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Trust and distrust are two increasingly important metrics in social networks.

Since many of these networks are very large, it is only natural that not all users
know each other. To this aim, propagation and aggregation operators are often

used to estimate (dis)trust relations for users that are not directly connected

through the network. In this paper, we introduce bilattice-based aggregation
approaches and show that they can be used to accurately predict trust and

distrust predictions for the social networking site CouchSurfing.org.
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1. Introduction

Social networks in which the users explicitly express their opinion as trust
and distrust statements are called trust networks. An interesting exam-
ple is CouchSurfinga, a large worldwide hospitality exchange network. Its
members can use the social network to find or offer free accommodation
(= a ‘couch’). After a couch experience, users can evaluate their guest or
host. One of the questions assesses the trust relationship between the par-
ties involved; these statements give rise to a large trust network among the
CouchSurfers. Forming your own opinion on the users might have been easy
when the network was still rather small, but nowadays the site contains over
one million users, making it increasingly difficult to find the hosts/guests

∗On leave from Ghent University
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that you would get along with well, let alone the ones that are trustworthy.
In such large networks, it is very unlikely that all users know each other

directly. This means that, if a user a wants to form a trust opinion about
an unknown user x, a has to inquire about x with one of its own trust
relations, who in turn might consult a trust connection, etc., until a user
connected to x is reached. The process of predicting the trust score along the
thus constructed path from a to x is called trust propagation. Since it often
happens that a has not one, but several trust connections that it can con-
sult for an opinion, we also require a mechanism for combining trust scores
originating from different sources. This process is called trust aggregation.

Since trust and distrust are very often a gradual phenomenon, fuzzy re-
lations are the pre-eminent tools for modeling trust networks. For our pur-
poses, a trust network is a triplet (A, E, R) where (A, E) is a directed graph
with the users as nodes, and directed trust links as edges. R is an E → [0, 1]2

mapping that associates to each couple (a, b) of connected agents in E a
trust score R(a, b) = (t, d) in [0, 1]2, in which t is called the trust degree of
a in b and d is called the distrust degree. We model the set of trust scores
as a bilattice1 structure (see Ref. 2 for more details); hence, in other words,
the available trust information is modeled as a bilattice-fuzzy relation in
the set of users that associates a trust score with each ordered pair of users.

We define the knowledge defect of a trust score (t, d) as kd(t, d) =
|1− t−d|. We call trust scores (t, d) with t+d ≤ 1 consistent, and all others
inconsistent. We assume that every user is consistent, i.e., issues consistent
trust scores. However, modeling inconsistent information is still needed if we
want to accurately represent the result of a trust score aggregation process.

In Ref. 2, we proposed four operators for propagation in the trust score
space, each reflecting a different strategy of dealing with the available trust
information. One example is P1((t1, d1), (t2, d2)) = (T (t1, t2), T (t1, d2)),
with T a t-norm. P1 reflects the basic strategy of taking over informa-
tion only from trusted sources, and is at the basis of all other propagation
operators. Note that consistent inputs yield a consistent propagated score;
like this, we can ensure that all inputs (either direct trust scores or the
result of propagations) for the aggregation process are consistent.

Most gradual trust-enhanced applications use a simple average aggre-
gation that only takes into account trust. In this paper, however, we intro-
duce several aggregation operators for both trust and distrust (Sect. 2). In
Sect. 3, we investigate their applicability on a large real-world data set and
show that they can be used to achieve accurate trust recommendations.
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Fig. 1. Example of eight trust scores (dots) to be aggregated in BL�.

2. Trust score aggregation operators

We first postulate three desirable properties and then set out to define a
number of aggregation operators. We look for a trust score aggregation oper-
ator A : ([0, 1]2)n → [0, 1]2 (n ≥ 1) satisfying the following characteristics.

Definition 2.1 (Boundary preservation). We say that a trust score
aggregation operator A satisfies the trust (1), distrust (2) and knowledge
(3) boundaries iff A((t1, d1), . . . , (tn, dn)) = (p, q), with

(1) min(t1, . . . , tn) ≤ p ≤ max(t1, . . . , tn)
(2) min(d1, . . . , dn) ≤ q ≤ max(d1, . . . , dn)
(3) p + q ≥ max(t1 + d1, . . . , tn + dn)

The first two conditions ensure that the aggregated trust score reflects
a consensus about the (dis)trust estimation, it should not contain more
(dis)trust than the maximum (dis)trust value among the aggregates (and
analogously for the minimum). The last condition ensures that the knowl-
edge contained in the aggregated trust score does not decrease when aggre-
gating additional opinions. In other words, the aggregated trust score will
contain at least as much knowledge as the most knowledgeable aggregate.

Fig. 1 shows an example in which eight trust scores, represented by dots,
have to be aggregated. All of them are consistent, since they reside under the
kd = 0 line (representing (t, d)’s with perfect knowledge, i.e., t+d = 1). The
trust and distrust boundaries yield a limited number of possible aggregation
results, marked out by the dotted lines. By also imposing the knowledge
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condition, however, only part of the possibilities remain, depicted by the
gray area. Each of the trust scores marked by stars make sense as aggre-
gated score: B is the most optimistic choice (maximum trust degree t for
the lowest possible knowledge level), C the most pessimistic one (maximum
distrust degree d), D the moderating approach (average of the most knowl-
edgeable scores) and A the most extreme, knowledge maximizing, option:
maximum t and d, often resulting in an inconsistent trust estimation.

Definition 2.2 (TMAX). The trust maximizing trust score aggrega-
tion operator TMAX is defined as TMAX ((t1, d1), · · · , (tn, dn)) =
(max (t1, · · · , tn) , max (t1 + d1, · · · , tn + dn)−max (t1, · · · , tn)).

Definition 2.3 (DMAX). The distrust maximizing trust score aggre-
gation operator DMAX is defined as DMAX ((t1, d1), · · · , (tn, dn)) =
(max (t1 + d1, · · · , tn + dn)−max (d1, · · · , dn) , max (d1, · · · , dn)).

Definition 2.4 (KAV). The knowledge preference averaging trust score
aggregation operator is defined as KAV ((t1, d1), · · · , (tn, dn)) = (p, q), such
that p = (

∑n
i=1 wi · ti) / (

∑n
i=1 wi) and q = (

∑n
i=1 wi · di) / (

∑n
i=1 wi), with

wi = 1 if ti + di = max (t1 + d1, · · · , tn + dn), and 0 otherwise.

Definition 2.5 (KMAX). The knowledge maximizing trust score aggre-
gation operator KMAX is defined as KMAX ((t1, d1), · · · , (tn, dn)) =
(max (t1, · · · , tn) , max (d1, · · · , dn)).

Proposition 2.1. TMAX, DMAX, KAV and KMAX satisfy the trust, dis-
trust and knowledge boundaries.

3. Results and discussion

To measure the performance of the operators, we conduct experiments on a
large data set from CouchSurfing with gradual trust and knowledge state-
ments. Due to space restrictions, we omit the details about the translation of
the trust and knowledge levels to trust scores. We take into account prop-
agation paths of exactly length 2 (with P1 and T = min), so that every
argument for the aggregation results from a propagation process (with the
same path length). We use the leave one out method to compute the accu-
racy of the trust predictions. This method consists of hiding a trust relation
(tri , dri) (the real value) and then trying to predict its hidden real value; the
prediction is denoted by (tpi

, dpi
). The accuracy can then be measured by

the trust mean average error MAE = (
∑m

i=1 |tri − tpi |+ |dri − dpi |) /m (∈
[0, 2]), with m the number of leave one out experiments to perform.



January 29, 2010 10:0 WSPC - Proceedings Trim Size: 9in x 6in PVictorFlins2010

5

We compare the operators with two baseline strategies (squares in
Fig. 1): KMIN which computes (t, d) = (min(t1, · · · , tn), min(d1, · · · , dn)),
and ‘Fixed values’, a strategy that always yields (0.431, 0.206), which rep-
resents the average trust and distrust degree in the translated data set.
Remark that these operators do not always reside in the gray area of Fig. 1.

Fig. 2 shows that TMAX and KAV achieve slightly better results than
DMAX and KMAX. The baselines clearly produce the highest errors.
Hence, at first glance, it looks as if good trust score aggregation opera-
tors must indeed fulfill all boundary conditions (gray area), and that there
is no clear winner among TMAX, DMAX, KMAX and KAV.

However, as Fig. 3 illustrates, the split-up of the results according to the
number n of aggregates gives us a completer picture of an operator’s per-
formance. Notice that all operators perform more or less equally for small
n, but that these classes are exactly the ones that are overrepresented in
our experiment. The bars illustrate e.g. that in more than 500 000 leave one
out experiments there was only one propagation path, or in almost 300 000
exactly two, as opposed to about 1000 experiments which have to aggregate
between 50 and 75 trust scores.

On average, one can see that it becomes more difficult to produce accu-
rate predictions as the number of inputs starts to increase, and that there
is clearly a performance difference between the operators: DMAX’s and
KMAX’s MAE is often almost twice as high as TMAX’s. Obviously, these
two operators are too extreme for the CouchSurfing application. TMAX and
KAV adapt themselves much better to changing aggregation conditions.
Note that TMAX achieves somewhat lower errors in cases with more than
75 inputs, which can be explained by the fact that the average trust degree
tri for n > 75 is significantly higher than for n ≤ 75 (viz. 0.594 vs. 0.423).

Fig. 2. Overall MAE performance of aggregation strategies; MAE ∈ [0, 2].

Aggregation operator Fig. 1 MAE

Trust maximizing TMAX A 0.316
Distrust maximizing DMAX B 0.325
Knowledge preference averaging KAV C 0.318

Knowledge maximizing KMAX D 0.322

Knowledge minimizing KMIN E 0.389
Fixed values F 0.340



January 29, 2010 10:0 WSPC - Proceedings Trim Size: 9in x 6in PVictorFlins2010

6

ALGORITHM

RESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE score

TMAX

DMAX

KMAX

KAV

>=1 

and 

<2

>=2 

and 

<3

>=3 

and 

<4

>=4 

and 

<5

>=5 

and 

<10

>=10 

and 

<20

>=20 

and 

<35

>=35 

and 

<50

>=50 

and 

<75

>=75 

and 

<100

>=10

0 and 

<125

>=125 

and 

<150

>=15

0

0,333 0,308 0,299 0,297 0,297 0,317 0,342 0,358 0,349 0,331 0,282 0,392 0,359

0,333 0,314 0,312 0,315 0,32 0,337 0,367 0,42 0,452 0,499 0,516 0,522 0,578

0,333 0,305 0,303 0,307 0,316 0,348 0,39 0,433 0,445 0,459 0,43 0,478 0,473

0,333 0,311 0,303 0,301 0,3 0,315 0,335 0,359 0,356 0,352 0,351 0,412 0,429

6E+05 3E+05 16725 97410 2E+0579114 20515 3765 1180 232 68 29 16

0,25

0,32

0,39

0,46

0,53

0,6

>
=
1
 a

n
d
 <

2

>
=
2
 a

n
d
 <

3

>
=
3
 a

n
d
 <

4

>
=
4
 a

n
d
 <

5

>
=
5
 a

n
d
 <

1
0

>
=
1
0
 a

n
d
 <

2
0

>
=
2
0
 a

n
d
 <

3
5

>
=
3
5
 a

n
d
 <

5
0

>
=
5
0
 a

n
d
 <

7
5

>
=
7
5
 a

n
d
 <

1
0
0

>
=
1
0
0
 a

n
d
 <

1
2
5

>
=
1
2
5
 a

n
d
 <

1
5
0

>
=
1
5
0

1

10

100

1000

10000

100000

1000000

M
A

E

Number of trust scores to aggregate

#
 E

le
m

e
n
ts

 i
n
 c

la
s
s

TMAX

KAV

KMAX

DMAX

Fig. 3. MAE vs. the number of aggregates n.

4. Conclusions and future work

In this paper, we have built upon previous work2 in which trust scores are
drawn from a bilattice, and introduced four new trust score aggregation
operators. Experiments on a large data set showed that trust maximizing
and knowledge preference averaging operators perform much better than
distrust maximizing or maximum operators. Obviously, the reported per-
formances do not only depend on the choice of aggregation operator, but
also on the combination with propagation, which inherently introduces er-
rors in the computation too. Hence, a first step in our future research is
the investigation of the synergy between the two operator types and their
separate influence on the accuracy. In a next step, we plan to further re-
fine the operators. E.g., only the most knowledgeable agents take part in
the knowledge preference aggregation strategy, even if the difference with
some of the other arguments is almost negligible. Mitigating its behavior
by incorporating knowledge defects might improve the predictions.
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