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The need for trading off interpretability and accuracy is intrinsic to the use of fuzzy systems.

The obtaining of accurate but also human-comprehensible fuzzy systemsplayed a key role in

Zadeh andMamdani’s seminal ideas and system identificationmethodologies. Nevertheless,

before the advent of soft computing, accuracy progressively became the main concern of

fuzzymodelbuilders,making the resulting fuzzy systemsget closer toblack-boxmodels such

as neural networks. Fortunately, the fuzzy modeling scientific community has come back

to its origins by considering design techniques dealing with the interpretability-accuracy

tradeoff. In particular, the use of genetic fuzzy systems has been widely extended thanks

to their inherent flexibility and their capability to jointly consider different optimization

criteria. The current contribution constitutes a review on the most representative genetic

fuzzy systems relying on Mamdani-type fuzzy rule-based systems to obtain interpretable

linguistic fuzzy models with a good accuracy.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

System identification involves the use of mathematical tools and algorithms to build dynamical models describing the

behavior of real-world systems from measured data [150]. There are always two conflicting requirements in the modeling

process: the model capability to faithfully represent the real system (accuracy) and its ability to express the behavior of

the real system in an understandable way (interpretability). Obtaining high degrees of accuracy and interpretability is a

contradictory aim and, in practice, one of the two properties prevails over the other. Before the advent of soft computing,

and in particular of fuzzy logic, accuracy was the main concern of model builders, since interpretability was practically a

lost cause [26]. Notice that, in traditional control theory approaches, the models’ interpretability is very limited, given the

rigidity of the underlying representation language.

Fuzzy systems have demonstrated their superb ability as system identification tools [22,61,107]. The use of fuzzy rule-

based systems (FRBSs) for system identification can be considered as an approach used to model a system making use of a

descriptive language based on fuzzy logic with fuzzy predicates [152]. This paradigm has proven its ability to automatically

generatedifferent kindsof fuzzymodels fromdata, permitting the incorporationofhumanexpert knowledge, and integrating

numerical and symbolic processing into a common scheme [132].

When a Mamdani-type FRBS [112,113] is considered to compose the model structure, the linguistic fuzzy model so

obtained consists of a set of linguistic descriptions regarding the behavior of the system being modeled. It thus becomes a

highly interpretable grey-boxmodel [60]. However, the relatively easy design of FRBSs, their attractive advantages, and their

emergent proliferation have made fuzzy modeling suffer a deviation from the seminal purpose directed towards exploiting

the descriptive power of the linguistic variable concept [167]. Instead, during the 90s, much of the research developed in
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fuzzy modeling focused on increasing the accuracy as much as possible paying little attention to the interpretability of the

final model. The Takagi-Sugeno-Kang (TSK) FRBS structure [151,153] played a pivotal role in the latter research.

Nevertheless, as stated by Bonissone in [26], soft computing provides the (fuzzy) model designer with a much richer

repertoire to represent the structure, to tune the parameters, and to iterate the process within the equation “model =
structure + parameters’, classically followed by the traditional system identification approaches. A new tendency in the

fuzzymodeling scientific community that looks for a good balance between interpretability and accuracy has thus increased

in importance in the last few years [1,34,37,81,118,148,155]. The term fuzzy modeling interpretability-accuracy tradeoff

[34,37] has been coined to define this discipline, collecting two different perspectives: the interpretability improvement of

accurate (usually TSK) fuzzy models, or the accuracy improvement of linguistic fuzzy (Mamdani-type) models with a good

interpretability.

One of the most successful fuzzy system identification methodologies within the realm of soft computing are genetic

fuzzy systems (GFSs) [53,54,85] where genetic (and, in general, evolutionary) algorithms [63] are considered to learn the

components of a FRBS. A GFS is basically a fuzzy system augmented by a learning process based on a genetic or an evo-

lutionary algorithm (GA/EA). A large amount of research has been developed in the design of Mamdani-type GFSs to deal

with the interpretability-accuracy tradeoff. The aim of the current contribution is to develop a historical review on themost

representative proposals of this kind.

To do so, this contribution is structured as follows: The next section introduces some preliminaries including the

Mamdani-type FRBS structure, some basic aspects on the interpretability-accuracy tradeoff, and a brief overview of GFSs.

Then, Section 3 constitutes the core of the contribution by reviewing most of the Mamdani-type GFSs existing in the litera-

ture by especially focusing on the way they deal with the interpretability-accuracy tradeoff. Finally, Section 4 collects some

concluding remarks and describes some current research trends and open issues in the area.

2. Preliminaries

2.1. Mamdani-type fuzzy rule-based systems for control, modeling, and classification. Pros and cons

As any FRBS, Mamdani-type FRBSs [112,113] present two main components: (1) the fuzzy inference system, 1 which

implements the fuzzy reasoning process to be applied on the system input to get the system output and (2) the fuzzy

knowledge base (KB), which represents the knowledge about the problem being solved. Fig. 1 graphically represents this

framework.

The KB contains fuzzy IF − THEN rules composed of linguistic variables [166] which take values in a term set with a

real-world meaning. The fuzzy sets defining the semantics of the linguistic labels are uniformly defined for all the rules

included in the KB, thus easing the readability of the system for human beings. As said, this collection of fuzzy linguistic

rules constitute a descriptive approach since the KB becomes a qualitative expression of the system. Besides, this division

between the fuzzy rule structures and their meaning allows us to distinguish two different components, the fuzzy rule base

(RB), containing the collection of fuzzy rules, and the data base (DB), containing the membership functions of the fuzzy

partitions associated to the linguistic variables. This specifies a clear distinction between the fuzzy model structure and

parameters as defined in classical system identification.

There are different kinds of linguistic fuzzy rules proposed in the specialized literature mainly depending on the rule

consequent structure directly affected by the system output nature. The most usual rule structure is that of linguistic fuzzy

models/controllerswhich considers a linguistic variable in the consequent (tofinallyprovide a real-valuedoutput) as follows:

If X1 is A1 and . . . and Xn is An then Y is B,

withXi and Y being the system linguistic input and output variables, respectively, andwithAi and B being the linguistic labels

associated with fuzzy sets specifying their meaning. These fuzzy sets are defined in their respective universes of discourse

U1, . . . ,Un, V , and are characterized by their membership functions:

μAi(B) : μUi(V) → [0, 1], i = 1, . . . , n.

Different fuzzymembership function shapes can be considered. Fig. 2 shows an example of a strong fuzzy partition (SFP)

[139] with triangular-shaped membership functions.

In addition, fuzzy rule-based classification systems (FRBCSs) [94,107] consider a linguistic fuzzy rule structure where

the output involves a discrete value, the class associated to the patterns matching the rule antecedent. Three different fuzzy

classification rule structures can be distinguished depending on the use of a certainty factor associated to the class in the

consequent [44]: (i) class label only, (ii) class label and certainty degree, and (iii) certainty degree for every class. The most

extended is the second one which shows the following structure:

If X1 is A1 and . . . and Xn is An then Y is C with r,

with C ∈ {C1, . . . , CM} being the rule class and r ∈ [0, 1] being the rule certainty degree.

1 The analysis of the fuzzy inference system of linguistic fuzzy models/controllers/classifiers is out of the scope of this contribution. The interested reader is

referred to [51,61,44,94], respectively, for a deep introduction.



896 O. Cordón / International Journal of Approximate Reasoning 52 (2011) 894–913

Interface
Fuzzification Inference

System

real
input x

Interface
Defuzzification

Knowledge Base

output x
real

Data Base Rule Base

Fig. 1. General structure of a Mamdani-type FRBS.

Mm

NB NM NS ZR PS PM PB

0.5

Fig. 2. Example of a strong fuzzy partition composed of seven linguistic terms with triangular membership functions associated.

In view of the latter, it can be clearly recognized that the Mamdani-type FRBS structure demonstrates several interesting

features. On the one hand, it provides a natural framework to include expert knowledge in the form of linguistic fuzzy

rules. This knowledge can be easily combined with rules which are automatically generated from data sets that describe

the relation between system input and output [17]. On the other hand, there are many different design issues for the fuzzy

inference mechanism, making a full use of the power of fuzzy logic-based reasoning, opposite to TSK FRBSs which apply a

single and simplified kind of fuzzy inference. Moreover, Mamdani-type FRBSs provide a highly flexible means to formulate

knowledge, while at the same they remain interpretable, as long as a proper design is developed (see Section 2.2).

However, althoughMamdani FRBSs possess several advantages, they also come with some drawbacks. One of their main

pitfalls is the lack of accuracywhenmodeling some complex, high-dimensional systems. This is due to the inflexibility of the

linguistic variable concept,which imposes hard restrictions to the fuzzy rule structure [23]. Thedescriptive power is obtained

at the cost of an exponentially increasing model complexity. This means that many rules may be needed to approximate a

system to a given degree of accuracy (especially with many input variables) as a consequence of the rigid partitioning of the

input and output spaces.

Due to the latter reasons, some extensions have been considered on the classical linguistic fuzzy rule structure to relax

it in an attempt to increase the accuracy of Mamdani-type FRBSs. The most extreme extension involves the use of scatter

fuzzy partitions instead of the classical grid-based ones, in such a way that every single rule has its own meaning (its own

fuzzy sets associated) [8,22]. Scatter fuzzy partitions are of course more suitable to generate accurate fuzzy models since

they are not subject to the rigid input space partitioning of grid-based ones. Hence, the number of fuzzy rules required to

approximate a real system to the desired accuracy degree could be smaller. However, they carry a strong interpretability

reduction as a different linguistic term has to be assigned to each fuzzy set in each rule, thus losing the global semantic of the

classical Mamdani FRBS. Hence, readable and distinguishable rules can only be obtained when compact RBs are considered

and when there is not a large number of similar fuzzy sets composing them.

Some other extensions of the Mamdani-type fuzzy rule structure have been proposed keeping its global semantics and

thus being generally more interpretable. They include double-consequent rules [66,126], weighted rules [40,127], and rules

with linguistic hedges [79,165]. In all the cases, the linguistic variable restrictions are relaxed obtaining higher degrees of

freedom to increase the accuracy of the obtained linguistic fuzzy model/classifier/controller.

Another quite extended variant is that of the DNF (disjunctive normal form) linguistic fuzzy rule [78,111]. Regardless

the composition of the consequent, the antecedent is extended by allowing each input variable Xi to take a disjunction of

linguistic terms as a value. The complete syntax for the rule antecedent is as follows:

IF X1 is ˜A1 and . . . and Xn is ˜An,

where

˜A1 = {A11 or . . . or A1l1}, . . . , ˜An = {An1 or . . . or Anln}.
The DNF rule structure shows several advantages. First, it relaxes the grid-based partitioning constraints. Besides, it

permits value grouping (e.g. “smaller than Positive_Big”), thus making the rules more interpretable. Finally, it allows the

design methods to perform feature selection at rule level: if a variable takes all the possible values from its domain, it is

considered to be irrelevant as rule premise. Due to the latter reasons, they are usually considered in classification problems.
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In addition to the use of extended Mamdani-type fuzzy rule structures, advanced design methods keeping the basic rule

structure or considering any of the latter extensions have been proposed. Section 3 in this contribution reviews most of

the existing proposals based on the use of GFSs which aim to improve the accuracy of the fuzzy linguistic model without

significantly losing its interpretability.

2.2. The interpretability-accuracy tradeoff

Reviewing the historical development of fuzzy modeling, it can be easily recognized that the original aim of using

fuzzy techniques for systemmodeling was the obtaining of human interpretable models [166]. The classical Mamdani-type

linguistic fuzzy rule structure [112,113] described in the previous subsection was considered for that aim. This was the

reason why less accurate but more interpretable (grey-box) fuzzy rule-based models were sometimes preferred to other

more accurate (black-box) models (such as neural network-based ones) for some specific problems.

Then, during the 80s, the TSK fuzzy rule structure was proposed in several works by Takagi, Sugeno, and Kang [151,153].

The new fuzzy model structure showed some interesting characteristics, namely its higher system approximation ability

due to the presence of a larger number of freedom degrees in the rule consequent, and the chance to directly derive it from

examples bymeans of numerical approximation techniques. This fact caused the research in the fuzzymodeling community

to shift to the design of highly accurate models using TSK FRBSs.

Nevertheless, this accuracy increase is actually obtained at the expenses of some interpretability loss: by definition, the

TSK fuzzy rule structure, having a polynomial function in the consequent, is less interpretable for the user than a Mamdani-

type fuzzy linguistic rule. 2 Thismade fuzzymodeling suffer a deviation from its seminal purposedirected towards exploiting

the descriptive power of the linguistic variable concept.

In the last few years, it has been shown an increasing interest on considering fuzzy techniques to design both accurate

and interpretable fuzzy models [1,34,37,81,118,148,155]. As these two requirements are usually contradictory for any kind

of system identification methodology, this framework resulted in the so called interpretability-accuracy tradeoffwhich must

be considered when tackling the design of a fuzzy model for a specific application [35,36]. This tradeoff can be managed in

two different ways:

(1) Flexibilizing the most interpretable fuzzy model structures (as the Mamdani-type one) to make them as accurate as

possible without losing their interpretability to a high degree [34,35].

(2) Imposing restrictions to the most accurate fuzzy model structures to make them as interpretable as possible [36,37].

Of course, the two said approaches have their pros and cons. At first sight, it can be recognized that applying the latter

will usually lead to the obtaining of more accurate but less interpretable models and vice versa. This contribution is focused

on the former alternative, considering a GFS as the fuzzy system identification methodology.

To properly understand the interpretability-accuracy framework, it is important to keep inmind that a fuzzymodel is not

interpretable per se. Instead, there are many different issues which must be taken into account in order to obtain a human

interpretable structure (such as, for example, the RB compactness or the semantic comprehensibility of the fuzzy partitions,

as we will see as follows) [81,101,102,118,148]. Hence, a fuzzy system identification process aiming to properly deal with

the interpretability-accuracy tradeoffmust impose a set of constraints in order to guarantee the interpretability of the finally

derived fuzzy system. With this aim, some classical proposals such as [155] introduced several useful interpretability con-

straints for fuzzy membership function optimization such as natural zero positioning, limited overlap between neighboring

fuzzy sets (distinguishability), coverage of the universe of discourse, and unimodality of fuzzy sets. In [117], Mencar and

Fanelli presented a review of the different fuzzy system interpretability constraints which has been proposed in the special-

ized literature and classify them through a taxonomy considering six different families, namely constraints for: (i) fuzzy sets,

(ii) universes of discourse, (iii) fuzzy information granules, (iv) fuzzy rules, (v) fuzzy systems, and (vi) learning methods.

We must actually notice that the measurement of the interpretability degree of a fuzzy system is an unsolved problem

currently, as it is strongly affected by subjectivity. Opposite to accuracy evaluation, where everybody commonly accepts

the use of any error measure such as the mean square error, no general way to measure interpretability is available. In fact,

even the terminology in the area is sometimes confusing and terms as interpretability, comprehensibility, readability, and

transparency are used as synonyms when they refer to different concepts. In order to fix the terminology considered in this

contribution, we will consider fuzzy system interpretability involves two different issues:

(1) The readability of the KB, which is mainly related to the complexity of this fuzzy system structure. It includes criteria

such as the compactness of the RB (low number of rules and premises) and the DB (low number of linguistic labels).

(2) The comprehensibility of the fuzzy system, which concerns the semantic interpretability of the fuzzy system structure

and reasoning method for the human user. It considers criteria such as the fuzzy rules consistency or the fuzzy

partitions integrity.

2 Of course, the interpretability of a FRBS does not only depend on the kind of fuzzy rule used, but also in other aspects such as the complexity of the RB or the

comprehensibility of the DB, as we will recall in the current section.
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Classically, interpretability indexes have only focused on the former issue, KB readability, to evaluate the overall fuzzy

system interpretability. Some complexity measures have been considered such as the number of rules in the RB (rule

compactness) [90] or the total rule length (number of antecedent conditions involved in each rule, i.e. rule simplicity)

[39,93]. However, these measures are too simple as they only focus on the RB complexity and ignore both the readability of

the remaining components and the FRBS comprehensibility.

Hence, the definition ofmore complex andplausible interpretability indexes has become ahot topic in the fuzzymodeling

community in the last few years and some proposals have been made [16,17,74,121,168] with the aim of solving the latter

problem. In [168], Zhou and Gan introduced a global framework distinguishing two different levels for fuzzy system inter-

pretability, high-level and low-level interpretability. While the former accounts for the interpretability of the fuzzy rules in the

RB, considering criteria as the alreadymentioned ones (complexity-based interpretability) aswell as others dealingwith the

coverage, completeness, and consistency of the fuzzy rules, the latter is related to the otherMamdani-type FRBS component,

theDB, andmeasures the interpretability of the fuzzy sets in the fuzzypartitions (semantics-based interpretability). Up toour

knowledge, the first interpretability index combining measures from both high and low interpretability levels was that pro-

posed by Naück in [121] which integrates amembership function coveragemeasure and two complexitymeasures, the ratio

between the number of classes and the total number of premises, and the average-normalized fuzzy partition granularity.

In [16], Alonso et al. defined a general framework for characterizing FRBS interpretability. The authors start from the

classifications proposed in previous works [117,168] and perform an experimental analysis (in the form of a web poll with

real users) in order to evaluate themost used indexes and characterize their actual capability for interpretability assessment.

Results extracted from the poll show the inherent subjectivity of themeasure. Themain conclusion obtained is that defining

a numerical index is not enough to get awidely accepted index but there is a need to define a fuzzy index easily customizable

to the context of each problem as well as to the user’s quality criteria. With that aim, the same authors designed a FRBS

for measuring the interpretability degree of a Mamdani-type KB in [17]. Six main input variables, total number of rules,

total number of premises, number of rules using one, two or three or input variables, and total number of labels per input,

are considered. Notice that, all the interpretability criteria considered are complexity-based as the overall index assumes

the use of SFPs. The single output is the interpretability degree of the evaluated KB, computed as the result of a fuzzy

reasoning process. The proposed FRBS shows a hierarchical structure composed of four different modules which group the

latter six criteria into four different families according to the information they convey, namely, RB dimension, RB complexity,

RB interpretability (which combines the outputs of the latter two), and joint DB–RB interpretability (which combines the

output of the former and the total number of labels per input criterion). Notice that, each of the latter interpretability

evaluation subsystems is guided by an expert-defined KB which thus allows to directly express the user preferences in the

interpretability evaluation. Nevertheless, the latter FRBS for interpretability evaluation shows the problem of its difficulty

to be adapted to different problems and different user’s preferences as the whole fuzzy index must be defined from scratch.

As an alternative, Alonso and Magdalena introduced another framework in [14] allowing us to define a fuzzy system quality

index (including both accuracy and interpretability). The new index is easily customizable to the context of each system

identification problem by incorporating the user’s preferences and different kinds of quality criteria. To do so, all the desired

criteria (chosen from the different families of interpretability criteria, considering both readability and comprehensibility-

based) are combined into a decision hierarchy framework. The process of assessing interpretability to a set of KBs is seen as

a multi-criteria decision making problem with the final goal of setting a ranking of KBs according to their interpretability

degree. The top of the hierarchy represents the quality indexwhile the bottom includes all the fuzzy systems to be evaluated

to select themost appropriate one for theproblemsolving requirements. Thehierarchy consists of kdecision levels structured

as suggested by the classical analytic hierarchy process defined by Saaty [140]. The aggregation process ismade using Yager’s

ordered weighted averaging (OWA) operators [164].

Although the definition of semantic interpretability indexes has been less extended in the area, it has been recently

tackled in works such as [28,68,73,115,116]. A very novel approach also considering human intervention is that presented

in [116], where the authors define a strategy for assessing comprehensibility of FRBCSs based on the so called “cointension

degree" between the explicit semantics, defined by the formal parameter settings of the model, and the implicit semantics

conveyed to the reader by the linguistic representation of knowledge. The strategy is evaluated on a set of pre-existent

FRBCSs concluding that the linguistic representation of some of them is not appropriate as they are not cointensive with

user’s knowledge, even though they can be tagged as readable from a complexity viewpoint.

Finally, Gacto et al. presents a further taxonomy in [74]where the existing interpretabilitymeasures are classifiedbasedon

twodifferent criteria, kind of interpretability index (complexity vs. semantic) and FRBS componentwhere it is applied (RB vs.

DB). This leads to thecreationof fourdifferentgroupscombining the latter twocriteria: (i) complexityatRB level, (ii) complex-

ity at DB level, (iii) semantic interpretability at RB level, and (iv) semantic interpretability at DB level. The aim of the authors

is to provide the userwith amore complete interpretability assessment frameworkwhich can be used to guide the definition

of multicriteria functions for Mamdani-type FRBS design with a good interpretability-accuracy tradeoff in the short future.

2.3. Genetic fuzzy systems

Despite the previous successful history of FRBS design, the lack of learning capabilities characterizingmost of theworks in

thefield generated a certain interest for the studyof FRBSswith added learning capabilities during the early 90s. Thatwas also

one of the reasons for the huge development of the TSK fuzzy model structure, which incorporated that characteristic since
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Fig. 3. General structure of a GFS.

its proposal. During that decade, two very successful approaches arose in the framework of soft computing by integrating the

learning capabilities of neural networks, on the one hand, and GAs/EAs, on the other hand, into the approximate reasoning

method of FRBSs. While the former hybridization lead to the field of neuro-fuzzy systems [120], the latter resulted in the

creation of GFSs [54].

Genetic learning processes cover different levels of complexity according to the structural changes produced by the

algorithm [59], from the simplest case of parameter optimization to the highest level of complexity of learning the rule set

of a rule-based system. The KB is usually the object of study in the GFS framework (see Fig. 3). When considering a GA/EA

to design a FRBS, the latter two tasks respectively stand for parameter estimation (DB) and structure identification (RB or

DB+RB), following the classical system identification terminology. From the optimization viewpoint, the task of finding an

appropriate KB for a particular problem is equivalent to parameterize the considered KB components and to find those

parameter values that are optimal with respect to one or several optimization criteria. The KB parameters constitute the

search space, which is transformed into a suitable genetic representation on which the search process operates [54]. This

provides the GA/EA with enough flexibility to tackle the interpretability-accuracy tradeoff by considering optimization

criteria of different nature.

Developing a deep revision of the GFS area is out of the scope of the current contribution. The interested reader is referred

to [53,54,85].

3. Historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems

This section is devoted to reviewmost of the existingGA/EA-based approaches to designMamdani-type FRBSs (Mamdani-

type GFSs) dealing with the interpretability-accuracy tradeoff. Different related proposals will be grouped in subsections in

order to reach a coherent taxonomy. In each subsection, classical approaches will be presented first to later describe more

advanced and recent proposals.

3.1. Genetic tuning

Agenetic tuningprocess assumes apreviousdefinitionof the structure of the FRBSand thenadapts someof its parameters,

such as the scaling functions, the universes of discourse, or the membership function definitions, with the latter being one

of the most common choice. The role of genetic tuning can thus be recognized as one of the main parameter estimation

approaches in fuzzy system identification using GFSs.

Genetic tuning methods are inherent to GFSs since their creation. During the first decade of GFS development, several

methods of this kindwere proposed forMamdani-type FRBSs considering differentmembership function shapes and coding

schemes. One of the first pioneering GFS proposals by Karr in 1991 was a GA to adapt the membership function shapes for a

previously defined Mamdani-type FRBS [103]. It was based on a binary-coded GA which encoded candidate definitions for

SFPs of triangular-shaped fuzzy sets. Only the crossing points between successive fuzzy setswere encoded, thus composing a

compact representation. In thisway, the SFP nature of the adaptedmembership functionswas directly ensured, thus keeping

the linguistic fuzzymodel interpretability level. A similar representationbut basedonan integer codingwasproposed in [77],

while [27,104] considered the use of trapezoidal-shapedmembership functions. Besides, Gaussian functions not associated

to a SFP were adapted in [82] by means of a binary coding.
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A more natural real-coded representation for triangular or trapezoidal-shaped and Gaussian membership function

parameters was considered in [48,67,84], respectively. As many later proposals, these approaches were not based on the

use of a SFP but on directly encoding the two, three, or four (depending on their Gaussian, triangular, or trapezoidal-shaped

nature) real-valued definition parameters for each fuzzy set in each fuzzy partition. This coding scheme presents both pros

and cons. On the one hand, the genetic tuning has a higher number of freedom degrees in comparison with those based on

SFPs. In this way, more accurate linguistic fuzzy models can be obtained. On the other hand, it develops more significant

modifications, thus reducing the interpretability of the resulting Mamdani-type FRBS.

In order to ensure keeping an appropriate interpretability after the application of a genetic tuning process, the use of

semantic interpretability constraints was extended in the area (see Section 2.2). Valente de Oliveira presented a study of

semantically driven conditions to constrain the optimization process in such away that the resultingmembership functions

can still represent human readable linguistic terms [155]. Cordón et al. already considered some of these properties in their

real-coded genetic tuning process for Mamdani-type FRBSs [48] and FRBCSs [43] within the MOGUL GFS framework [45].

An alternative approach in the Mamdani-type FRBS genetic tuning literature has been that considering the adaptation

of the linguistic variables context. This notion comes from the observation that, in real life, the same basic concept can be

perceived differently in different situations. Instead of individually adapting the membership functions shapes, the fuzzy

partitions are globally adapted by scaling the fuzzy sets from one universe of discourse to another by means of linear or

non-linear scaling functions whose parameters are identified from data. In many cases, this global adjustment constitutes

a better approach to deal with the interpretability-accuracy tradeoff than an isolated membership function tuning as the

obtained fuzzy partitions are more interpretable.

Genetic tuning of linear scaling functions was proposed in the early times of GFSs [111,122] for Mamdani-type fuzzy

controllers. Later, more advanced proposals for non-linear context adaptationwere introduced [80,110]. The usual approach

in these kinds of processes is the adaptation of one to four parameters (defining the scaling function) per variable: onewhen

using a scaling factor, two for linear scaling, and three or four in non-linear scaling. Most of the cited works consider a real

coding scheme but the oldest method [122], where a three bits binary representation of each scaling factor is used.

More sophisticated genetic tuning processes have been developed in the last few years. On the one hand, we find those

proposals considering linguistic fuzzy rule extensions and/or combining the tuning method with a rule selection (see Sec-

tions 3.4 and 3.5). On the other hand, new coding schemes have been proposed such as that in [4] based on the use of the

linguistic 2-tuples representation model [86] to performwhat the authors called lateral tuning. Instead of making use of the

classical three parameter representation to encode the triangular-shapedmembership function definition points, they intro-

duced a novel single point coding scheme only allowing the lateral displacement of the fuzzy sets, i.e., slight displacements

of the original fuzzy sets to the left or to the right. This resulted in a reduction of the search space tackled by the genetic

tuning method thus easing the derivation of linguistic fuzzy models, especially in complex or high-dimensional problems.

The same authors later extended this coding scheme in [2] by adding one more parameter per membership function taking

the linguistic 3-tuples approach as a base. In this way, they can perform both lateral and amplitude tuning by adjusting the

lateral displacement and the amplitude variation of the support of this fuzzy set. Tuning of both parameters also involves a

reduction of the search space that eases the derivation of optimal models with respect to the classical methods.

In addition, a GA to optimize the linguistic terms of a FRBCSs was introduced in [157] for a real-world ecological problem.

It considers the use of semantic interpretability constraints in the two different variants based on the use of two different

coding schemes, binary and real-coded. The technique’s differential characteristic is that it considers two novel fuzzy accu-

racy criteria for fuzzy ordered classifiers. Another advanced genetic tuning process considering interpretability issues was

introduced in [28]. In this case, the method focuses on context adaptation in linguistic fuzzy models. The use of real coding,

parametric orthogonal fuzzy modifiers, a flexible non linear scaling function, and specifically designed genetic operators is

considered for the context tuning. Besides, a novel proposal for an specific index to measure the semantic interpretability

of a fuzzy partition in this framework based on fuzzy ordering relations is introduced within the GFS.

3.2. Genetic rule selection

As seen in Section 2.1, when tackling a high-dimensional problem with a Mamdani-type FRBS, the number of rules in

the RB grows exponentially as more inputs are added. Hence, a fuzzy rule generation method is likely to derive fuzzy rule

sets including undesired rules degrading both the accuracy and the interpretability of the fuzzy linguistic models. Among

those rules, we can find redundant rules, whose actions are covered by other rules in the RB; wrong rules, badly defined and

perturbing the system performance; and conflicting rules, which worsen the system performance when co-existing with

other rules in the RB.

Rule reduction methods are used as postprocessing techniques to solve the latter problems, both in Mamdani-type

and in other FRBS structures [37]. Rule selection is themost extended rule reductionmethod for linguistic fuzzymodels and

EAs are the most usual optimization procedure to put it into effect. Hence, genetic rule selection is among the oldest and

more extended GFS proposals. All those approaches share a fixed-length, binary coding where the chromosomes consider

one bit for each rule in the initial RB. Only those linguistic fuzzy rules whose associated allele takes value 1 are considered

to belong to the final RB. This approach constitutes a good way to deal with the interpretability-accuracy tradeoff as fuzzy

rule subsets can be derivedwith both a better accuracy (thanks to their good cooperation level) and a better readability (due

to the reduction in the RB complexity) than the original RB.
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The first genetic rule selection method was introduced by Ishibuchi et al. in [97] in a fuzzy classification framework.

Cordón et al. introduced a genetic multi-selection process within the MOGUL GFS design framework [45]. The basic genetic

selection procedure for fuzzy linguistic models proposed in [48] is wrapped by a niching procedure [63] with the aim of not

only obtaining a single best fuzzy rule subset but rather a variety of potential solutions of comparable performance. In [43],

the latter method is applied to design FRBCSs by both removing unnecessary rules from the initial RB and refining them by

means of a linguistic hedge learning process, considering one of the extensions described in Section 3.4. In [161], Wang et

al. proposed a genetic integration process of multiple knowledge bases that can also be considered as a particular case of

genetic rule selection.

All the latter methods were initially only focused on accuracy as the fitness function was only composed of criteria

of that kind (usually, a single error criterion). Later, the incorporation of basic complexity criteria (such as the minimiza-

tion of the number of rules, total rule length, etc.) arose, thus dealing with a multicriteria optimization problem within

the interpretability-accuracy tradeoff framework [90]. Up to our knowledge, that was the first application of evolutionary

multiobjective optimization [42] to fuzzy linguistic modeling (in this case, as a multiobjective genetic rule selection process

for linguistic FRBCSs). More recent approaches will be reviewed in Secion 3.5.

In addition, genetic rule selection methods have commonly formed part of more sophisticated GFSs for Mamdani-type

FRBSs, either in multi-stage structures or in a joint evolutionary learning processes. Some of these approaches will be

reviewed in the remainder of this contribution.

3.3. Evolutionary learning methods for Mamdani-type knowledge bases and rule bases

Some of the first Mamdani-type GFSs aimed to learn both KB components, DB and RB, in order to deal with the strong

synergy existing between them. That was donemainly by following two of the classical GFS learning approaches, Pittsburgh

(where the whole KB definition is encoded in each chromosome) and iterative rule learning (IRL) (where a chromosome en-

codes a single rule, the GA/EA is sequentially applied to obtain thewhole RB, and the learning process considers independent

stages to learn each KB component) [54]. 3 Of course, the computational cost of the genetic search growswith the increasing

complexity of the solution space required to deal with the whole KB derivation. Park et al. [131], Homaifar et al. [87], and

Magdalena et al. [111] constitute three classical examples of Pittsburgh-based GFSs for designing Mamdani-type fuzzy logic

controllers by jointly learning membership function shapes and linguistic fuzzy rules, in the former two cases, and contexts

and linguistic DNF fuzzy rules, in the latter. Besides, SLAVE [78] is a typical example of an IRL-based Mamdani-type GFS for

classification problems while MOGUL [45] is another one for both modeling/control [48] and classification [43] problems.

Later, more advanced GFSs were proposed to design more accurate Mamdani-type FRBSs with a high degree of inter-

pretability. On the one hand, a novel approach to properly dealwith the joint learning of DB andRB is that called embedded KB

learning. It is based on an evolutionary DB learning process which wraps a basic RB generation method. The GA/EA function

is to derive the DB definition by learning components such as scaling functions/contexts, membership functions, and/or

granularity parameters. A subsequent linguistic fuzzy rule generation method, which must be simple and efficient, derives

the RB for the DB definition encoded in each chromosome. The chromosome evaluation thus measures the performance of

the whole KB so obtained and it is usually based on a weighted sum of accuracy and interpretability criteria (such as the

minimization of the number of rules in the RB). Notice that, this operation mode constitutes and efficient and effective way

to tackle the interpretability-accuracy tradeoff as it involves a partitioning of the KB learning problem. The synergy between

both KB components is properly accounted, while reducing the huge search space size tackled in Mamdani-type GFSs based

on the Pittsburgh approach.

Three different GFSs of this family to learn fuzzy linguistic models (the former two) and classifiers (the latter) are respec-

tively proposed in [50,52,89]. Themethod in [52] encodes the fuzzy partitions’ granularity and the definition parameters for

each triangular-shapedmembership function in each fuzzypartitionwhile that in [50] learns the variables’ domain, the fuzzy

partitions’ granularity, and the non-linear scaling functions to define their contexts. In both cases, a hybrid representation

scheme considering integer and real coding is used. Alternatively, the proposal in [89] also jointly derives the granularity

and the triangular-shaped membership functions’ definition parameters but taking a different coding scheme based on a

single information level. Binary chromosomes of fixed length including a segment per variable are employed. Each segment

has a predefined length that determines the maximum granularity allowed. In the chromosome, a one indicates the peak

value of a triangular membership function and both extremes of the neighbor membership functions to define a SFP.

Besides, another recent linguistic fuzzy modeling proposal is also to be found in [5] presenting some differential char-

acteristics. First, the DB encoding is based on the linguistic 2-tuples representation model (see Section 3.1). Both the fuzzy

partition granularity and thedefinitions of themembership functions are encoded. The latter ones are representedby a single

parameter per fuzzy set defining its lateral deviationwith respect to its original support in an initial uniform fuzzy partition.

Second, the authors test the performance of three different ad-hoc data-driven RB generation methods in the embedded

process, the classical and very extendedWang andMendel’s algorithm [163] (which is the rule learningmethod also consid-

ered in [50,52]) and other two methods originally proposed in this paper. Finally, the considered EA is the good performing

real-coded CHC [65]. The Mamdani-type FRBSs derived by means of this GFS show a very high interpretability as they are

3 The use of the third classical GFS learning approach, the Michigan approach (also referred to as fuzzy classifier systems), is less extended in the area and

mainly focus on Mamdani-type FRBSs with scatter partitions (see Section 2.1) [76,156].
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composed of compact RBs whose semantic is defined by fuzzy partitions with isosceles triangular-shaped membership

functions.

On the other hand, the cooperative coevolutionary paradigm [134] has constituted the base of other kinds of Mamdani-

type GFSs learning the whole KB definition. Coevolutionary algorithms are advanced evolutionary techniques proposed to

solve decomposable complex problems. They involve several species (populations) that permanently interact among them

by a coupled fitness cooperating to build the problem solution. Hence, they are able to properly deal with huge search

spaces thanks to the problem decomposition. This decomposition is quite natural in Mamdani-type KB learning as each of

its two components, DB and RB, can be easily assigned to a different species in an efficient and effective search process. Two

examples of this group are Fuzzy CoCo [133] for fuzzy classification and the proposal in [32] for fuzzy modeling.

In addition, there is a third very representative family of GFSs for learningMamdani-type KBs composed ofmultiobjective

evolutionary learning processes. It will be reviewed in Section 3.5.

Alternatively, some other Mamdani-type GFSs have been proposed which exclusively focus on the RB design and keeps

the DB invariable, thus ensuring a good interpretability level. These family of methods consider sophisticated RB learning

approaches. That is the case of the COR (cooperative rules) methodology [33] which follows the primary goal of inducing

a better cooperation among the linguistic fuzzy rules in the derived RB. To do so, the genetic learning process is guided by

global criteria that jointly consider the action of the different rules. The main advantages of the COR methodology are its

capability to include heuristic information to guide the search, its flexibility to be used not only with GAs/EAs but also with

other kinds of metaheuristics, and its easy integration with other FRBS design processes (see Section 3.4).

In [100], it was proposed what, up to our knowledge, constitutes the only GFS considering the hybridization of the two

classical learning approaches. A Pittsburgh-Michigan hybrid genetic learning algorithm was designed to learn linguistic

fuzzy classification rules for high-dimensional problems in an efficient and effective way. The method incorporates “don’t

care” conditions into its rule coding scheme in order to remove not necessary rule premises.

Another familyof advancedGFSs for learningMamdani-typeRBs is that following thenovelgenetic cooperative-competitive

learning (GCCL) approach. It is based on a coding scheme where each chromosome encodes a single rule (as in the classical

Michigan or IRL approaches [54]) but either the complete population (as in Michigan) or only a subset of it (new capability)

encodes the final RB. Hence, in this learning model the chromosomes compete and cooperate simultaneously in order to

reach a Mamdani-type FRBS with a good interpretability-accuracy tradeoff. These kinds of GFSs have been mainly designed

for classification problems. In [92], a proposal is made dealing with classical fuzzy classification rules while that in [25]

considers the use of the DNF fuzzy rule structure.

3.4. Extensions of the classical fuzzy linguistic rule structure and hybrid learning methods

DifferentMamdani-type GFSs have been proposed based on the three linguistic fuzzy rule structure extensions described

in Section 2.1: double-consequent rules [49], weighted rules [10], and linguistic hedges [109]. As a consequence of the higher

complexity level introduced in the linguistic fuzzy model identification when considering these kinds of rule structures,

the associated learning methods are usually complemented by a rule selection mechanism. This is done in order to both

increase the cooperation level of the resulting RB and keep the derived FRBS interpretability as high as possible (it is of

course reduced due to the use of a extended rule structure [1,121]).

In thisway, these kinds of GFSs commonly involve a genetic rule selectionmethod and a process to estimate the numerical

parameters of the rule, either in two independent stages or in a single one. The former is the case of the GFS proposed in

[49], where an initial set of candidate double-consequent fuzzy rules for modeling problems are generated by an ad-hoc

data-drivenmethod and themost cooperative subset is finally obtained by genetic selection. The selectionmethod properly

tackles the interpretability-accuracy tradeoff as for each specific fuzzy input subspace it is able to either: (i) remove the

existing rules, (ii) keep a single-consequent rule (the first or the second in importance), or (iii) keep a double-consequent

rule. That decision is taken according to the complexity of the modeling task in each local subspace.

One particularly interestingMamdani-type FRBS extension requiring the associated GFSs to have an independent genetic

rule selection stage is that of hierarchical KBs. The hierarchical Mamdani-type KB is composed of a set of layers where each

layer in a deeper level in the hierarchy contains linguistic partitionswith an increasing granularity (a layer of the hierarchical

DB) and fuzzy rules whose linguistic variables take values in the latter partitions (a layer of the hierarchical RB) [55].

At least two GFSs to derive hierarchical KBs have been proposed in the specialized literature. The method introduced by

Ishibuchi et al. in [97] operates by creating several hierarchical linguistic partitions with different granularity levels (e.g.,

from 2 two 15 labels, including the “don’t care" condition to allow it to perform feature selection at rule level), generating

the complete set of linguistic fuzzy classification rules in each of these partitions, taking the union of all of these sets, and

performing a genetic rule selection process on the whole candidate rule set to obtain the final hierarchical RB structure.

Alternatively, the GFS proposed by Cordón et al. in [55] is designed as a strategy to improve simple linguistic FRBSs,

preserving their structure and descriptive power. It is based on only reinforcing themodeling/classification of those problem

subspaces with more difficulties by a hierarchical treatment of the rules generated in these regions. It uses a linguistic fuzzy

rule generation method to progressively refine the controversial regions (those covered by rules with a bad performance

in the original FRBS) by defining new rules in a deeper layer. The obtained hierarchical RB is compacted by a subsequent

genetic selection process which plays a key role as it obtains themost cooperative rule subset composed of rules of different
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granularity levels. The proposal was originally devoted to modeling problems but it has been recently applied to deal with

a hard classification problem variant, imbalanced classification [69].

Therefore, the lattermethod follows a descending approach refining the required regions by only increasing the granular-

ity in them. In this way, the combinatorial explosion in the number of linguistic fuzzy rules derived from the fuzzy partitions

of the largest granularity is avoided as those rules are only considered in those fuzzy input subspaces where it is actually

needed. In a nutshell, while Ishibuchi et al.’s method apply a global (top-down) approach for the hierarchical KB generation,

Cordón et al.’s one follows a local (bottom-up) approach.

Nevertheless, themost common situation is thatwhere the rule selection and the estimation of the numerical parameters

associated to the new rule structures (e.g., the rule weights) are jointly developed by a hybrid learning method. This allows

us to make the best possible use of the synergy existing among structure and parameters in order to derive both accurate

and interpretable linguistic fuzzy models. EAs are a very powerful tool to put this learning task into effect, thanks to their

large flexibility to encode chromosomes composed of different information levels.

An example of these kinds of GFSs is the geneticmultiselection process to design FRBCSs proposed in [43] (see Section 3.2)

which has the capability of refining an initial RB of classical linguistic fuzzy classification rules by both removing unnecessary

rules and including linguistic hedges in the rule antecedents. This novel method considers a double coding scheme, with the

first chromosome part being associated to rule reduction and the second one to linguistic hedge learning. Another example

is the genetic rule weighting and selection process introduced in [7] to refine a human expert-derived Mamdani-type fuzzy

logic controller for heating, ventilating, and air conditioning (HVAC) systems in large buildings. It is based on another two-

level coding scheme where the selected rules are encoded in a first binary-coded chromosome part and the weight vector

is encoded in a second real-coded part. Both parts have a fixed-length, corresponding to the number of rules in the original

RB. The GFS is guided by a multicriteria fitness function including five different performance criteria (related to thermal

comfort, indoor air quality, energy consumption, and system stability) combined by means of a weighted sum.

In addition, these flexible coding schemes have also been considered by Mamdani-type GFSs to jointly develop other

kinds of learning tasks such as:

(1) Considering advanced genetic RB learningmethods to derive extended rule structures, as the GFS to extractweighted fuzzy

linguistic rules following the COR methodology (see Section 3.3) introduced in [9].

(2) Performing DB tuningwhile deriving RBs composed of extended rules, as the advanced genetic tuning approach presented

in [31], which jointly considers linear and/or non-linear adjustments of the membership functions and slight refine-

ments of the fuzzy rule structures by having the chance to include the linguistic hedges “very" and “more-or-less".

(3) Deriving fuzzy linguistic models whose rule structure considers two different extensions, as the GFS to learn weighted

double-consequent fuzzy linguistic rules by means of coevolutionary algorithms proposed in [10], or that generating

weighted hierarchical linguistic fuzzy rules introduced in [6].

Finally, anotherveryextendedhybrid learningmodel involves the refinementof apreviousdefinitionofawholeMamdani-

type KB by means of a joint selection and tuning process. These two learning tasks have demonstrated a strong synergy,

thus being a proper way to perform both fuzzy linguistic model structure identification and parameter estimation leading

to a good interpretability-accuracy tradeoff. In all the cases analyzed, the linguistic fuzzy models obtained by means of the

joint selection-tuning process outperformed those derived from a sequential combination of both methods.

Up to our knowledge, the first hybrid Mamdani GFS applying this approach was the tuning method introduced in [31]

which was also combined with rule selection in a complex coding scheme containing four information levels: linear and

non-linearmembership function adjustments (DB level), and linguistic hedge addition and rule selection (RB level). Recently,

another two variants were developed combining the advanced tuning methods described in Section 3.1, lateral and lateral-

and-amplitude tuning, with a rule selection process in [4,2], respectively. These two GFSs were applied to the refinement of

the fuzzy controller for the HVAC system in [3]. Finally, the same authors have proposed another some other genetic learning

methods combining Mamdani-type fuzzy rule selection and tuning in a multiobjective fashion which will be described in

the next section.

A detailed experimental summary of some of the Mamdani-type GFSs described in this section is to be found in [1].

3.5. Multiobjective genetic fuzzy systems

Evolutionary multiobjective optimization (EMO) [42] is an important research area in evolutionary computation to deal

with optimization problems involving the satisfaction of several conflicting criteria. EAs are outstanding tools to solvemulti-

objective optimizationproblems since their population-basednature allows themtoprovide a set of nondominated solutions

(Pareto set) in a single runwith a different tradeoff in the satisfaction of the tackled objectives. The use of EMO algorithms to

design FRBSs has been largely extended in the last few years and this is currently a hot topic in the GFS area [88]. 4 Multiob-

jective GFSs are the most natural approach to face the interpretability-accuracy tradeoff as both requirements are clearly in

conflict. The multiobjective genetic learning process allows us to jointly consider the optimization of different accuracy and

interpretability measures (see Section 2.2). In addition, they show another very interesting feature: the learningmechanism

4 A website on the topic is maintained by Marco Cococcioni at http://www.iet.unipi.it/m.cococcioni/emofrbss.html.
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Fig. 4. Nondominated FRBSs along the accuracy-complexity tradeoff curve (reprint from [88]).

is able to find an appropriate balance between interpretability and accuracy by its own definition. This is a consequence of

the output of the multiobjective GFS which directly provides a number of FRBSs with a different interpretability-accuracy

tradeoff and not only one as in single-objective GFSs. As seen in Fig. 4, simple and inaccurate FRBSs are located in the top left

part of the space while complicated (and thus less interpretable) and accurate ones are in the bottom right part. In this way,

the model designer can then choose the most appropriate FRBS structure among those nondominated ones in the obtained

accuracy-complexity (or accuracy-interpretability, if other kinds of interpretability indexes are considered) tradeoff curve

according to her/his current modeling requirements.

We will briefly review a wide range of multiobjective Mamdani-type GFSs in various research areas in the following

subsections.

3.5.1. Multiobjective genetic tuning

Some proposals adapting different KB components can be found within this category. In [119], the authors introduce a

multiobjective genetic tuning process for the fuzzy membership functions of a fuzzy visual system for autonomous robots.

This fuzzy visual system is based on a hierarchical structure comprised by three different linguistic fuzzy classifiers, whose

combined action allows the robot to detect the presence of doors in the images captured by its camera. The whole fuzzy

visual systemDB is represented using a single chromosome encoding the four parameters defining each trapezoidal-shaped

membership function in the three FRBCSs. In order to ensure the obtaining of interpretable SFPs, each linguistic fuzzy

partition is encoded based on the crossing points of its membership functions and the separation between them using a real

coding scheme. BLX-α crossover and randommutation are considered as genetic operators while the true positive and false

positive detection rates are directly taken as the two conflicting objectives to be optimized. Three different multiobjective

GAs are used (SPEA [170], SPEA2 [169], and NSGA-II [58]) and benchmarked against two single-objective EAs (a generational

GA and CHC [64]), with NSGA-II reporting the best performance.

The method proposed in [136] aims to tune both the rule antecedent and the membership functions of a preliminary

FRBCS structure by means of NSGA-II. The initial KB is obtained from the transformation of a C4.5 decision tree. The tuned

definitions are represented by means of a double real-coding scheme including a chromosome part for the rule antecedents

and another part for the fuzzy sets. Gaussian membership function shapes specified by three parameters are considered.

Polynomial mutation and simulated binary crossover are taken as genetic operators, while the three objectives to be mini-

mized are the number of misclassified patterns (accuracy), and the number of rules and the total rule length (complexity).

In [135] this multiobjective genetic tuning process is applied to a real-world bioaerosol detector problem by customizing

the three objectives. In this case, the true positive and false positive detection rates are considered as accuracy criteria while

a membership function similarity metric composes the semantic interpretability measure.

Finally, in [29] the authors introduce a multiobjective version of their genetic context adaptation method described in

Section 3.1. The new multiobjective genetic tuning process is also based on NSGA-II and uses two objectives, their previous

proposal of a semantic interpretability index based on fuzzy ordering relations [28] and the mean square error, aimed at

generating a set of Pareto-optimal context-adapted Mamdani-type FRBSs with different trade-offs between accuracy and

interpretability. The context adaptation is obtained through the same procedures considered in the single-objective version,

i.e., specifically designed operators that adjust the universe of the input and output variables, and modify the core, the

support and the shape of the fuzzy sets in the fuzzy partitions. The EMO algorithm showed a very good performance in four

different modeling problems.

3.5.2. Multiobjective genetic rule selection

The two-objective genetic rule selection process for the design of linguistic FRBCSs introduced in [90] is one of the

earliest studies on multiobjective GFSs. It is a direct variant of the single-objective genetic selection process in [97] based

on a weighted sum with fixed weights (see Section 3.2) by considering the joint optimization of an error criterion and a RB

complexity measure (number of rules). This two-objective formulation was later extended to a three-objective one in [93]

by introducing the total number of antecedent conditions (i.e., the total rule length) as an additional complexity index. Both
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GFSs are implemented by means of a multiobjective GA based a scalar fitness function (weighted sum) with randomweight

values although any other, more advanced EMO algorithm can be used (e.g., a Pareto-based algorithm such as NSGA-II or

SPEA). 5 A multiobjective memetic algorithm (i.e., a hybrid algorithm of EMO and local search) was considered with the

latter three-objective genetic rule selection in [99]. The three-objective genetic selection process was also used in [83] to

build linguistic fuzzy classifiers for a real-world application, the test of the capability of inter-vehicle communication to

avoid traffic congestion. The incorporation of user preferences into the multiobjective genetic rule selection process was

tackled in [124]. Finally, in [95] the same authors also considered its use to design linguistic fuzzy classifier ensembles by

combining the obtained nondominated FRBCSs.

3.5.3. Multiobjective joint genetic selection and tuning

Several multiobjective Mamdani-type GFSs have been introduced to jointly perform rule selection and tuning to make

use of the positive synergy between both post-processing approaches. The proposal in [13] is devoted to the design of fuzzy

linguistic models where the fuzzy partitions are composed of triangular-shaped membership functions. It considers the

classical coding scheme with two information levels, a binary string for the rule selection and a real-coded array for the

three definition parameters of each fuzzy set. Two objectives are to be minimized, the mean square error (accuracy) and

the number of rules (complexity). The most distinguishing characteristic of this multiobjective GFS is its accuracy-oriented

nature. As it is considered that, between the two modeling goals, accuracy and interpretability, the former could be more

important for the model designer, the multiobjective process focuses the search on the most accurate part of the accuracy-

complexity tradeoff curve. Hence, it obtains a Pareto set approximation composed of a small number of very fine solutions

in terms of accuracy which still present the lowest possible number of rules. To do so, the authors apply two different

modifications on the classical SPEA2 multiobjective EA (they check the fact that SPEA2 is better adapted for this learning

task than NSGA-II) by: (i) restarting the population at the middle of the run time, keeping the individual with the highest

accuracy as the only one in the external population and generating all the new individuals with the same number of rules it

has and (ii) decreasing the number of chromosomes in the external population considered for the binary tournament in each

iteration, focusing the selection on themost accurate ones. Hence, the designedmultiobjective EA (called Accuracy-Oriented

SPEA2, SPEA2Acc) progressively concentrates the search in the most promising solutions, allowing exploration at the first

stages of the search and favoring the exploitation of themost accurate solutions at the later stages. Later, in [72], the authors

analyze the performance of six different multiobjective EAs in the joint selection and tuning of linguistic fuzzymodels using

the same coding scheme and objective functions. Among them, they test a new version of SPEA2Acc based on the use of a

specifically designed crossover operator, which obtains the best performance in the experiments developed.

In [73] the authors extend the latter proposal by adding a third objective, a novel interpretability index measuring the

semantic integrity of the FRBS fuzzy partitions. It is based on computing the “amount of adjustment" developed on a fuzzy

partition by comparing the tunedmembership functionswith those in a SFP,which is considered as the highest interpretabil-

ity definition. The index is computed as the geometric mean of three similarity metrics accounting for the displacement of

the modal points of the fuzzy sets, and the variation in their lateral amplitude rates and areas. In this way, the proposed

multiobjective EA jointly optimizes one accuracy (mean square error) and two interpretability (the classical RB complexity

and the new the new semantic interpretability) criteria, with the latter two belonging to a different kind, readability and

comprehensibility (see Section 2.2). In addition, the authors introduced another multiobjective Mamdani-type GFS for joint

rule selection and tuning in [75]. In this case, the fuzzy membership function definitions are encoded using the 2-tuples

representation and only adjusted via lateral tuning (see Section 3.1). The method is again based on SPEA2 and incorporates

specific mechanisms to maintain the population diversity and to expend few evaluations in the optimization process. This

requirement is a consequence of being applied to refine the fuzzy controller for the time-consuming HVAC systems appli-

cation. The maximization of the fuzzy controller performance, based on the weighted sum of the five performance criteria

(see Section 3.4), and the minimization of the number of rules are considered to guide the multiobjective search. A large

experimental setup including all the previous GFSs for the problem as well as all the different variants for multiobjective

joint rule selection and tuning reviewed in this subsection showed how the new proposal provided the state-of-the-art

performance.

3.5.4. Multiobjective genetic rule base and knowledge base learning

This is another very prolific topic in themultiobjectiveMamdani-type GFS research area. The techniques described in the

previous subsections are very useful to improve the accuracy (and, in many cases, also the interpretability) of a previously

designed Mamdani-type KB but they cannot generate it from scratch as those analyzed in the current one. First, a three-

objective fuzzy classification rule learning algorithm was compared with its rule selection version (see Section 3.5.2) in

[93] with the aim to build comprehensible FRBCSs for high dimensional problems using a small number of short linguistic

fuzzy classification rules with clear linguistic interpretations. The multiobjective genetic learning process was based on the

Pittsburgh-Michigan hybrid approach later published in [100] (see Section 3.3) and considered the use of a scalar fitness

function with random weights. In [96], the latter algorithm was generalized as a Pareto-based multiobjective method for

interpretability-accuracy tradeoff analysis using NSGA-II. In every case, each RB definition is represented as a concatenated

integer string of variable length (considering “don’t care" conditions) which only encodes the rule antecedents (the class

5 Notice that, studies on multiobjective GFSs started in the mid 90s, when EMO algorithms were still at a preliminary stage of development.
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and the certainty factor in the rule consequent are computed from a heuristic procedure). The accuracy and complexity of

the resulting FRBCSs are jointly optimized by measuring the number of correctly classified training patterns, and the total

number of fuzzy rules and premises.

One of the first multiobjective Mamdani-type GFS to learn a whole KB definition was introduced in [46] based on the

embedded learning approach (see Section 3.3). The classical, first generation Fonseca and Flemming’s multiobjective GA

(MOGA) [71] is used for jointly performing feature selection and fuzzy partition granularity learning in order to obtain

FRBCSs with a good tradeoff between classification ability and RB complexity. Two objectives are jointly minimized, the

classification error and a product of the total number of selected features and the average granularity of their fuzzy partitions.

The method is later extended in [47] by also incorporating the learning of a non-linear scaling function. Besides, Alonso et

al. has also proposed some multiobjective Mamdani-type GFSs following the same learning approach. In [15], they present

a NSGA-II EMO algorithm to learn the optimal granularity for the SFPs in linguistic fuzzy classifiers derived by the HILK

heuristic method [17]. This GFS is strongly concerned on the design of interpretable FRBCSs as that is already the aim of

the HILK methodology. The embedded learning technique is guided by a three-objective fitness function composed of one

accuracy, the maximization of the right classification rate, and two interpretability criteria. The two interpretability criteria

belong to the two existing families: (i) readability, with the minimization of the total rule length and (ii) comprehensibility,

with the minimization of the average number of rules fired at the same time. Up to our knowledge, this is the first time that

a comprehensibility criteria of the latter kind, i.e., related to the FRBS reasoningmechanism, is considered in the specialized

literature. Recently, the latter proposal has been extended in [30] by considering a novel comprehensibility index called

logical view index, which is based on a semantic cointension approach (see Section 2.2). In this new multiobjective GFS

variant, the average number of rules fired at the same time is substituted by the logical view index as a better FRBCS

comprehensibility measure.

A very elaborated technique following adifferent approach is presented in [162]. The learning process takes the Pittsburgh

approach as a base and uses NSGA-II to derive different definitions of the whole KB including both the linguistic fuzzy rule

structures in the RB and the granularity andGaussian-shapedmembership function shapes in theDB. “Don’t care" conditions

and different semantic interpretability indexes are considered to increase the interpretability of the obtained FRBSs. The

multiobjectiveGFScanderiveboth linguistic fuzzycontrollers andclassifiers.Anothermultiobjectiveapproach to learnFRBCS

KBs based on SPEA2 is to be found in [149]. It also presents some distinguishing characteristics such as the use of a tailor-

made two-information level representation scheme, which helps tomaintain the interpretability and allows the application

of problem-specific variation operators; the use of different membership function shapes; the consideration of the area

under the receiver operating characteristic curve (AUC) as accuracy criterion (the two complexity criteria are the usual total

number of rules and premises); and the inclusion of a self-adaptation parameter mechanism in the multiobjective EA.

Some other proposals for multiobjective GFSs to learn linguistic fuzzy model KBs are those developed by Ducange et

al. In [41], they adopt a variant of the (2 + 2)-Pareto Archived Evolutionary Strategy ((2 + 2)-PAES) [105] to only learn

the RB structure. The method considers the integer coding proposed in [93] for both the rule antecedent and consequent,

one-point crossover, and two appropriately definedmutation operators. The tackled optimization criteria are the root mean

square error of the model (accuracy) and the total number of premises in the RB (complexity). This method is extended in

[11] to allow it to learn a whole KB structure by encoding the fuzzy partition triangular-shapedmembership functions using

the linguistic 2-tuples representation model (see Section 3.1). Both the (2 + 2)-PAES and the NSGA-II EMO algorithms are

considered to put the learning task into effect by optimizing the same two criteria. Later, in [18], the authors present a more

sophisticated technique to concurrently learn the RB structure and the granularity of the uniform partitions in the DB. To

this aim, the concepts of virtual and concrete RBs are introduced in order to tackle a reduced search space exploiting a two

information level-chromosome encoding both the variables’ partition granularities and the virtual RB. The RB is thus defined

on fictitious partitions with a maximum fixed granularity and only when accuracy and complexity (measured through the

same criteria considered in the previous contributions) have to be evaluated this sort of virtual RB is mapped to a concrete

RB by using the number of fuzzy sets determined by the first chromosome part. The considered genetic operators manage

virtual RBs.

The latter Mamdani GFS is extended in [19] by considering a similar concept but applied to fuzzy partitions. Virtual and

concrete partitions are considered by an (2 + 2)-PAES EMO algorithm to derive different KB definitions by concurrently

learning the RB, the granularity of the fuzzy partitions, and themembership function definitions.While virtual partitions are

defined by uniformly partitioning each linguistic variable using a fixed maximum number of fuzzy sets, concrete partitions

considers the specific granularity determined by the evolutionary process for each linguistic variable. To encode the possible

KB definitions, a specific three information level-chromosome structure is proposed where virtual RBs and membership

function parameters are defined on the virtual partitions and mapped to the concrete partitions for their bi-criteria evalua-

tion. Further, the membership function definitions are learned through a piecewise linear scaling function (see Section 3.1),

thus resulting in a compact representation. In this case, the ad hoc designed genetic operators handle both the virtual fuzzy

partitions and the virtual RBs. Later, in [20], the latter method is extended into a three-objective framework concerning the

joint optimization of accuracy, RB complexity, and fuzzy partition integrity. The RB complexity index accounts for the total

rule length and the partition integrity is evaluated by means of a specifically designed index based on the piecewise linear

transformation, which takes the semantic integrity index proposed in [29] as a base (see Section 3.5.1).

Finally, in [62], the first multiobjective Mamdani-type GFSs described, that presented in [41], is extended to a three-

objective NSGA-II-based framework to learn the RB of FRBCSs applied to imbalanced classification problems. Two accuracy
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(sensitivity and specificity, i.e., true positive and false positive rates) and one complexity (total rule length) criteria are

considered, and the ROC convex hull method is taken to select the potentially optimal FRBCS design from the projection of

the Pareto front approximation onto the ROC plane. All the FRBCSs obtained in the ROC convex hull are characterized by the

lowest classification errors and low values of complexity when benchmarked against other fuzzy and non-fuzzy classifiers

in the experimentation developed.

3.6. Genetic fuzzy systems for low quality data

This subsection covers a recent but very promising topic within the GFSs area, that considering evolutionary learning

processes to derive Mamdani-type FRBSs from low-quality data (i.e., data observed in an imprecise way, such as noisy or

vague data). As advocated by Sánchez and Couso in their pioneering work [142], this is a system identification branch where

fuzzy systems can actuallymake adifferencewith classical approaches. The reason is that this constitutes a specificdomainof

competence for the application of Zadeh andMamdani’s seminal ideas based on the use of fuzzy sets to represent knowledge

and perform fuzzy reasoning.

It is well known that real-world problems are inherently affected by uncertainty, vagueness, and imprecision. System

identification techniques consider data sets obtained from measurements taken on the attributes of a physical system to

derive the related model. Of course, these measurements are not precise due to many different reasons such as the sensors’

tolerance or the presence of noise in the environment. Sometimes, the difference between an attribute observation and its

actual value can be ignored and the model quality can be quantified by the accuracy in the prediction of such observations.

On the opposite, when the discrepancy between the measured and the actual values is significant, the latter approach is

not appropriate to obtain models from the available uncertain data. In such situations, the classical approach is to define a

probability distribution on the error values. This allows the designer to apply classical robust statistics techniques to derive

models by optimizing their average quality on the distribution of the differences between the observations and the actual

values [24,160].

Nevertheless, there are many real-world domains where the observation error does not follow a single probability

distribution, thus making the average quality of the derived models to become undetermined (that is the case, for ex-

ample, of global positioning systems (GPSs)). In those cases, a classical stochastic model of the error presents a limited

validity. The identification technique can only rely on the optimization of the best or worst case average quality, which is

not a very selective criterion, thus reducing the chance to obtain high quality, robust models.

Hence, the use of fuzzy logic-based models becomes a promising alternative to deal with these kinds of problems. In

fact, fuzzy data is the main object of study in fuzzy statistics [56] and, according to fuzzy statistics viewpoint, the primary

use of fuzzy sets in system identification problems is for the treatment of vague data. Using vague data to train and test

fuzzymodels and classifiers allows us to analyze the performance of these FRBSs on the type of problems for which they are

expected to be superior. However, fuzzy logic techniques are not, generally speaking, compatible with those fuzzy statistical

techniques used for modeling vague observations of variables. This is the reason why fuzzy models and classifiers have only

been derived from crisp data up to now.

Some work has been developed in the area to bridge the latter gap. Different formalizations for the definition of fuzzy

classifiers, based on the relationships between random sets and fuzzy sets were proposed in [141]. In that contribution,

it was also shown that a GA can perform rule selection in a random sets rule-based system with the resulting classifiers

being competitive with state-of-the-art Mamdani-type genetic fuzzy classifiers in both accuracy and interpretability. Later,

Sánchez and Couso established the basis to derive linguistic fuzzy models and classifiers from low quality data using EAs

(low quality data-based GFSs) [142]. First, they chose the possibilistic interpretation of the meaning of fuzzy membership

among the different definitions existing in the specialized literature [114] as the most appropriate definition to relate fuzzy

data and lowquality data in the current scenario. This interpretation consists of understanding a fuzzymembership function

as a nested family of sets, each one of them containing the true value of the variable with a probability greater than or equal

to certain bound [56]. Hence, it matches a large amount of practical situations. For instance, it can be used to model data

sets with missing values (one interval that spans the whole range of the variable), left and right censored data (the value is

greater or lower than a cutoff value, or it is between a couple of bounds), compound data (each item comprises a disperse

list of values), mixes of punctual and set-valued measurements (as produced by certain sensors, for instance GPS receivers),

etc. All these cases share in common a certain degree of ignorance about the actual value of a variable and assume less prior

knowledge than the standard model.

In addition, they focused on the required adaptations to allow an EA to derive a Mamdani-type FRBS from low quality

data. The key question is the change in the objective function, which must handle an imprecise evaluation of the FRBS

error. Thus, this function becomes interval-valued or fuzzy as the model/classifier error can be defined as an interval or

a fuzzy set. As an example, for the case of a fuzzy classifier, the overall number of errors can be obtained by adding the

individual errors with interval or fuzzy arithmetic operators. In this way, estimating a fuzzy model or classifier from data

requires a numerical technique that finds the minimum of the fuzzymodeling or classification error with respect to the free

parameters of the FRBS. EAs were selected for that task thanks to their inherent flexibility which allowed the definition of

evolutionary mechanisms able to deal with these kinds of fuzzy fitness functions. These mechanisms are based on the use

of either precedence operators between imprecise values [106,108,154] or EMO algorithms capable of optimizing a mix of

crisp and fuzzy objectives [144].
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Since thedefinitionof that framework, Sánchez et al. havedevelopedmanydifferentGFSs toderive linguistic fuzzymodels

and classifiers from low quality data. In fact, all the existing proposals in the area are based on the use of the Mamdani-type

FRBS structure as the linguistic interpretability of the obtained model is a requirement for the real-world problems tackled.

Regarding modeling problems, a first step was taken in [147] by demonstrating that the use of these kinds of GFSs on crisp

data setswith a small amount of artificially added fuzziness resulted in the obtaining ofmore robust fuzzymodels. The latter

contributionwas later extended in [146] to focus on data sets withmedium to high discrepancies between the observed and

the actual values of the variables, such as those containing missing values and coarsely discretized data. The GFS considered

the incremental learning of Mamdani-type fuzzy models with backfitting algorithms. The negative effect the outliers can

have in such learning approach was solved by fuzzifying by hand the crisp data set and optimizing the subsequent fuzzy-

valued fitness function with a multicriteria simulated annealing algorithm [147] and a new multiobjective GCCL method

(see Section 3.3) based on NSGA-II [146], respectively. This mechanism acted as a regularization process in the system

identification as candidate fuzzy models with high slopes were penalized because a small deviation in the input will mean

they have a higher upper bound in the proposed fuzzy error measure. This work thus showed collateral advantages of the

proposed low quality data-based Mamdani GFS framework.

In [38] the methodology was applied to problems where each pattern comprises a set of values, such as multiple-query

questionnaires. Instead of considering averaged answers, which discards potentially useful information and can lead to the

arising of contradictions in the data, these lists of answers are represented by means of fuzzy sets following the possibilistic

interpretation. A linguistic fuzzy model of preferences in a marketing problem is obtained with a Mamdani-type GFS. The

fuzzy-valued fitness function was optimized by means of a GA that used a fuzzy ranking to select the best of any two fuzzy

intervals. Later, in [145], the same problemwas tackled with an EMO algorithm, derived from NSGA-II, that does not use the

fuzzy ranking but a true dominance relation based on the fuzzy fitness. The validation error of the low quality data-based

fuzzy model was found to be lower than that of the fuzzy model derived from crisp data (computed as the average of the

value of the answers). 6

Concerning the design of Mamdani-type FRBCSs from low quality data, the first example of a genetic fuzzy classifier of

this kind was introduced in [129] based on the GCCL approach. A new extension principle-based fuzzy reasoning method

that is compatible with the possibilistic view of the imprecision in the data is proposed in such a way that the derived

linguistic fuzzy classifier is able to operate even when we cannot accurately observe all the properties of the tackled object.

The proposed low quality data-based GFS is a generalization to vague data of the classical genetic fuzzy classifier proposed

in [91], which was chosen because of its good tradeoff between simplicity and performance. The latter crisp data-based

GFS is based on only encoding the rule antecedents and adjusting the class and the certainty degree in the consequent in

each population by a reward and punishment scheme. The low quality data adaptation comprises: (i) the definition of new

procedures to assign the consequents, (ii) the computation of fuzzy fitness functions, and (iii) the genetic selection and

replacement of the worst individuals under the newly defined fuzzy fitness functions.

The new method was tested in four different families of problems, synthetic data sets, realistic problems, real-world

problems, and classical UCI crisp data sets, obtaining outstanding results in comparison with the crisp data-based GFS. The

method was applied to tackle the modeling of the future performance of athletes to assist coaches in the configuration of

an athletics team in [130]. The resulting Mamdani-type fuzzy KBs combine the experience of the trainer and his personal

knowledge of the athletes with genetically mined information from past training sessions and competitions, thus highlight-

ing the importance of the linguistic interpretability. The considered low quality data sets integrate subjective perceptions of

athletes’ mistakes, different kinds of measurements taken by different observers, and interval-valued attributes. The perfor-

mance of the fuzzy classifiers finally obtained was compared with that of several classical methods derived from the crisp

data sets resulting from taking the average for each imprecise attribute value, clearly showing the performance advantage

of the former ones.

Finally, in [128], the proposal was extended to deal with other real-world problem, the design of an intelligent system for

the diagnosis of dyslexia in early childhood to assist psychologists. The diagnosis is based on non-writing-based graphical

tests solved by the children which are later scored by the human experts. Thus, the automation of this task is hampered by

multiple sources of uncertainty. The extension involved the use of fuzzy classification ruleswith a class and a certainty factor

in the consequent (see Section 2.1), which was not supported by the previous version. The new design for the low quality

data-based genetic fuzzy classifier clearly outperformed both the crisp GFS and the previous version in the experimental

study developed with five different real-world data sets showing different characteristics (the first three of them contain

vague data in both the input and the output variables while the last two consider precise inputs and vague outputs). The

algorithm was integrated in a web-based, automated prescreening software tool to be used by the parents for detecting

those symptoms that advise taking the children to a psychologist for an individual examination.

6 In addition, in [158,159] the authors dealt with a modeling problem with inherently fuzzy data, the calibration of taximeters with a GPS. The output of a

standard GPS receiver comprises a set of confidence intervals for the expected position of the vehicle, obtained at different significance levels. Thus, it directly

matches the same semantic interpretation of a fuzzy set. To succeed in the calibration task, there was a need to compute the lowest upper bound of all the

trajectories compatible with a set of fuzzy coordinates. A modified NSGA-II EMO algorithm was used to search for a fuzzy model that minimized the fuzzy error

between that set of vague coordinates taken from the GPS and the model-based trajectory of the taxi. However, in this case that fuzzy model was not based on a

rule-based structure.
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In addition, in [143] the learning of a Mamdani-type fuzzy classifier is formulated as a problem of statistical inference.

To do so, fuzzy memberships are understood as coverage functions of random sets and the rules are learned by maximizing

the likelihood of the classifier. Interval-censored data and upper and lower bounds of the likelihood are considered to evolve

the RBs using a new low quality data-based GFS definition. The new method is an extension of the GA to generate random

sets rule-based systems proposed in [141]. It is based on the combination of an advanced co-evolutionary multiobjective

algorithm with a gradient descent method which is able to produce not only a nondominated linguistically understandable

classifier, but also the list of the instances of the training set that contribute the most to the uncertainty about the fitness

of the classifier. The new approach was able to obtain better performing FRBCSs than different existing statistical and fuzzy

classifiers in synthetic low quality data problems and crisp problems with missing data.

As seen in this subsection, exploiting the information in low quality data sets has been recently acknowledged as a new

challenge in GFSs. In our opinion, low quality data-based Mamdani-type GFSs are a very useful system identification tool

which will become a hot topic in the area in the next few years.

4. Concluding remarks and future prospects

Linguistic FRBSs have demonstrated their outstanding capability for system identification along their almost forty years

of development. They have been successfully applied to a large amount of real-world problems in many different modeling,

classification, and control domains. Mamdani-type FRBSs, which put Zadeh’s seminal ideas into effect, allows comprehen-

sible grey-box models comprised by a set of linguistic descriptions regarding the system behavior to be obtained if a proper

design is developed. Linguistic fuzzy models are thus very appropriate tools to face the two system identification require-

ments, accuracy and interpretability, permitting both an automatic derivation from data and the incorporation of human

expert knowledge, and integrating numerical and symbolic processing into a common scheme. Besides, the goodness of the

Mamdani-type fuzzy rule structure has opened the door for its use in other artificial intelligence fields such as data mining

[70].

Nevertheless, Mamdani-type FRBSs present some pitfalls related to their lack of accuracy when modeling some com-

plex, high-dimensional systems as a consequence of the hard restrictions imposed by the use of linguistic variables. The

descriptive power is obtained at the cost of an exponentially increasing model complexity. To solve this problem, different

extensions and advanced design methods have been proposed during the last two decades within the realm of the fuzzy

modeling interpretability-accuracy tradeoff. GFSs have become one of the main tools to develop these advanced linguistic

FRBS derivation approaches. This contribution has reviewed the different Mamdani-type GFSs proposed in the specialized

literature with the aim of improving the accuracy of linguistic fuzzy models while preserving the interpretability unaltered

or reducing it to the lower possible degree.

Although the field of Mamdani-type GFSs has reached its maturity after twenty years of development, there are still

many current and future trends to be considered. Some of them have already beenmentioned through this contribution and

were also identified by Herrera in his survey contribution on GFSs [85]. Among them, we can highlight the proposal of new

interpretability assessment indexes for Mamdani FRBSs (see Section 2.2) or the design of new Mamdani GFS frameworks

to cope with the additional learning complexity when dealing with large and/or high-dimensional datasets. As discussed

in Section 2.1, the latter problem has a strong influence on the design of Mamdani-type FRBS due to the rigid partitioning

of the input and output spaces made by linguistic variables. Some recent approaches to the problem are to be found in

[12,21,57,123,125,138]. In particular, multiobjective Mamdani GFSs show a large number of hot lines. On the one hand,

there is a strong interest on analyzing new ways to incorporate user preferences to the learning process in such a way that

the EMO algorithm constrains the search on a specific region of the Pareto front [90]. That is especially the casewhen dealing

with a multiobjective interpretability-accuracy space (see for example the proposal in [13], reviewed in Section 3.5.3). On

the other hand, there is another research trend, shared with the EMO community, on the consideration of more than just

two/three objectives (the current multiobjective GFS standard) in the learning process, which would require the definition

of more sophisticated Pareto-based EMO algorithms than the current state of the art. The problem states on the fact that,

for high dimensional objective vectors, the probability that a solution dominates another becomes very small and this may

lead to a large number of Pareto-optimal solutions. Nevertheless, recent proposals in the EMO field have managed to deal

with a significantly large number of objectives inwhat is called evolutionarymany-objective optimization [98,137] and their

adaptation to multiobjective GFS has become feasible.
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