying
how many best known results in the literature can be equaled or
improved by the algorithms [4,7,28,37]. In [28], the ITS algorithm
was executed for long CPU times in order to improve as much as
possible the best known values (in fact, it was able to find new best
solutions for 69 test problems appearing in the literature). The im-
posed time limit for a run was 1200 s for instances in Type1_22, 5 h
for instances in b2500 and p3000, and 10 h for p5000. We ran TIG
and VNS under these time conditions, in order to compare their
best results with the ones of ITS (reported in [28]). They are dis-
played in Table 7 (the values that are equal or better than the ones
of ITS are presented in boldface).

We may point out the following facts:

� VNS could not find any new best known value for the consid-
ered problem instances.
� In the case of the Type1_22 problem instances, our algorithm

equaled the results of ITS in 17 out of 20 instances.
� For the p3000 instances, TIG returned the same best solution as

ITS did in one out of 5 cases. For the largest size instances,
p5000, TIG was able to achieve the best known value in one
out of 5 instances. For Beasley instances (b2500), TIG was not
able to improve the results offered by ITS.
3 ITS is publicly available at http://www.soften.ktu.lt/�gintaras/max_div.html.
� We should recall that, in a previous experiment in Section 4.2
(10 runs with a time limit of 1200 seconds), IG-MDP with
(RW,I_LS,0.5�m) was able to return new best known solutions
for the five p3000 instances4. Given that the IG with this param-
eter setting was so high performing on the p3000 instances, we
decided to run for the longer computation time limits this version
of IG on the p3000 and p5000 instances (5 hours and 10 hours,
respectively). Under this experimental scenario, it was able to
find new best known solutions for the five p5000 instances5.
These facts arise as another sign of the ability of our proposed
IG metaheuristic to obtain high quality solutions for the MDP.

5. Conclusions

In this paper, we proposed an IG scheme for the MDP and inves-
tigated the influence of applying different nd values, local search
methods, and acceptance criteria. From the analysis of the obtained
results, we have derived a fine-tuning IG that has proved to be a
very high performing algorithm for the problem, resulting very
competitive with other state-of-the-art algorithms. This result
along with the simplicity and flexibility of the IG approach allow
us to conclude that this metaheuristic arises as a tool of choice
to tackle this problem.

We believe that the IG framework presented in this paper is a
significant contribution, worthy of future study. We will intend
to explore two interesting avenues of research: (1) adapt the IG ap-
proach for its application to other challenging combinatorial prob-
lems, such as the max–min diversity problem and the max-cut
problem, and (2) build hybrid metaheuristics combining the pro-
posed IG with other salient metaheuristics for the MDP (e.g., ITS
and VNS).

Acknowledgments

The authors thank the associate editor and anonymous review-
ers for the valuable suggestions and constructive comments.
58095470.
5 The new best known results are 17509352, 50103059, 82040100, 129413344, and

160598020.

http://www.soften.ktu.lt/~gintaras/max_div.html
http://www.soften.ktu.lt/~gintaras/max_div.html


38 M. Lozano et al. / European Journal of Operational Research 214 (2011) 31–38
References

[1] B. Alidaee, F. Glover, G. Kochenberger, H. Wang, Solving the maximum edge
weight clique problem via unconstrained quadratic programming, European
Journal of Operational Research 181 (2) (2007) 592–597.

[2] M. Andrade, P. Andrade, S. Martins, A. Plastino, GRASP with path-relinking for
the maximum diversity problem, in: S. Nikoletseas (Ed.), Experimental and
Efficient Algorithms, vol. 3503, Springer, Berlin, 2005, pp. 558–569.

[3] P.M.D. Andrade, A. Plastino, L.S. Ochi, S.L. Martins, GRASP for the maximum
diversity problem. in: Proceedings of the Fifth Metaheuristics International
Conference (MIC 2003), 2003, CD-ROM Paper: MIC03 15.

[4] R. Aringhieri, R. Cordone, Y. Melzani, Tabu search versus GRASP for the
maximum diversity problem, 4OR 6 (1) (2008) 45–60.

[5] R. Aringhieri, R. Cordone, Comparing local search metaheuristics for the
maximum diversity problem, Journal of the Operational Research Society 62
(2) (2011) 266–280.

[6] J.E. Beasley, Obtaining test problems via internet, Journal of Global
Optimization 8 (1996) 429–433.
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