A First Study on the Noise Impact in Classes for
Fuzzy Rule Based Classification Systems

José A. Séez, Julidan Luengo and Francisco Herrera
Dept. of Computer Science and Artificial Intelligence
CITIC - University of Granada, 18071 Granada, Spain
{smja, julianlm, herrera} @decsai.ugr.es

Abstract—The presence of noise is common in any real data
set and may adversely affect the accuracy, construction time and
complexity of the classifiers. Models built by Fuzzy Rule Based
Classification Systems are recognised for their interpretability,
but traditionally these methods have not considered the presence
of noise in the data, so it would be interesting to quantify its
effect on them.

The aim of this contribution is to study the behavior and ro-
bustness of Fuzzy Rule Based Classification Systems in presence
of noise. In order to do this, 69 synthetic data sets have been
created from 23 data sets from the UCI repository. Different levels
of noise have been introduced artificially in the class in order to
analyze the FRBCSs when noise is present. The methods of Chi et
al. and PDFC have been considered as a case study, analyzing the
accuracy of the models created. From the results obtained, it is
possible to deduce that Fuzzy Rule Based Classification Systems
have a good tolerance to class noise.

I. INTRODUCTION

The classification task [1] consists of making generalizations
from a set of training examples. The knowledge learned from
them can be applied on a set of unobserved examples to predict
their classes. The primary goal of a classification algorithm is
to perform at the same level as human experts. Classification
algorithms can provide many benefits to an organization such
as reducing decision making time, improving the consistency
of decisions, and reducing dependence on scarce human
experts. Successful applications of classification in business
decision making have been reported for fault diagnosis in
semiconductor manufacturing, loan approval, bank failure pre-
diction, and industry and occupation code prediction as shown
in [2].

Among the most important factors to determine the accuracy
of a classifier are the quality of the training data and the
inductive ability of the learning algorithm. Thus, given a par-
ticular learning algorithm, its classification accuracy depends
crucially on the quality of training data, which is determined
by a large number of components [3], [4]. Some are the source
of that data comes from and the input of data, which are
inherently subject to error. Although efforts have been carried
out in order to solve this problem, errors in large data sets are
common and can be serious. Unless exhaustive measures are
taken to avoid them, error rates can reach 5% or more [5]-[7].
Thus, real data sets rarely lack of noise and they usually have
corruptions that can affect the interpretations, decisions taken
and the models created from the data, as well as the system
performance.

978-1-4244-6792-1/10/$26.00 ©2010 IEEE

While a description of the complete taxonomy of data noise
is an open research issue, there are generally two types of noise
in a given data set [8]:

o Class noise or labeling errors occur when an instance
belongs to the incorrect class. Class noise can be at-
tributed to several causes, including subjectivity during
the labeling process, data entry errors, or the absence of
some representative attributes.

o Attribute noise, in contrast, reflects erroneous values for
one or more attributes of the data set.

We focus only on class noise because this type of noise is
most frequent in real data sets and has been most studied in
the literature [9].

Fuzzy Rule Based Classification Systems (FRBCSs) [10],
[11] stand out for being capable of building a linguistic model
interpretable by humans. Although they have been widely
studied in the literature [11], the effects of noise in the results
have not been addressed yet.

The aim of this study is to analyze the behavior of FRBCSs
with noisy training data, based on the accuracy of the classifier
built. In order to achieve our objective, we will analyze the
influence of class noise in the performance and robustness
of FRBCSs. In order to do this, we will consider 23 data
sets from the UCI repository [12]. Three levels of noise will
be introduced in class, 5%, 10% and 20%, to create 69 new
synthetic data sets. We will consider Chi et al. [13] and PDFC
[14] FRBCSs with different configurations. For the Chi et al.
algorithm, the number of labels will be varied. For PDFC,
different type of labels will be considered, paying attention
to how they influence the tolerance to noise. Finally, we
will analyze the impact of noise on the performance of each
system.

The rest of this contribution is organized as follows. In
Section II, we describe the used FRBCSs: the Chi et al.
algorithm and the PDFC method. Then, in Section III, we
develop the description of the noise considered in this study.
In Section IV we describe the experimental framework, where
we indicate the used data sets, the class noise introduction
schema and the parameters configuration for the employed
algorithms in the experimentation. We present the analysis of
the results obtained in Section V. In Section VI, we point out
our conclusions on studied FRBCSs when dealing with noisy
data. Finally in Appendix A the result tables of test accuracy
for Chi et al. and PDFC are depicted.
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II. Fuzzy RULE BASED CLASSIFICATION SYSTEMS

In this section we introduce the FRBCSs used in this work:
the rule generation method of Chi et al. in Subsection II-A
and the PDFC algorithm in Subsection II-B.

FRBCSs are widely employed due to their capability to
build a linguistic model interpretable to the users with the
possibility of mixing different information such as that coming
from expert knowledge and information coming from math-
ematical models or empiric measures. New FRBCS models
have been proposed on standard classification [15], [16] and
data streams [17] among others. They have also been also
applied widely including, but not limited to, the detection of
intrusions, medical applications and in the imbalanced data
framework [18].

Any classification problem consists of m training patterns
zp = (Tp1,---Tpn), (0 = 1,2,...,m), labeled with one of
M possible classes, where z,; is the i-th attribute value (z =
1,2,...,n) of the p-th training pattern.

A. Rule Generation Method of Chi et al.

This method uses fuzzy rules as follows:

Rule R; : If 1 is Aj; and ... and =z, is Aj, )
then Class = C; with RW;
where R; is the label of the j-th rule, = (21,...,2,) i3 an

n-dimensional pattern vector, A;; is an antecedent fuzzy set,
C) is a class label, and RWj is the rule weight [19].

Fuzzy learning methods are the basis to build a FRBCS.
The first algorithm discussed is the method proposed by
Chi et al. [13], [20]. To generate the fuzzy rule base, this
method determines the relationship between the variables of
the problem and establishes an association between the space
of the features and the space of the classes by means of the
following steps:

1) Establishment of the linguistic partitions. Once the do-
main of variation of each feature A; is determined, the
fuzzy partitions are computed.

2) Generation of a fuzzy rule for each example x, =
(Zp1,- .-, Tpn, Cp). To do this is necessary:

2.1 To compute the matching degree p(zp) of the
example to the different fuzzy regions using a
conjunction operator.

2.2 To assign the example x,, to the fuzzy region with
the greatest membership degree.
2.3 To generate a rule for the example, with antecedent

determined by the selected fuzzy region and con-
sequent equal to the class of the example.
2.4 To compute the rule weight.

Rules with the same antecedent can be generated during
the learning. If they have the same class in the consequent we
remove one of them, but if it is different, only the rule with
the highest weight is kept in the rule base.

B. PDFC Method (Positive Definite Fuzzy Classifier)

The PDFC algorithm [14] considers a fuzzy model with m
fuzzy rules of the form:

M 1 2 n
Rule 7 : If A]- AND Aj AND ... AND Aj )
THEN b;
where A? is a fuzzy set with membership function a? R —
0,1, j=1,...,m, k=1,...,n, b; € R. The input output

mapping, F : R™ — R , of the model is defined as

bo + Z;nzl bj HZ:l a? (Z‘k)

Flxp) = W 3
! 1+ 370 IThey af (zx)
where by € R, the membership functions af(zy) = 1 for
k=1,...,n and any z, € R". Then, the system induces a
binary fuzzy classifier, f , with decision rule
f(@p) = sign(F(zp) + 1) Q)

where ¢t € R is a threshold. We can assume ¢ = 0 without a
loss of generality.

The membership functions for a binary fuzzy classifier
defined above are generated from a reference function (the
type of the labels) a* through location transformation [21],
and the classifiers defined in them.

The decision rule of the binary fuzzy classifier, then, can
be written as:

f(zp) = sign (Z b K (xp, 25) + bo> 5)
j=1
where z; = [Z)Z’ z3,...,27]7 € R contains the location

parameters of aj. K : R"™ x R" — [0,1] is a translation
invariant kernel (Mercer Kernel [22]) defined as

K(wp,2) = [ a" (e} — =) ©)
k=1

Finally, the decision rule of a binary fuzzy classifier is

f(z,) = sign <bo +> 5[] af(x,’;)> @)
j=1 k=1

In order to find the fuzzy rules from the training set, it is
necessary to construct a Mercer kernel from the positive defi-
nite reference functions, as given in the Equation 6. Theorem
3.12 in [14] states that the decision rule of a PDFC can be
viewed as a hyperplane in F. A SVM algorithm [23] is used to
find an optimal hyperplane H and, once it is obtained, fuzzy
rules can easily be extracted from the SVM decision rule as
follows:

e by < b, where b is the constant of H.

o For each support vector x;, create a fuzzy rule z; cen-
tering the reference functions in support vector z; « x;,
and assign the consequent of the rule b; < y;a;, where
o is the ¢-th Lagrange multiplier obtained by solving the
quadratic programming problem of SVM, and y; is the
class of i-th support vector.
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III. PRESENCE OF CLASS NOISE IN DATA

Noise is a problem that can affect any real data set [9] and
may influence the accuracy, construction time, interpretability
and size of the model built. Although there are methods
for filtering noise [8] they usually cannot produce data with
similar characteristics to the original [24]. For this reason it is
interesting to know the robustness offered by the classification
methods without external treatment for incorrect data.

In data sets for classification there are two different types
of noise: class noise or labeling error (when the noise affects
the dependent variable) and attribute noise (when the noise
affects one o more independent variables).

Class noise occurs when the class label of an instance is not
appropriate, which may occur in mislabeled or contradictory
examples (instances that appear more than once with different
classes). There are several approaches to mitigate its effects
[8], mainly based on the elimination of noise instances (which
tend to improve the accuracy of the classifier, as shown in [9])
or the correction of the wrong labeled examples.

In [9], a complete study of the class noise impact was
done. They concluded the existence of class noise will de-
crease classification accuracy, where the accuracies decline
almost linearly with the increase of the noise level. Also they
pointed out that removing those noisy instances will improve
the classification accuracy. Even though the use of pruning
techniques of the decision trees employed in this study that
partially addresses the impact of class noise, class noise can
still drastically affect the classification accuracy, as long as the
noise exists in the training set.

In addition to the impact of class noise in classification
accuracy, the research from [8] and [25] also suggests that
class noise handling could shrink the size of the decision trees
and save the time in training a classifier comprehensively.

In order to introduce class noise in the data sets, we adopt
the scheme shown in [25] which is described next. Given the
pair of classes (X, Y), being X the majority class and Y the
second majority class, and a noise level %, an instance with
label X has a probability of 2% to be incorrectly labeled as
Y. As indicated in [9], this scheme is appropriate because it is
more likely that only certain types of classes are mislabeled.

IV. EXPERIMENTAL FRAMEWORK

In this section, first we show in Subsection IV-A the data sets
selected for experimentation. In Subsection IV-B, we give the
details for the insertion of class noise. In Subsection IV-C,
we indicate the algorithms used for the study along with the
parameters used in their execution.

A. Data sets

Table I summarizes the properties of selected data sets for
experimentation. For each data set the number of examples
(#EX.), the number of numeric attributes (#Attrs.) and the
number of classes (#Cl.) are presented.

Data set #EX. #Attrs. | #CL
banana 5,300 2 2
contraceptive 1,473 9 3
ecoli 336 7 8
glass 214 9 7
heart 270 13 2
ionosphere 351 33 2
iris 150 4 3
magic 19,020 10 2
monk-2 432 6 2
page-blocks 5,472 10 5
penbased 10,992 16 10
phoneme 5,404 5 2
pima 768 8 2
ring 7,400 20 2
satimage 6,435 36 7
segment 2,310 19 7
sonar 208 60 2
spambase 4,597 57 2
thyroid 7,200 21 3
twonorm 7,400 20 2
wdbc 569 30 2
wine 178 13 3
yeast 1,484 8 10

TABLE I
SUMMARY DESCRIPTION FOR CLASSIFICATION DATA SETS.

The accuracy estimation of each classifier is obtained by
means of 5-fold cross validation. We divide the data set
into five partition sets with equal number of examples and
maintaining the proportion between classes. Each partition set
is used as test for the model learned from the four remaining
partitions. We use five partitions because most of the used
data sets in our experiments are small, so they would have
a low number of examples in the test partition if a higher
fold number is considered. Moreover, since each partition has
a larger number of examples the noise effects will be more
notable facilitating their analysis.

B. Class Noise Introduction Schema

Following the class noise introduction schema explained in
Section III, from 23 data sets from UCI repository we have
introduced class noise with levels z = 5%, x = 10% and
x = 20% obtaining 69 new data sets with class noise.

In all created data sets noise is introduced only in the
training partitions, while the test sets remain unchanged. Thus
it is possible to observe how noise affects the accuracy of the
classifiers when training with noisy data.

To estimate the loss of accuracy (L, ) produced in a classifier
in the presence of determined noise percentage, we use the
formula presented in Equation 8:

_ Accoy, — Accyy,

Ly=——"—"—"-"72= 8
Accoy, ®)

where Acc,y is the mean accuracy of the classifier with a
noise level of 2% in all data sets.
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C. Parameters Configuration

The algorithms have been executed with the KEEL tool 1 126]
with the recommended values from the authors shown in Table
1I.

Parameters

Number of labels = 3, 5 and 7

T-norm for the computation of the
compatibility = Product

Rule weight = Penalized certainty factor
Fuzzy reasoning method = Winning rule
C =100

d=025

Tolerance = 0.001

epsilon = 10~ 12

Labels type = Gaussian and symmetric triangle
Preprocess = Normalize in [0,1]

Algorithm
Chi et al.

PDFC

TABLE II
PARAMETER SPECIFICATION FOR THE METHODS EMPLOYED IN THE
EXPERIMENTATION.

For the Chi et al. algorithm different numbers of labels
have been used in order to analyze its influence on tolerance
to noise. For PDFC different types of labels have been
employed in the experimentation to analyze how noise affects
the created model, since this FRBCS adjusts the number of
labels automatically.

V. ANALYSIS OF THE INFLUENCE OF CLASS NOISE IN
FRBCSs

In this section we analyze the noise robustness of the two
FRBCSs, considering two measures: the classical accuracy and
the loss of accuracy described in Equation 8.

In order to complete the analysis given in this section and
get more details about the concrete obtained results, we present
the tables of the Appendix A. For each studied algorithm and
for each configuration, we show the average of test accuracy
for the 5 executions done in each data set. So the Table V,
Table VI and Table VII depict the results for the Chi et al.
algorithm with 3, 5, and 7 labels respectively. Table VIII shows
the results for PDFC with gaussian labels and Table IX for
PDFC with triangular labels. In theses tables, we can observe
how the average of test accuracy in each data set is affected
when introducing different noise levels in classes. The name
of the data set, and the average of test accuracy in each level
of noise is present (a 0% noise level indicates that no-noise is
introduced).

Summary description of the Appendix A is present in Table
IIT that shows the mean accuracy in test with different levels
of noise for the 92 data sets with class noise. The column
(Method) shows the analyzed method, with the configuration
parameter considered in brackets: in the Chi et al. algorithm
correspond to the number of linguistic labels. For the PDFC
algorithm, it indicates the type of labels, with (T) for the
symmetric triangle function and (G) for gaussian function. The
column (Mean) shows the mean result at all noise levels, and

Iwww.keel.es

the rest of columns, the mean accuracy with a concrete level
of noise. Table IV shows the loss of accuracy for the different
noise levels considered.

Accuracy
Method 0% | 5% | 10% | 20% | Mean
Chi 3 69.82 | 69.90 | 70.18 | 68.88 | 69.69
Chi 5 66.83 | 66.61 | 6627 | 64.85 | 66.15
Chi (7) 35840 | 57.97 | 5749 | 55.00 | 57.44
PDFC (G) | 86.40 | 85.84 | 8523 | 83.40 | 85.22
PDFC (T) | 88.42 | 87.31 | 8656 | 8339 | 86.42
TABLE I

TEST ACCURACY WITH CLASS NOISE AT 5%, 10% AND 20%.

Loss
Method ' —sor 150, 20% | Mean
Chi 3 0.00 | -0.01 | 0.0 | 0.00
Chi 5) 0.00 | 001 | 003 | 001
Chi (7) 001 [ 002 | 004 | 002
PDFC (G) | 0.01 | 001 | 005 | 002
PDFC (T) | 0.01 | 002 | 0.06 | 0.03
TABLE IV

TEST LOSS WITH CLASS NOISE AT 5%, 10% AND 20%.

Based on these experimental results with class noise, we
observe that the PDFC algorithm in its two configurations
works better than the Chi et al. algorithm since it achieves
better accuracy results in all cases (with and without noise).
The overall best method is PDFC using the triangular type of
labels.

Considering the Chi et al. algorithm, a smaller number of
linguistic labels provides a better noise tolerance, as shown in
Table IV, where the loss is compounded by the introduction of
higher noise levels. Similarly, the type of label for the PDFC
algorithm also affects the method noise sensitivity. In some
cases, as shown by the negative result for the algorithm Chi
(3) with 10% of noise in Table IV (-0.01), some algorithms
can benefit by introducing very low levels of noise, since it
may happen that data considered as outliers previously now
fall within the boundaries of their class when varying their
characteristics.

As mentioned, the PDFC method obtains higher accuracy
in average than Chi et al., but suffers of a higher absolute
loss of accuracy when levels of class noise are increased. Due
to PDFC obtains a model that fits the training data better,
the increase in noise is more damaging to the adjustment
when compares to the Chi et al. method. Despite having more
loss, PDFC stills obtains higher accuracy than the Chi et al
algorithm.

In both cases, the percentages of loss of the algorithms
studied are very small indicating the high robustness against
class noise of the FRBCSs.
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VI. CONCLUSIONS

In this contribution we have analyzed the influence of class
noise in FRBCSs. In order to do so, we have carried out an
analysis using the Fuzzy Rule Based Classification Systems
formally known as Chi et al. and PDFC. We have analized the
class noise disrupting the original data sets with noise levels
of z = 5%, z = 10% and z = 20%.

From the results and their analysis, it follows that a better
fitted model obtained with a higher accuracy in test when
training with noise-free data usually obtains a higher loss of
accuracy when introducing class noise. The percentages of
loss of accuracy indicate that FRBCSs are robust against class
noise, obtaining a loss of accuracy lower than 6% with high
noise levels.

In the case of Chi et al. the number of linguistic labels
has shown its influence in the class noise sensitivity: a lower
number of labels implies a higher noise tolerance. PDFC (T)
with triangular labels has shown a high robustness against class
noise when compared with gaussians ones.

This is a preliminary study for two FRBCSs. As future
work, it would be possible to incorporate new FRBCSs to
make a better generalization of their behaviors against noise,
and the application of filtering techniques or the inclusion of
mechanisms for dealing with noise in FRBCS itself.

APPENDIX A
TEST ACCURACY TABLES FOR ALL DATA SETS

In this appendix the test accuracy tables are presented. In
each row the results for the data set are depicted, and in each
column the considered noise level are shown.

Data set 0% 5% 10% 20%
banana 60.32 | 64.64 | 73.77 | 45.47
contraceptive | 40.26 | 39.04 | 40.19 | 38.29
ecoli 72.64 | 73.53 | 74.13 | 76.50
glass 57.95 | 53.72 | 48.59 | 48.12
heart S51.11 | 50.37 | 51.48 | 47.78
ionosphere 65.27 | 64.41 | 63.84 | 60.71
iris 92.67 | 92.67 | 92.67 | 92.67
magic 76.80 | 77.40 | 78.10 | 79.21
monk-2 4145 | 39.60 | 38.22 | 36.60
page-blocks 91.92 | 91.79 | 91.79 | 91.85
penbased 97.71 | 97.70 | 97.69 | 97.59
phoneme 71.93 | 7230 | 72.37 | 73.32
pima 72.53 | 74.09 | 74.48 | 72.00
ring 5527 | 56.22 | 58.12 | 64.80
satimage 48.30 | 47.52 | 46.39 | 44.52
segment 85.71 | 85.67 | 85.54 | 83.59
sonar 59.18 | 57.74 | 55.33 | 57.76
spambase 71.22 | 72779 | 74.59 | 81.10
thyroid 92.01 | 92.03 | 91.93 | 91.39
twonorm 90.54 | 90.74 | 90.36 | 84.70
wdbc 92.62 | 92.27 | 91.39 | 92.10
wine 92.67 | 91.54 | 90.41 | 88.73
yeast 2574 1 2992 | 32775 | 35.44
Mean 69.82 | 69.90 | 70.18 | 68.88
TABLE V

TEST ACCURACY RESULTS FOR ALL DATA SETS EMPLOYED IN THE
EXPERIMENTATION FOR CHI (3)
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Data set 0% 5% 10% 20%
banana 80.15 | 80.30 | 79.08 | 65.92
contraceptive | 30.01 | 29.47 | 29.74 | 29.13
ecoli 81.26 | 80.66 | 80.96 | 80.07
glass 58.89 | 57.51 | 54.67 | 52.82
heart 20.74 | 20.74 | 20.74 | 17.78
ionosphere 5443 | 53.29 | 52.15 | 51.01
iris 96.00 | 96.00 | 96.00 | 96.00
magic 80.94 | 80.91 | 81.03 | 80.38
monk-2 0.00 0.00 0.00 0.00
page-blocks 94.12 | 9391 | 94.21 | 94.06
penbased 95.48 | 9546 | 95.38 | 95.27
phoneme 78.55 | 78.55 | 79.52 | 78.83
pima 70.17 | 70.96 | 69.39 | 67.58
ring 64.28 | 65.11 | 66.26 | 68.46
satimage 52.03 | 51.90 | 52.17 | 52.93
segment 89.70 | 89.70 | 90.00 | 89.74
sonar 14.48 | 14.01 | 11.58 | 13.03
spambase 81.05 | 81.34 | 82.42 | 82.16
thyroid 92.01 | 92.00 | 91.83 | 91.32
twonorm 90.31 | 89.39 | 88.35 | 85.07
wdbc 84.18 | 83.48 | 82.25 | 79.44
wine 73.02 | 72.44 | 71.90 | 70.78
yeast 56.33 | 5492 | 54.51 | 49.80
Mean 66.88 | 60.61 | 66.27 | 64.85
TABLE VI

TEST ACCURACY RESULTS FOR ALL DATA SETS EMPLOYED IN THE
EXPERIMENTATION FOR CHI (5)

Data set 0% 5% 10% 20%
banana 87.45 | 86.87 | 86.11 | 80.43
contraceptive | 28.78 | 27.97 | 27.97 | 28.04
ecoli 68.47 | 67.58 | 68.17 | 66.38
glass 59.83 | 59.35 | 57.00 | 52.80
heart 7.04 7.04 7.04 4.44
ionosphere 4273 | 40.74 | 38.46 | 39.32
iris 88.67 | 88.67 | 88.67 | 88.67
magic 81.47 | 81.38 | 81.27 | 80.93
monk-2 0.00 0.00 0.00 0.00
page-blocks 94.12 | 93.97 | 94.12 | 93.99
penbased 82.81 | 82.73 | 82.46 | 82.07
phoneme 82.07 | 81.90 | 81.85 | 80.85
pima 62.76 | 62.11 | 60.15 | 58.20
ring 52.53 | 52.34 | 52.22 | 51.22
satimage 78.59 | 77.81 | 77.26 | 75.80
segment 91.30 | 91.17 | 91.34 | 91.13
sonar 2.93 2.93 2.93 2.93
spambase 7770 | 77.64 | 77.31 | 75.61
thyroid 91.39 | 91.31 | 91.11 | 90.13
twonorm 23.57 | 23.03 | 22.53 | 21.22
wdbc 63.98 | 62.75 | 61.16 | 5291
wine 18.44 | 1844 | 17.87 | 17.87
yeast 56.67 | 55.53 | 55.26 | 50.88
Mean 58.40 | 57.97 | 57.49 | 55.90
TABLE VII

TEST ACCURACY RESULTS FOR ALL DATA SETS EMPLOYED IN THE
EXPERIMENTATION FOR CHI (7)




Data set 0% 5% 10% 20%
banana 68.68 | 66.17 | 64.30 | 58.13
contraceptive | 54.24 | 54.17 | 53.63 | 50.17
ecoli 83.05 | 83.64 | 84.24 | 82.45
glass 68.26 | 66.87 | 63.61 | 55.65
heart 80.74 | 79.63 | 78.15 | 72.59
ionosphere 93.45 | 90.33 | 92.88 | 90.59
iris 95.33 | 9533 | 95.33 | 94.67
magic 86.15 | 86.09 | 86.00 | 85.62
monk-2 97.22 | 96.30 | 96.99 | 94.66
page-blocks 95.87 | 95.36 | 95.36 | 95.34
penbased 99.50 | 99.47 | 99.46 | 99.40
phoneme 80.13 | 79.74 | 79.37 | 78.92
pima 76.56 | 76.95 | 77.21 | 73.57
ring 97.99 | 97.84 | 97.81 | 97.36
satimage 87.40 | 87.21 | 87.30 | 87.24
segment 95.84 | 95.80 | 95.80 | 95.76
sonar 89.38 | 87.97 | 82.17 | 83.19
spambase 93.93 | 93.30 | 92.84 | 92.06
thyroid 94.86 | 94.49 | 94.29 | 93.89
twonorm 97.65 | 97.35 | 97.61 | 97.27
wdbc 97.36 | 97.54 | 97.19 | 97.19
wine 97.17 | 96.62 | 95.46 | 92.67
yeast 56.53 | 56.06 | 53.30 | 49.73
Mean 86.40 | 85.84 | 85.23 | 83.40
TABLE VIII

TEST ACCURACY RESULTS FOR ALL DATA SETS EMPLOYED IN THE
EXPERIMENTATION FOR PDFC (G)

Data set 0% 5% 10% 20%
banana 89.72 | 89.40 | 89.06 | 88.34
contraceptive | 51.46 | 49.42 | 49.89 | 48.47
ecoli 81.85 80.95 | 77.99 | 73.52
glass 77.57 | 76.19 | 73.39 | 73.38
heart 8222 | 79.26 | 8222 | 72.22
ionosphere 95.45 92.89 | 9345 | 88.62
iris 94.00 | 92.67 | 92.67 | 88.67
magic 87.66 | 87.27 | 87.13 | 84.94
monk-2 100.00 | 97.22 | 94.45 | 90.97
page-blocks 97.09 97.00 | 96.82 | 96.29
penbased 99.57 99.34 | 99.03 | 97.90
phoneme 87.27 87.51 | 86.97 | 84.84
pima 70.57 | 69.40 | 67.71 | 66.27
ring 97.43 | 9581 | 94.05 | 89.95
satimage 91.08 | 90.55 | 89.54 | 86.76
segment 98.57 98.27 | 97.58 | 96.19
sonar 87.47 | 86.99 | 86.02 | 81.27
spambase 94.95 92.78 | 91.56 | 87.71
thyroid 99.26 | 98.67 | 98.17 | 95.96
twonorm 97.46 | 96.55 | 95.57 | 91.18
wdbc 98.24 | 96.49 | 95.26 | 88.05
wine 98.30 | 97.19 | 96.06 | 92.11
yeast 56.40 | 56.33 | 56.40 | 54.38
Mean 88.42 | 8731 | 86.56 | 83.39
TABLE IX

TEST ACCURACY RESULTS FOR ALL DATA SETS EMPLOYED IN THE
EXPERIMENTATION FOR PDFC (T)
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