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Abstract—Since the proposal of Zadeh and Mamdani’s seminal
ideas, interpretability is acknowledged as one of the most appre-
ciated and valuable characteristics of fuzzy system identification
methodologies. It represents the ability of fuzzy systems to
formalize the behavior of a real system in a human understand-
able way. Interpretability analysis involves two main points of
view: readability of the knowledge base description (regarding
complexity of fuzzy partitions and rules) and comprehensibility
of the fuzzy system (regarding implicit and explicit semantics
embedded in fuzzy partitions and rules, but also the fuzzy
reasoning method). Readability has been thoroughly treated by
many authors who have proposed several criteria and metrics.
Unfortunately, comprehensibility has almost never been consid-
ered because it involves some cognitive aspects related to the
human reasoning which are very hard to formalize and to deal
with. This paper proposes the creation of fuzzy systems’ inference
maps, so-called fuzzy inference-grams (fingrams) by analogy
with scientograms used for visualizing the structure of science.
Fingrams show graphically the interaction between rules at the
inference level in terms of co-fired rules, i.e., rules fired at the
same time by a given input vector. The analysis of fingrams offers
many possibilities: measuring the comprehensibility of fuzzy
systems, detecting redundancies and/or inconsistencies among
fuzzy rules, discovering the most significant rules, etc. Some of
these capabilities are explored in this initial work.

I. I NTRODUCTION

Interpretability of a fuzzy system involves the skill of the
specific end-user who interprets its linguistic description with
the aim of conceiving the significance of the system behavior.
In consequence, characterizing and assessing interpretability
is a very subjective task which strongly depends on the
background (experience, preferences, knowledge, etc.) ofthe
person who makes the assessment [1].

It is worthy to highlight that interpretability is a distinguish-
ing capability of fuzzy systems which is really appreciated
in most applications. It becomes an essential requirement
for those applications that involve an extensive interaction
with human beings. For instance, decision support systems
in medicine [2] must be easily understandable, for both
physicians and patients, with the aim of being reliable, i.e.,
widely accepted and successfully applicable.

Unfortunately, fuzzy systems are not interpretableper se. Of
course, the use of linguistic variables and rules [3], [4] favors
interpretability because of their high semantic expressivity
close to natural language. Nevertheless, there are many differ-
ent issues which must be taken into account in order to design
interpretable fuzzy systems. Firstly, several interpretability

constraints [5] have to be imposed along the whole design
process with the aim of producing a fuzzy system with the
required interpretability level, i.e., a system capable ofbeing
understood, explicated or accounted for by a human being.
As a result, interpretability is usually achieved at the cost of
penalizing accuracy. For this reason, most fuzzy systems are
built only paying attention to accuracy and so jeopardizing
interpretability. Even in those cases, authors usually claim their
fuzzy systems are much more interpretable than those based on
black-box techniques, like neural networks, because they are
based on fuzzy logic. Such kind of claims is quite questionable
and should be rejected because they are deceptive. Notice that,
obtaining interpretable fuzzy systems is a matter of design
which must be carefully considered to avoid producing fuzzy
systems so hardly interpretable that they become useless black-
boxes from the interpretability point of view.

The assessment of interpretability has to face two main
issues [1]: Readability of the system description; and compre-
hensibility of the system explanation. Of course, the analysis
has to take into account all elements included in a fuzzy
system, from the lowest (fuzzy partitions) to the highest (fuzzy
rules) abstraction levels [6].

Most previous works [7], [8] only analyze the readability of
the designed fuzzy system. Moreover, the analysis of readabil-
ity usually is reduced to a basic analysis of complexity, i.e., it
consists of counting the number of elements included in the
knowledge base (number of rules, premises, linguistic terms,
etc). Other contributions also analyze structural properties of
fuzzy partitions [9] such as distinguishability, coverage, and
so on. Recently, a few authors have shown the importance of
extending the analysis of readability to evaluate the implicit
and explicit semantics embedded in a fuzzy system [10],
[11]. Of course, keeping a small number of linguistic terms
is also appreciated due to the limits of human processing
capabilities [12]. Moreover, the selection of the right linguistic
terms is essential to yield interpretable systems.

Although there has been a huge effort for defining, char-
acterizing, and assessing interpretability in the last decade,
there is still a lot of work to be done. Namely, the analysis
related to comprehensibility of the system explanation is
almost negligible. Understanding the system behavior from
its linguistic description is a very hard task that involves
the inference level going beyond the analysis of the system
structure readability.



This work presents a new methodology for analyzing the
fuzzy inference layer that may be really useful during the
design process. It is mainly based on the adaptation of
given techniques for visualizing scientific information tothe
visual analysis of the inference process of fuzzy systems. It
also introduces a new index for assessing interpretabilityof
fuzzy rule-based systems facing the challenge of assessingthe
comprehensibility of the system explanation.

The rest of the contribution is organized as follows. Sec-
tion II presents some preliminaries including basic aspects
related to interpretability assessment, a brief overview on
existent methodologies for visual representation and analysis
of fuzzy systems, and a short introduction to the most extended
techniques for designing visual science maps. Section III
introduces the new proposed methodology. As a first step,
the general approach is particularized for the analysis of
fuzzy rule-based classifiers (FRBCs). Section IV summarizes
the experiments carried out along with the achieved results.
Finally, some conclusions and future works are sketched in
Section V.

II. PRELIMINARIES

A. Assessing Interpretability of Fuzzy Rule-based Systems

While regarding accuracy assessment it is easy to find
universal indices commonly accepted, this is not the case
when dealing with interpretability assessment. The evaluation
of accuracy consists of measuring the difference between the
outputs of the model and the real system. For instance, the
mean square error and the number of misclassified cases
are widely used for regression and classification problems,
respectively. On the contrary, assessing interpretability remains
an open hot topic. Moreover, finding out a universal index
for interpretabiliy seems to be an impossible mission since
it is strongly affected by subjectivity. In fact, it is necessary
to look for two kind of complementary indices, objective
and subjective ones. On the one hand, objective metrics are
needed to make feasible fair comparisons among different
fuzzy systems. On the other hand, subjective measures are
demanded when looking for personalized fuzzy systems where
it is required having an index flexible enough to be easily
adaptable to end-user’s expectations.

A complete taxonomy on the existing interpretability mea-
sures has been recently proposed in [13]. Authors identify
four groups of indices as result of combining two different
criteria, the nature of the interpretability index (complexity
vs. semantic) and the elements of the fuzzy knowledge base
that it considers (partitions vs. rule base). Namely, the four
groups are: (1) Complexity at rule base level; (2) complexity at
partition level; (3) semantic interpretability at rule base level;
and (4) semantic interpretability at partition level.

Most well-known existing interpretability indices corre-
spond to groups (1) and (2). They only focus on readability
(complexity) of fuzzy systems. In consequence, they are
objective indices since they are limited to count the number
of elements (features, membership functions, rules, premises,
etc.) included in the knowledge base.

Indices included in group (4) usually measure the degree of
fulfillment of semantic constraints that should be overimposed
during the design process. It is widely admitted that working
with the so-called Strong Fuzzy Partitions (SFPs) [14] sat-
isfies all semantic constraints required to have interpretable
fuzzy partitions from the structural point of view (coverage,
normalization, distinguishability, etc).

Finally, group (3) is the one that contains fewer works
in the literature. It comprises some indices mainly devoted
to evaluate the rule base consistency. In addition, there are
only some works [15], [16], [17] dealing with the number
of rules simultaneously fired for a given input. The novel
index proposed in this paper belongs and thus will extend
this reduced group.

B. Visual Analysis of Fuzzy Rule-based Systems

There are not many papers tackling with visual analysis
of the inference process of fuzzy systems. Most of them
are limited to visual descriptions. Probably, this is due to
the well-known linguistic expressivity of such systems what
gives prominence to linguistic representations. However,when
dealing with complex problems, even when the design is
made carefully to maximize interpretability, the number of
rules can become huge because of the curse of dimensionality
characteristic of fuzzy rule-based systems. In those cases,
looking for a plausible linguistic explanation of the inferred
output, derived from the linguistic description of the fuzzy
knowledge base, is not straightforward. When many rules are
fired at the same time for a given input, explaining the inferred
output as an aggregation of all the involved rules is not easy.

Some authors [18] have searched for understandable ways
of interpreting the system output in terms of describing the
inferred output possibility distribution by a set of previously
defined linguistic terms along with some linguistic modifiers
and connectives. As an alternative, other authors have bet for
searching visual explanations of the system output. Ishibuchi
et al. [19], [20] established a set of design constraints with
the aim of producing groups of rules with only two antecedent
conditions that can be plotted in a two-dimensional (2D) space.
They look for a visual representation able to explain the output
of fuzzy rule-based classifiers to human users. Nevertheless,
considering only two antecedents per rule is a strong limitation
that may penalize the accuracy of the system.

A complete analysis of visualization requirements for fuzzy
systems is provided in [21]. It gives an overview on existing
methodologies to yield 2D and 3D graphical representations
of fuzzy systems. It comprises visualization of fuzzy data,
fuzzy partitions, and fuzzy rules. Different alternativesare
available depending on the requirements of the end-user.
Moreover, requirements may change according to visualization
tasks to perform: Interactive exploration; automatic computer-
supported exploration; receiving feedback from users; and
capturing users’ profiles and adaptation.

The most relevant works to obtain visual representations
of multi-dimensional fuzzy rules are those developed by
Berthold et al. [22], [23]. They make a mapping from a



high-dimensional feature space onto a two-dimensional space
which maintains the pair-wise distances between rules. The
established mapping also displays an approximation of the rule
spread and overlapping. As a result, it is possible to visualize
and explore multi-dimensional fuzzy rule bases in a 2D graph-
ical representation. Authors claim such representation yields a
user friendly and interpretable exploratory analysis. However,
the complexity of the analysis grows exponentially with the
number of features and rules to be displayed. In consequence,
in complex problems with many rules the interpretation of the
resultant graph is not straightforward.

C. Scientograms: Design and Applications

Even though “constructing a great map of the sciences has
been a persistent dream since the Middle Age” [24], it has
been during the last few years when it has become a strong
need mainly due to the success of Internet which acts as
catalyst. In consequence, isolated research groups are almost
non-existent and the number of scientific publications in very
multidisciplinary fields has been increased very quickly. For-
tunately, the recent advances on computer visualization [25],
[26], [27], [28], [29] make feasible high quality and fast visual
representations of very large scientific domains.

The termscientogramis coined in the specialized literature
to make reference to visual science maps, i.e., visual repre-
sentations of scientific domains. Vargas-Quesada and Moya-
Aneǵon [24] proposed a methodology to create scientograms
with the aim of illustrating interactions between authors and
papers through citations and co-citations. The basic idea turns
up from the notion of paper co-referencing which represents
the frequency with which two documents are cited by others. It
is possible to talk about author co-citation, journal co-citation,
co-citation of classes and categories, etc. Obviously, depending
on the kind of co-citation selected the information that canbe
extracted from the generated maps is different.

The standardized co-citation measure was defined by Salton
and Bergmark [30] and is computed by the next equation:

MCN(ij) =
Cc(ij)

√

c(i) · c(j)
(1)

whereCc means co-citation,c stands for citation, whilei and
j represent two different entities (authors, documents, journals,
categories, institutions, countries, etc).

The combination of entity co-citation and social networks
analysis through the use of the Pathfinder algorithm [31]
has proved to be able of getting high quality, schematic
visualizations of the resultant networks in various fields such
as psychology (to represent the cognitive structure of a sub-
ject [32]), software development (for debugging of multi-agent
systems [33]), or scientometrics (for the analysis of large
scientific domains [34]).

The Pathfinder algorithm is in charge of pruning the network
defined from the original co-citation matrix (that can be seen
as the adjacency matrix of a graph) keeping only the most
relevant links. This is essential to make feasible a good visual
interpretation of the final Pathfinder networks (PFNETs).

There are many different methods for the automatic visual-
ization of PFNETs. The spring embedder family of methods
is the most widely used in the area of Information Science.
Spring embedders assign coordinates to the nodes in such a
way that the final graph will be pleasing to the eye, and that
the most important elements are located in the center of the
representation. Kamada-Kawai’s algorithm [35] is one of the
most extended methods to perform this task. Starting from
a circular position of the nodes, it generates networks with
aesthetic criteria such as the maximum use of available space,
the minimum number of crossed links, the forced separation
of nodes, the build of balanced maps, etc. Notice that, the
combination of entities co-citation, PFNETs, and Kamada-
Kawai makes the entities that most sources share with the
rest, tend to situate themselves toward the center.

Concerning the analysis of scientograms, according to [24]
there are three main measures of centrality that yield useful
information with the aim of identifying the most significant
nodes of a PFNET:Degree of Centrality(regarding the number
of direct links gathering in a node),Centrality of Closeness
(measuring the distance among nodes), andCentrality of
Intermediation or Betweeness(looking at nodes that act as
link between other nodes contained in the shortest path).

III. PROPOSAL

As said before, this paper proposes a new methodology for
visual representation and exploratory analysis of the fuzzy
inference process of fuzzy rule-based classifiers (FRBCs).
It is based on the generation of FRBC inference maps,
so-called fuzzy inference-grams (fingrams) by analogy with
the scientograms used for visualizing scientific information.
The following subsections explain how to generate fingrams,
how to analyze them with the aim of making a exploratory
analysis of the fuzzy inference process, and how to derive
interpretability measures from the fingrams.

A. Fingram generation

Fingrams show graphically the interaction between fuzzy
rules at the inference level in terms of co-fired rules, i.e.,rules
fired at the same time by a given input. First, from a data set we
build a square matrixM that contains all interactions among
N rules regarding the proportion of co-fired rules.

M =







1 a12 . . . a1N

a21 1 . . . a2N

. . . . . . . . . . . .

aN1 aN2 . . . 1







(2)

aij =
SFRij

√
FRi · FRj

(3)

whereaij is a measure of co-firing inspired on the co-citation
measure expressed by equation 1.SFRij means the number
of samples for which rulesRi andRj are simultaneously fired,
while FRi and FRj count respectively the total number of
samples for which the same rulesRi andRj are fired, without
taking care if they are fired together or not. Notice that,aij

is thus normalized and matrixM is symmetrical.



The number of times a rule is fired is computed in an
inferential way for all available data samples. Hence, it is
extremely dependant on the goodness (quantity and quality)
of the available experimental data. In addition, collecting
significant data (covering most possible situations) implies
making many experiments which is normally costly in terms
of time and ultimately money. Therefore, looking for a
more homogeneous view of the inference process based on
considering also unknown test samples we have used the
Synthetic Minority Over-sampling Technique (SMOTE) [36],
which is usually applied to the construction of classifiers from
imbalanced datasets, for generating some synthetic test data.
As a result, in our context, SMOTE duplicates the number of
samples, introducing synthetic data only in those areas of the
input space where real experimental data already exist. Notice
that, we discarded the introduction of randomly generated
synthetic data in the whole input space to avoid the generation
of unfeasible data samples that would yield to non-realistic
conclusions in our analysis.

Once matrixM is generated, we can use the Kamada-
Kawai’s algorithm to display the complete fingram. It gives
a global view on the interpretability of the FRBC according
to the number of nodes (rules), and links (co-firing relations
and degrees). Nevertheless, as it happens for the case of
scientograms, this initial fingram is normally quite dense and
difficult to analyze even for medium size problems. Thus, it
is worthy to run the previously mentioned scaling algorithm
(Pathfinder1) with the aim of pruning the network before
printing and exploring the generated fingram. Notice that, the
pruned fingram preserves all relevant information at global
level thanks to the properties of PFNETs.

Fig. 1 shows an illustrative example of two fingrams made
up of 68 rules before and after running Pathfinder. As it can
be easily appreciated, it is impossible to see anything on the
left side of the figure. Whatever analysis only makes sense
after pruning the initial fingram.

(a) Initial fingram (b) Pruned fingram

Fig. 1. Example of fingrams before and afer running Pathfinder.

In our context, the nodes in the fingrams represent fuzzy
rules of FRBCs. Rules yielding the same class are depicted
by the same symbol (pentagon, rectangle, ellipse, etc). In

1We have selected MST-PathFinder [37] a recently published variant of
Pathfinder algorithm able to generate large visual science maps in cubic time.

addition, the number of surrounding lines is related to the
complexity of the selected rules (one line means two premises,
two lines mean three premises, and so on). Furthermore,
edges (links) among nodes represent rule co-firing information.
Notice that, thanks to the combination of rule co-firing,
PFNETs, and Kamada-Kawai’s algorithm, information related
to the inference process of FRBCs is displayed in pretty
nice scalable fingrams. As a side effect, the most relevant
rules, i.e., those rules more often fired tend to be located
toward the center of the pruned fingrams, while non-significant
rules go to the periphery. Hence, the structure of fingrams
is quite informative. On the other hand, redundancies (links
among rules of the same class) are painted in green while
inconsistencies (links among rules of different classes) are
remarked with red color. Moreover, the thickness of links
is proportional to their weights. We propose two techniques
of pruning a fingram. The first one consists of applying the
Pathfinder algorithm directly on the complete fingram. Thus,
information related to both redundancies and inconsistencies
is taken into account to prune the less salient links. The second
one is composed of two steps. Firstly, we remove the redundant
links of the complete fingram. Secondly, Pathfinder is applied
to the non-redundant graph. In such a way, the pruning of the
graph is made only regarding inconsistencies.

Finally, it is important to highlight that our proposal is not
affected by the well-known curse of dimensionality problem
of fuzzy systems that implies the number of fuzzy rules grow
exponentially with the number of inputs. First, nodes represent
directly rules instead of premises. Second, PFNETs have
been successfully applied to the analysis of large scientific
domains representing thousands of co-cited entities [24].In
consequence, fingrams are able to display the interactions
among thousands of rules in the form of highly interpretable
trees. Even when the number of rules is huge the pruned
fingram can be still comfortably viewed by any expert.

B. Fingram exploratory analysis

The analysis of fingrams offers many possibilities. For
instance, one can directly analyze its global structure by the
exploration of the number and the location of the apparent
groups of rules, analyze the respective location of the rules
coding for different classes, etc. We would like to remark the
following exploratory tasks: Discovering the most significant
rules in the knowledge base; and detecting redundancies and/or
inconsistencies among fuzzy rules.

On the one hand, the usual Centrality measures that are
commonly used in the analysis of scientograms can also be
successfully applied to find out the most significant rules
within a FRBC. As a first approach, we advocate for the use
of the so-calledDegree of Centrality. This means that we will
point out as the most significant rules those corresponding
to the nodes that concentrate the larger number of links in a
fingram. Remind that they tend to be located toward the center
of pruned fingrams.

On the other hand, the interaction among fuzzy rules at
inference level is very difficult to appreciate by only reading



the linguistic description of a FRBC. As a first step, in this
contribution we will concentrate on the analysis at rule base
level. It depends on the rule description but also on the
inference mechanism. Obviously, such analysis is different
depending on the kind of problem faced. In classification prob-
lems, redundancies and inconsistencies must be handled as
conflicts to be solved. Solving redundancies implies removing
redundant rules what contributes to get better interpretability.
In addition, the interested reader is referred to [38] where
there is a detailed explanation of some possible consistency
problems along with a methodology to detect and correct such
inconsistencies. Of course, from the interpretability point of
view it would be desirable to have only one rule that directly
yields the right inferred output. Anyway, this may produce a
huge number of rules what is also undesirable.

Even when a rule base is fully consistent at linguistic level,
there may arise some possible redundancies and/or incon-
sistencies at inference level because of the rule aggregation
procedure made as part of the inference process. Such potential
conflicts are difficult to detect mainly because they are partially
hidden since they are typically produced by new unknown data
that were not taken into account during the learning stage. For
instance in classification problems, it may happen that several
rules are fired at the same time for a new given input vector
and as result several outputs are activated with degrees higher
than zero. When two different classes are activated with very
similar degrees the situation can be labeled as an ambiguity
case. Such situation is not desirable, no matter if the system
is (or not) able to yield the right output class, because a slight
modification in the input data may yield a wrong output. We
can conclude that a FRBC producing many ambiguity cases
is a non-reliable system and should be corrected.

Looking at pruned fingrams we can discover redundancies
(when the co-fired rules yield the same output class) and
inconsistencies (when the co-fired rules yield different output
classes). The larger the link weights (co-firing degree com-
puted by equation 3) are, the larger the interaction between
rules is, and the larger the degree of redundancy or inconsis-
tency results.

It should be noted that, because of the specific way the
pruning and the drawing is done, the most salient links and
nodes are likely to be drawn in the center, and those less
relevant in the periphery. Thus, those rules that correspond to
nodes located in the periphery of a fingram, especially those
connected with a low value (the weight of the associated link
is small) to the remaining graph, are good candidates to be
pruned. This could have an interesting collateral advantage
since removing such rules is likely to increase interpretability
while keeping almost the same accuracy. We will check it
in the experimental section. A basic simplification procedure
may consist of finding and removing those non-relevant rules
normally located at the periphery of the graph. Moreover,
regarding to fingrams we can set a ranking of rules according
to their relevance and then running a linguistic simplification
procedure like the one proposed in [38].

C. Interpretability assessment based on fingrams

We assume that fuzzy partitions are interpretable and the
matching among linguistic terms and fuzzy sets is supervised
and approved by an expert. Notice that interpretable fuzzy
partitions must represent prototypes that are meaningful for
the end-user. Then, given a rule format along with an inference
mechanism, the system comprehensibility can be evaluated
looking only at rule level. Our assumption is the following:
The larger the number of simultaneously fired rules for a given
input vector, the smaller the comprehensibility of the FRBC.

Fingrams give us information related to the proportion
of co-fired rules that should be considered when assessing
interpretability. Equation 4 formalizes the Knowledge Base
Comprehensibility Index (KBCI), our novel proposal of
interpretability index:

KBCI =







0, if
N∑

i=1

N∑

j=1

[(Pi + Pj) · aij ] ≥ MAX

1 −

√
N∑

i=1

N∑

j=1

[(Pi+Pj)·aij ]

MAX
, otherwise

(4)

whereN is the total number of rules.Pi and Pj count the
number of premises (antecedent conditions) in rulesi and j,
while aij is the measure of co-firing for the same rulesi andj;
it is computed by equation 3. AndMAX is a maximum value
established to get a normalized measure in the interval [0,1].
It should be fixed by the designer of the FRBC, looking at
the maximum number of rules that may be acceptable (by an
end-user) for each specific problem according to its inherent
complexity (number of inputs, output classes, available train-
ing data, etc). According to our experimentations, we suggest
settingMAX greater or equal than one thousand times the
multiplication of the number of classes (C) by the number
of inputs (I) by the number of training samples (T ). Hence,
MAX ≥ C · I · T · 103. We have setMAX = 107.

IV. EXPERIMENTAL ANALYSIS

This experimental study deals with the well-known WINE
benchmark classification problem whose dataset is freely avail-
able at the KEEL2 (Knowledge Extraction based on Evolu-
tionary Learning) machine-learning repository. It contains 178
instances coming from the results of a chemical analysis of
wines grown in the same region in Italy but derived from
three different cultivars (3 classes of wines). In addition, the
analysis determined the quantities of 13 constituents (Alcohol,
Malic acid, Ash, Alcalinity of ash, Magnesium, Total phenols,
Flavanoids, Nonflavanoids phenols, Proanthocyanins, Color
intensity, Hue, OD280/OD315 of diluted wines, andProline)
taken as inputs.

As already said, this analysis considers only FRBCs. In this
contribution they have been generated following the HILK
(Highly Interpretable Linguistic Knowledge) fuzzy modeling
methodology [38], [39]. We have chosen HILK because it is
especially thought for making easier the design process of

2A free software tool available online at [http://sci2s.ugr.es/keel/].



interpretable FRBCs. To do so, it imposes several constraints
(SFPs, global semantics, Mamdani rules [4], etc.) during the
design phase. The rule base is made up of rules of form:

If Xa is Ai
a

︸ ︷︷ ︸

Premise Pa

AND . . .AND Xz is Aj
z

︸ ︷︷ ︸

Premise Pz

Then Y is Cn

where Cn is the selected output class;Xa is the name of
the input variablea; and Ai

a represents the labeli of such
variable. Namely,Ai

a can be one of the elementary terms
in the SFP or a composite term defined as a convex hull
of adjacent elementary terms corresponding to OR and NOT
combinations [40]. These kinds of rules are usually known
as DNF rules. Notice that, the absence of an input in a rule
means that it is not considered in the evaluation of such rule.
This special kind of premises is usually referred asDon’t care
premises [41]. Because several output classes can be activated
since several fuzzy rules can be fired at the same time by the
same input vector, the winner rule fuzzy reasoning mechanism
is considered.

HILK methodology is implemented as part of the free
software tool GUAJE3. Moreover, the new methodology for
visualizing and exploring fuzzy rule bases proposed in this
paper is also implemented in that tool. The drawing of the
graphs themselves is done using another freeware tool named
Graphviz4 [42].

The rest of this section is devoted to show the utility of
the new methodology proposed in this paper through some
illustrative examples. Please notice that, probably thereare
better rule bases for the WINE problem in the fuzzy literature.
We do not care about that because our goal is to explain the
new methodology instead of looking for the best solution for
this specific problem.

As a starting point, Fig. 1 shows fingrams of a FRBC
automatically generated with GUAJE for the WINE problem.
Uniform strong fuzzy partitions with three triangular fuzzy
sets are initially generated for each input. The rule base is
made up of 68 rules with a total number of premises (in
the following we will refer it by Total Rule Length or TRL)
equals to 422. This means an Average Rule Length (ARL)
of 6.206 even though the total number of inputs is 13. This
FRBC exhibits a good accuracy on the whole original dataset
(ACC=0.978) but the Average number of Fired Rules (AFR)
is high (AFR=22.489). In consequence, it may be deemed
as not very interpretable. Computed on the complete fingram
(Fig. 1(a)), theKBCI index is 0.61266, a low value that
confirms the feeling one may perceive after visualizing the
plotted fingram. From the complete graph, we generated (run-
ning the Pathfinder algorithm) a pruned fingram that is detailed
in Fig. 1(b). The number of edges decreased consequently,
showing a much more interpretable representation of the same
FRBC. Notice that this representation can be even simplified
furthermore, by eliminating some peripherical rules, as said
previously.

3A free software tool for generating understandable and accurate fuzzy rule-
based classifiers in a Java environment [http://www.softcomputing.es/guaje].

4A free software tool available online at [http://www.graphviz.org/]

Then, we have run the linguistic simplification procedure
proposed in the HILK methodology as a refining step with the
aim of getting better interpretability while preserving accuracy.
The simplification affects to both partitions and rules. As a
result, a new simplified FRBC is obtained. The number of
inputs passes from 13 to 8, but the most impressive reduction
is related to the number of rules which drops dramatically from
68 to only 8. Accuracy remains the same (ACC=0.978) while
all interpretability indicators are clearly improved (TRL=26,
ARL=3.25, AFR=3.792). As expected, the interpretability in-
dex is also increased (KBCI=0.95433).

Fig. 2 shows the new fingrams (pictures (a), (c), and (d)) of
the simplified FRBC along with the detailed list of simplified
rules (picture (b)). These fingrams are very illustrative and
easy to interpret. Let us explain all the information they
provide. Picture (a) plots the complete non-pruned fingram.
It shows all interaction among rules and even though the
number of rules is tractable this fingram is still quite dense.
As explained in the previous section, the next step consistsof
pruning it by means of Pathfinder, with the aim of highlighting
the most significant nodes and links. We consider two cases.
First, picture (c) prints the whole pruned fingram. Thus, both
redundancies and inconsistencies were considered. Second,
picture (d) depicts the fingram resultant of applying Pathfinder
only considering inconsistency cases. That is all redundancies
were removed from the complete fingram before pruning. In
such a way, only the information related to inconsistenciesis
used to prune the graph.

To sum up, picture (a) gives a global overview of all the
rule interactions, picture (c) puts the spotlight on the main
redundancies and inconsistencies, and picture (d) concentrates
only on remarking the most risky inconsistencies. Notice that,
picture (d) lets us discover links that were hidden in picture (c)
because of the presence of redundant links with high weights.
For instance, the link between R5 and R6 appears in picture
(d) but not in picture (c). This is because of the higher weight
of the links between R4 and R5.

From fingrams in Fig. 2, R5 and R8 are identified as
good candidates to be removed with the aim of simplifying
even more the FRBC. On the contrary, R3 and R6 are
pointed out as key rules. Changes on accuracy and inter-
pretability are almost negligible when removing peripherical
rules like R5 (ACC=0.972, TRL=24, ARL=3.429, AFR=3.747,
KBCI=0.9545) or R8 (ACC=0.972, TRL=24, ARL=3.429,
AFR=3.534,KBCI=0.95455). However, removing a central
rule like R3 (ACC=0.893, TRL=23, ARL=3.286, AFR=3.067,
KBCI=0.96379) or R6 (ACC=0.949, TRL=20, ARL=2.857,
AFR=2.848,KBCI=0.97306) has a much more remarkable
effect regarding both interpretability and accuracy.

V. CONCLUSIONS ANDFUTURE WORKS

This paper has introduced a new powerful methodology
for exploratory analysis of fuzzy rule-based systems. A first
version is already implemented for FRBCs. It can be freely
downloaded as part of the free software tool GUAJE at:

http://www.softcomputing.es/guaje



(a) Complete fingram (before running MST-PathFinder)

R1: If Flavanoids is lowAND Hue is low
AND OD280/OD315 of diluted wines is low
Then Class is Wine3

R2: If Malic acid is low
AND Flavanoids is lowAND Hue is high
AND OD280/OD315 of diluted wines is NOT(high)
Then Class is Wine2

R3: If Flavanoids is averageAND Proline is low
AND OD280/OD315 of diluted wines is NOT(low)
Then Class is Wine2

R4: If Alcohol is low
AND Flavanoids is averageAND Proline is average
Then Class is Wine2

R5: If Alcohol is low AND Flavanoids is high
Then Class is Wine2

R6: If Alcohol is average
AND Total phenols is lowAND Flavanoids is average
AND Color intensity is highAND Proline is average
AND OD280/OD315 of diluted wines is average
Then Class is Wine1

R7: If Alcohol is high
AND Flavanoids is averageAND Proline is average
Then Class is Wine1

R8: If Flavanoids is averageAND Proline is high
Then Class is Wine1

(b) Rule base linguistic description

(c) Pruned fingram (Redundancies and Inconsistencies) (d) Pruned fingram (Only Inconsistencies)

Fig. 2. Fingrams for a reduced FRBC.



In addition, we have proposed a novel interpretability index
that takes into account the comprehensibility of fuzzy systems
looking at the correspondence between the linguistic descrip-
tion and the inference process. According to the taxonomy
given by [13], the new index tackles with semantic at rule base
level where there are almost no proposals in the fuzzy litera-
ture. In the future we will extensively validate the methodology
and look for other co-firing metrics able to yield additional
information about consistency, generality and/or specificity of
rules.
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