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Abstract We present a new mechanism to introduce diversity into two multiobjec-
tive approaches based on ant colony optimisation and randomised greedy algorithms
to solve a more realistic extension of a classical industrial problem: time and space
assembly line balancing. Promising results are shown afterapplying the designed
constructive metaheuristics to ten real-like problem instances.
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1 Introduction

An assembly line is made up of a number of workstations, arranged either in series
or in parallel. These stations are linked together by a transport system that aims to
supply materials to the main flow and to move the production items from one station
to the next one.

Since the manufacturing of a production item is divided intoa set of tasks, a usual
and difficult problem is to determine how these tasks can be assigned to the stations
fulfilling certain restrictions. Consequently, the aim is to get an optimal assignment
of subsets of tasks to the stations of the plant. Moreover, each task requires an oper-
ation time for its execution which is determined as a function of the manufacturing
technologies and the employed resources.

A family of academic problems –referred to as simple assembly line balanc-
ing problems (SALBP)– was proposed to model this situation [3, 15]. Taking this
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family as a base and adding spatial information to enrich it,Bautista and Pereira
recently proposed a more realistic framework: the time and space assembly line
balancing problem (TSALBP) [2]. This framework considers an additional space
constraint to become a simplified version of real-world problems. The new space
constraint emerged due to the study of the specific characteristics of the Nissan
plant in Barcelona (Spain).

As many real-world problems, TSALBP formulations have a multicriteria na-
ture [4] because they contain three conflicting objectives to be minimised: the cycle
time of the assembly line, the number of the stations, and thearea of this stations.
In this paper we have selected the TSALBP-1/3 variant which tries to minimise the
number of stations and their area for a given product cycle time. We have made this
decision because it is quite realistic in the automotive industry. The final aim is to
provide the plant manager with a well spread Pareto front of solutions with different
trade-offs between the number of stations and the area of these stations. This will
allow the plant manager to choose the most appropriate one for his/her industrial
context.

TSALBP-1/3 has an important set of constraints like precedences or cycle time
limits for each station. Thus, the use of constructive approaches like ant colony op-
timisation (ACO) [10] is more convenient than others like local or global search
procedures. ACO is a constructive metaheuristic [13] inspired by the shortest path
searching behaviour of various ant species. Many differentACO algorithms have
successfully solved different combinatorial problems such as the travelling sales-
man problem, the quadratic assignment problem, the sequential ordering problem,
production scheduling, timetabling, project scheduling,vehicle and telecommuni-
cation routing, and investment planning [10].

Due to the two aforementioned reasons, i.e., the multiobjective nature of the
problem and the need to solve it through constructive algorithms, a sensible choice
is to use a Pareto-based multiobjective ACO (MOACO) algorithm [12]. This fam-
ily involves different variants of ACO algorithms which aimto find not only one
solution, but a set of the best solutions according to several conflicting objective
functions.

In [7], we successfully tackled the TSALBP-1/3 by means of a specific proce-
dure based on the multiple ant colony system (MACS) algorithm [1]. However, we
noticed that intensification could be too high in a specific region of the Pareto front
because of the station-oriented approach that was accomplished. In particular, the
approximations to the obtained Pareto fronts showed a significant lack of diversity
and an excessive convergence to the left-most region of the objective space. That is
an undesirable situation for the plant managers who should be provided with all the
configurations of their contextual interest in the objective space.

In this paper we aim to introduce a new mechanism in two constructive meta-
heuristics in order to avoid that local convergence behaviour. On the one hand,
we induce the generation of more diverse solutions by means of a multi-colony
approach [14] according to different station filling rates in the MACS algorithm.
On the other hand, the new filling threshold mechanism is alsoincluded on an-
other method. In particular, we consider a multiobjective randomised greedy algo-
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rithm (MORGA), based on the first stage of the GRASP method [11] and proposed
in [6]. It follows the same constructive scheme and Pareto-based approach used in
the MACS algorithm. In this way, we have been able to compare the influence of
incorporating the new diversity improvement in both approaches, the MOACO algo-
rithm and the MORGA. These algorithms, with and without the new diversification
component, will be tested on ten real-like TSALBP-1/3 instances.

The paper is structured as follows. In Section 2, the problemformulation and
the MOACO algorithm and the MORGA are explained. Then, the proposed multi-
colony approach to improve the proposals is described in Section 3. The experimen-
tation setup as well as the analysis of results is presented in Section 4. Finally, some
concluding remarks are discussed in Section 5.

2 Preliminaries

In this section the problem preliminaries are presented first. Then, the main features
of the MACS algorithm and the MORGA to tackle the TSALBP-1/3 variant are
described.

2.1 The Time and Space Assembly Line Balancing Problem

The manufacturing of a production item is divided into a setV of n tasks. Each task
j requires an operation time for its executiont j > 0 that is determined as a function
of the manufacturing technologies and the employed resources. A taskj is assigned
to a single stationk. Each stationk has thus assigned a subset of tasksSk (Sk ⊆V ),
called its workload.

Each taskj has a set of direct predecessors,Pj, which must be accomplished
before starting it. These constraints are normally represented by means of an acyclic
precedence graph, whose vertices stand for the tasks and where a directed arc(i, j)
indicates that taski must be finished before starting taskj on the production line.
Thus, if i ∈ Sh and j ∈ Sk, thenh ≤ k must be fulfilled. Each stationk presents a
station workload timet(Sk) that is equal to the sum of the tasks’ lengths assigned to
the stationk. SALBP [15] focuses on grouping tasks in workstations by an efficient
and coherent way. There is a large variety of exact and heuristic problem-solving
procedures for it [16].

The need of introducing space constraints in the assembly lines’ design is based
on two main reasons: (a) the length of the workstation is limited in the majority of
the situations, and (b) the required tools and components tobe assembled should be
distributed along the sides of the line. Hence, an area constraint may be considered
by associating a required areaa j to each taskj and an available areaAk to each
stationk that, for the sake of simplicity, we shall assume it to be identical for every
station and equal toA : A = max∀k∈{1..n}{Ak}. Thus, each stationk requires a station
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areaa(Sk) that is equal to the sum of areas required by the tasks assigned to station
k.

This leads us to a new family of problems called TSALBP in [2].It may be stated
as: given a set ofn tasks with their temporalt j and spatiala j attributes (1≤ j ≤ n)
and a precedence graph, each task must be assigned to a singlestation such that:
(i) every precedence constraint is satisfied, (ii) no station workload time (t(Sk)) is
greater than the cycle time (c), and (iii) no area required by any station (a(Sk)) is
greater than the available area per station (A).

TSALBP presents eight variants depending on three optimisation criteria:m (the
number of stations),c (the cycle time) andA (the area of the stations). Within these
variants there are four multiobjective problems and we willtackle one of them, the
TSALBP-1/3. It consists of minimising the number of stations m and the station
areaA, given a fixed value of the cycle timec.

We chose this variant because it is quite realistic in the automotive industry since
the annual production of an industrial plant (and therefore, the cycle timec) is usu-
ally set by some market objectives. For more information we refer the interested
reader to [5].

2.2 TSALBP-1/3 Formulation

According to the TSALBP formulation [2], the 1/3 variant deals with the minimisa-
tion of the number of stations,m, and the area ocuppied by those stations,A, in the
assembly line configuration. We can mathematically formulate this TSALBP variant
as follows:

Min f 0(x) = m =
UBm

∑
k=1

max
j=1,2,...,n

x jk, (1)

f 1(x) = A = max
k=1,2,...,UBm

n

∑
j=1

a jx jk (2)

subject to:

L j

∑
k=E j

x jk = 1, j = 1,2, ...,n (3)

UBm

∑
k=1

max
j=1,2,...,n

x jk ≤ m (4)

n

∑
j=1

t jx jk ≤ c, k = 1,2, ...,UBm (5)
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n

∑
j=1

a jx jk ≤ A, k = 1,2, ...,UBm (6)

Li

∑
k=Ei

kxik ≤
L j

∑
k=E j

kx jk, j = 1,2, ...,n; ∀i ∈ Pj (7)

x jk ∈ {0,1}, j = 1,2, ...,n; k = 1,2, ...,UBm (8)

where:

• n is the number of tasks,
• x jk is a decision variable taking value 1 if taskj is assigned to stationk, and 0

otherwise,
• a j is the area information for taskj,
• UBm is the upper bound for the number of stationsm,
• E j is the earliest station to which taskj may be assigned,
• L j is the latest station to which taskj may be assigned,
• UBm is the upper bound of the number of stations. In our case, it isequal to the

number of tasks, and

Constraint in equation 3 restricts the assignment of every task to just one station,
4 limits decision variables to the total number of stations,5 and 6 are concerned with
time and area upper bounds, 7 denotes the precedence relationship among tasks, and
8 expresses the binary nature of variablesx jk.

2.3 Multiple ant colony system

MACS was proposed as a was proposed as a multiobjective extension of the ant
colony system (ACS) [9]. MACS uses a single pheromone trail matrix τ and several
heuristic information functionsηk (in our case,η0 for the operation timet j of each
task j andη1 for its areaa j). From now on, we restrict the description of the algo-
rithm to the case of two objectives. In this way, an ant moves from nodei to nodej
by applying the following transition rule:

j =

{

arg maxj∈Ω (τi j · [η0
i j]

λβ · [η1
i j]

(1−λ )β ), if q ≤ q0,

î, otherwise.
(9)

whereΩ represents the current feasible neighbourhood of the ant,β weights the
relative importance of the heuristic information with respect to the pheromone trail,
andλ is computed from the ant indexh asλ = h/M, with M being the number of
ants in the colony,q0 ∈ [0,1] is an exploitation-exploration parameter,q is a random
value in[0,1], andî is a node selected according to the probability distribution p( j):
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p( j) =







τi j ·[η0
i j ]

λβ ·[η1
i j ]

(1−λ )β

∑u∈Ω τiu·[η0
iu]λβ ·[η1

iu](1−λ )β , if j ∈ Ω ,

0, otherwise.
(10)

Every time an ant crosses edge< i, j >, it performs the local pheromone update
as follows:τi j = (1−ρ) · τi j +ρ · τ0

Initially, τ0 is calculated by taking the average costs,f̂ 0 and f̂ 1, of each of the
two objective functions,f 0 and f 1, from a set of heuristic solutions by applying the
expression:

τ0 =
1

f̂ 0 · f̂ 1
(11)

However, the value ofτ0 is not fixed during the algorithm run, as usual in ACS,
but it undergoes adaptation. At the end of each iteration, every complete solution
built by the ants is compared to the Pareto archivePA which was generated till that
moment. This is done in order to check if a new solution is a non-dominated one. If
so, it is included in the archive and all the dominated solutions are removed. Then,
τ ′0 is calculated by applying equation (11) with the average values of each objective
function taken from the current solutions of the Pareto archive. If τ ′0 > τ0, being
τ0 the initial pheromone value, pheromone trails are reinitialised to the new value
τ0 = τ ′0. Otherwise, a global update is performed with each solutionS of the Pareto
set approximation contained inPA applying the following rule on its composing
edges< i, j >:

τi j = (1−ρ) · τi j +
ρ

f 0(S) · f 1(S)
(12)

2.4 A MACS algorithm for the TSALBP-1/3

In this section we describe the customisation made on all thecomponents of the
general MACS algorithm scheme to build our solution methodology.

2.4.1 Heuristic information

MACS works with two different heuristic information values, η0
j andη1

j , each of

them associated to one criterion. In our case,η0
j is related with the required opera-

tion time for each task andη1
j with the required area:

η0
j =

t j

c
·

| Fj |

maxi∈Ω | Fi |
η1

j =
a j

UBA
·

| Fj |

maxi∈Ω | Fi |

whereUBA is the upper bound for the area (the sum of all tasks’ areas) and Fj is the
set of tasks that come after taskj. The second term in both formulae represents a
ratio between the number of successors of the taskj (the cardinality of the succes-
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sors setFj) and the maximum number of successors of any eligible task belonging
to the ant’s feasible neighbourhoodΩ . Both sources of heuristic information range
in [0,1], with 1 being the most preferable.

As usual in the SALBP, tasks having a large value of time (a large duration) and
area (occupying a lot of space) are preferred to be firstly allocated in the stations.
Apart from area and time information, we have added another information related
to the number of successors of the task which was already usedin [2]. Tasks with a
larger number of successors are preferred to be allocated first.

Heuristic information is one-dimensional since it is only assigned to tasks. In
addition, it can be noticed that heuristic information has static and dynamic com-
ponents. Tasks’ timet j and areaa j are always fixed while the successors rate is
changing through the constructive procedure. This is because it is calculated by
means of the candidate list of feasible and non-assigned tasks at that moment.

2.4.2 Pheromone trail and τ0 calculation

The pheromone trail information has to memorise which tasksare the most appro-
priate to be assigned to a station. Hence, pheromone has to beassociated to a pair
(stationk, task j), beingk = 1, ...,n and j = 1, ...,n. In this way, contrary to heuristic
information, our pheromone trail matrix has a bi-dimensional nature since it links
tasks with stations.

In every ACO algorithm, an initial value for the pheromone trails has to be set up.
This value is calledτ0 and it is normally obtained from an heuristic algorithm. We
have used two station-oriented single-objective greedy algorithms, one per heuristic,
to compute it. These algorithms open the first station and select the best possible
task according to their heuristic information (related either with the duration time
and successors rateη0

j , or the area and successors rateη1
j ). This process is repeated

till there is not any task that can be included because of the cycle time limit. Then,
a new station must be opened. When no more tasks are to be assigned, the greedy
algorithm finishes.τ0 is then computed from the costs of the two solutions obtained
by the greedy algorithm using the following MACS equation:τ0 = 1

f 0(Stime)· f 1(Sarea)

2.4.3 Randomised station closing scheme and transition rule

Our approach follows astation-oriented procedure, which starts opening a station
and selecting the most suitable task to be assigned. When the current station is
loaded maximally, it is closed and the next one is opened and ready to be filled.
At the beginning, we decided to close the station when it was full in relation to the
fixed cycle timec, as usual in SALBP and TSALBP applications. We found that
this scheme did not succeed because the obtained Pareto fronts did not have enough
diversity. Thus, we introduced a new mechanism in the construction algorithm to
close the station according to a probability, given by the filling rate of the station:
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p (closing Sk) =
∑i∈Sk

ti
c

(13)

This probability distribution is updated at each construction step. A random num-
ber is uniformly generated in[0,1] after each update to decide whether the station
is closed or not. If the decision is not to close the station, we choose the next task
among all the candidate tasks using the MACS transition ruleand the procedure
goes on.

Because of the one-dimensional nature of the heuristic information, the original
transition rule (Equation 9) that chooses among all the candidate tasks at each step,
has been modified:

j =

{

arg maxj∈Ω (τk j · [η0
j ]

λβ · [η1
j ]

(1−λ )β ), if q ≤ q0,

î, otherwise,
(14)

whereî is a node selected by means of the following probability distribution:

p( j) =

{

τk j ·[η0
j ]

λβ ·[η1
j ]

(1−λ )β

∑u∈Ω τku·[η0
u ]λβ ·[η1

u ](1−λ )β , if j ∈ Ω ,

0, otherwise.
(15)

2.5 MORGA

Our diversification generation mechanism behaves similarly to a GRASP construc-
tion phase [11]. The most important element in this kind of construction is that the
selection of the task at each step must be guided by a stochastic greedy function that
is adapted with the pseudo-random selections made in the previous steps.

We introduce randomness in two processes. On the one hand, allowing each de-
cision to be randomly taken among the best candidates. On theother hand, closing
the station according to a probability distribution.

We use the same constructive approach, with closing probabilities at each con-
structive step, than in the MACS algorithm. The probabilistic criterion to select the
next task that will be included in the current station is changed to be only based on
heuristic information. Therefore, to make a decision amongall the current feasible
candidate tasks we use a single heuristic value given by:

η j =
t j

c
·

a j

UBA
·

| Fj |

maxi∈Ω | Fi |
(16)

The decision is made randomly among the selected tasks in therestricted can-
didate list (RCL) by means of the following procedure: we calculate the heuristic
value of every feasible candidate task to be assigned to the current open station.
Then, we sort them according to their heuristic values and, finally, we set a quality
threshold for the heuristic given byq = maxη j −γ · (maxη j −minη j).

All the tasks with a heuristic valueη j greater or equal thanq are selected to
be in the RCL.γ is the diversification-intensification trade-off control parameter.
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Whenγ = 1 there is a completely random choice inducing the maximum possible
diversification. In contrast, ifγ = 0 the choice is close to a pure greedy decision,
with a low diversification.

As MACS, the MORGA construction algorithm also incorporates a mechanism
which allows us to close a station according to a probabilitydistribution, given by
the filling rate of the station (see equation (13)).

3 Using a multi-colony approach on the MACS-TSALBP-1/3 and
MORGA algorithms

The MACS-based TSALBP-1/3 algorithm proposed in [7] carries the problem of
not providing enough intensification in some Pareto front areas, since there is a
low probability of filling stations completely. Hence, there is a need to find a better
intensification-diversification trade-off. This objective can be achieved by introduc-
ing different filling thresholds associated to the ants thatbuild the solution. These
thresholds make the different ants in the colony have a different search behaviour.
Thus, the ACO algorithm becomes multi-colony [14]. In our case, thresholds are set
between 0.2 and 0.9 and they are considered as a preliminary step before deciding
to close a station.

Therefore, the solution construction procedure is modified. We compute the sta-
tion closing probability distribution as usual based on thestation current filling rate
(equation (13)). However, only when the ant’s filling threshold has been overcome,
the random decision of either closing a station or not according to that probabil-
ity distribution is considered. Otherwise, the station will be kept opened. Thus, the
higher the ant’s threshold is, the more complete the stationwill be likely to be. This
is due to the fact that there are less possibilities to close it during the construction
process.

In this way, the ant population will show a highly diverse search behaviour, al-
lowing the algorithm to properly explore the different parts of the optimal Pareto
fronts by appropriately spreading the generated solutions.

We have also used the same filling thresholds technique for the MORGA. In the
MACS algorithm, these filling thresholds are applied in parallel following the multi-
colony approach. Unlike the MACS algorithm, different thresholds are only used in
isolation at each iteration in the case of the MORGA.
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4 Experimentation

4.1 Problem instances and parameter values

Ten problem instances with different features have been selected for the experi-
mentation:arc111 with cycle time limits of c = 5755 andc = 7520 (P1 and
P2),barthol2 (P3),barthold (P4),heskia (P5),lutz2 (P6),lutz3 (P7),
mukherje (P8), scholl (P9), andweemag (P10). Originally, these instances
were SALBP-1 instances only having time information. However, we have created
their area information by reverting the task graph to make them bi-objective (as done
in [2]) 1.

We run each algorithm 10 times with different random seeds, setting the time
as stopping criteria (900 seconds). All the algorithms werelaunched in the same
computer: Intel PentiumT M D with two CPUs at 2.80GHz, and CentOS Linux 4.0.
On the one hand, the values of the parameters used in all the MACS algorithms
with and without the new diversification component are as follows. We consider
ten different ants,β = 2, andρ = 0.2. Different values of the transition rule pa-
rameterq0 are also studied. In particular:q0 = 0.2,0.5,0.8. On the other hand, the
MORGA was launched with different diversification-intensification parameter val-
ues,γ = {0.1,0.2,0.3}

With respect to the parameters of our proposal on using different filling thresh-
olds, there are two ants for each of the five ants’ thresholds considered:{0.2,0.4,0.6,
0.7,0.9} in the MACS algorithm. The same threshold values were used for the
MORGA.

4.2 Metrics of performance

We will consider two different multiobjective metrics [8, 17] to evaluate the per-
formance of the two variants of the MACS-based TSALBP-1/3 algorithm and the
MORGA.

On the one hand, we selected the hypervolume ratio (HVR) fromthe first group.
It can be calculated as follows:

HV R =
HV (P)

HV (P∗)
, (17)

whereHV (P) and HV (P∗) are the volume (S metric value) of the approximate
Pareto set and the true Pareto set, respectively. WhenHV R equals 1, then the ap-
proximate Pareto front and the true one are equal. Thus,HV R values lower than 1
indicate a generated Pareto front that is not as good as the true Pareto front.

1 Problem instances and more information available at
http://www.nissanchair.com/TSALBP
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We should notice that the true Pareto fronts are not known in our real-world
problem instances. Thus, we will consider a pseudo-optimalPareto set, i.e. an ap-
proximation of the true Pareto set, obtained by merging all the (approximate) Pareto

setsP j
i generated for each problem instance by all the existing algorithms for the

problem in the different runs [5]. Thanks to this pseudo-optimal Pareto set, we can
computeHV R and consider it in our analysis of results.

On the other hand, we have also considered the binary set coverage metricC to
compare the obtained Pareto sets two by two based on the following expression:

C(P,Q) =
|{q ∈ Q ; ∃p ∈ P : p ≺ q}|

|Q|
, (18)

wherep ≺ q indicates that the solutionp, belonging to the approximate Pareto setP,
dominates the solutionq of the approximate Pareto setQ in a minimisation problem.

Hence, the valueC(P,Q) = 1 means that all the solutions inQ are dominated by
or equal to solutions inP. The opposite,C(P,Q) = 0, represents the situation where
none of the solutions inQ are covered by the setP. Note that bothC(P,Q) and
C(Q,P) have to be considered, sinceC(P,Q) is not necessarily equal to 1−C(Q,P).

We have used boxplots based on theC metric that calculates the dominance de-
gree of the approximate Pareto sets of every pair of algorithms (see Figure 1 and 2).
Each rectangle contains ten boxplots representing the distribution of theC values
for a certain ordered pair of algorithms in the ten problem instances (P1 to P10).
Each box refers to algorithmA in the corresponding row and algorithmB in the
corresponding column and gives the fraction ofB covered byA (C(A,B)).

4.3 Analysis of results

The experimental results obtained by the two MACS variants with and without the
diversity mechanism can be seen in theC metric boxplots of Figure 1 and in the
HV Rvalues in Table 1. Some conclusions can be reached from the analysis of theC
metric values:

• Comparing both versions of MACS, the original one with a specific value ofq0

and its counterpart multi-colony extension, we can see thatsignificantly “better”2

results are provided by the latter MACS with thresholds. It happens regardless of
the value ofq0, and it is common in all the problem instances but P5 (heskia).
This is because of the nature of that problem instance, whosepseudo-optimal
Pareto front is not wide enough. Every solution of this problem instance is found
in the central part of the objective space, so the diversity introduced by the filling
thresholds is not useful.

2 When we refer to the best or better performance comparing theC metric values of two algorithms
we mean that the Pareto set derived from one algorithm significantly dominates that one achieved
by the other. Likewise, the latter algorithm does not dominatethe former one to a high degree.
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Fig. 1 C metric values represented by means of boxplots comparing MACS with and without
multi-colony scheme (i.e. variable filling thresholds).

• We find less performance differences with a lower value ofq0. It makes sense
since MACS with higherq0 values gives more importance to a higher intensi-
fication in the selection procedure and thus, the Pareto fronts are more similar.
Hence, the algorithm does not take advantage of the diversity induced by the
thresholds approach.

• If we compare every MACS variant with and without thresholds, regardless of
the value ofq0, the conclusion is that MACS 0.2 with thresholds is the best
approach. It gets better results than MACS 0.5 and 0.8 with thresholds in every
problem instance. It is only dominated by MACS 0.2 and 0.5 without thresholds
in P5. Even in a non-common problem instance like P5, resultsare good enough.
Hence, the diversity of the task selection procedure (a low value ofq0 parameter)
and the use of variable station filling thresholds are both important to solve the
problem appropriately. Nevertheless, if we select MACS 0.8with thresholds and
MACS without thresholds with lower values ofq0 (0.2 and 0.5) to be compared,
we can notice that the former algorithm outperforms the latter two in five and six
problem instances respectively. On the contrary, the latter two are better in four
of them. All of these algorithms have thus quite similar results. Consequently, the
variable filling thresholds in isolation are not enough to get a good yield. There
is also a demand for diversity in the randomised task selection procedure of the
algorithm which requires a good diversification-intensification trade-off.
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Table 1 Mean and standard deviation values (in brackets) of theHV R metric for the MACS algo-
rithm. In each problem instance, the best mean value is in bold

A1: MACS 0.2 (without thr.),A2: MACS 0.5 (without thr.),A3: MACS 0.8 (without thr.)

A4: MACS 0.2 (with thr.),A5: MACS 0.5 (with thr.),A6: MACS 0.8 (with thr.)

P1 P2 P3 P4 P5

A1 0.5532 (0.023) 0.6655 (0.009) 0.6418 (0.026) 0.4297 (0.043) 0.9686 (0.006)
A2 0.5549 (0.019) 0.6600 (0.017) 0.6331 (0.012) 0.4475 (0.034) 0.9660 (0.006)
A3 0.5331 (0.008) 0.6418 (0.014) 0.6172 (0.016) 0.4629 (0.061) 0.9608 (0.007)
A4 0.9051 (0.01) 0.8962 (0.013)0.8852 (0.020) 0.8176 (0.027) 0.8695 (0.022)
A5 0.8770 (0.009) 0.8839 (0.016) 0.8617 (0.016) 0.7969 (0.024) 0.8471 (0.013)
A6 0.8353 (0.008) 0.8522 (0.010) 0.8285 (0.022)0.8191 (0.018) 0.8114 (0.018)

P6 P7 P8 P9 P10

A1 0.6729 (0.022) 0.8222 (0.315) 0.5522 (0.019) 0.6014 (0.017) 0.7830 (0.019)
A2 0.6833 (0.036) 0.7101 (0.246) 0.5480 (0.013) 0.5968 (0.015) 0.7819 (0.035)
A3 0.6486 (0.036) 0.6523 (0.239) 0.5365 (0.019) 0.6070 (0.019) 0.7789 (0.014)
A4 0.8430 (0.022)0.9723 (0.066) 0.8979 (0.011)0.8941 (0.011) 0.7674 (0.028)
A5 0.8368 (0.016) 0.8812 (0.058)0.8988 (0.013) 0.8829 (0.012) 0.7535 (0.037)
A6 0.7284 (0.054) 0.7330 (0.066) 0.8656 (0.011) 0.8506 (0.013) 0.7067 (0.052)

Table 2 Mean and standard deviation values (in brackets) of theHV R metric for the MORGA. In
each problem instance, the best mean value is in bold

A1: MORGA 0.1 (without thr.),A2: MORGA 0.2 (without thr.),A3: MORGA 0.3 (without thr.)

A4: MORGA 0.1 (with thr.),A5: MORGA 0.2 (with thr.),A6: MORGA 0.3 (with thr.)

P1 P2 P3 P4 P5

A1 0.5792 (0.012) 0.6602 (0.018) 0.6017 (0.023) 0.4278 (0.04)0.9137 (0.007)
A2 0.5779 (0.012) 0.6550 (0.008) 0.6294 (0.042) 0.3957 (0.035) 0.9294 (0.010)
A3 0.5624 (0.026) 0.6789 (0.017) 0.6028 (0.019) 0.4129 (0.017) 0.9302 (0.009)
A4 0.9258 (0.005) 0.9093 (0.005)0.7560 (0.005) 0.8457 (0.020) 0.8642 (0.007)
A5 0.9333 (0.007) 0.9121 (0.005) 0.6528 (0.008) 0.9262 (0.019) 0.8953 (0.038)
A6 0.9542 (0.007)0.9385 (0.007) 0.6488 (0.009)0.9366 (0.016) 0.9149 (0.052)

P6 P7 P8 P9 P10

A1 0.5784 (0.020) 0.6914 (0.223) 0.5176 (0.015) 0.5861 (0.012) 0.7911 (0.026)
A2 0.5909 (0.029) 0.5447 (0.09) 0.5316 (0.022) 0.5807 (0.016)0.7939 (0.027)
A3 0.6451 (0.043) 0.6730 (0.237) 0.5301 (0.026) 0.5873 (0.017) 0.7994 (0.031)
A4 0.7611 (0.029) 0.7034 (0.260) 0.8769 (0.009) 0.8606 (0.004) 0.8568 (0.018)
A5 0.8361 (0.033) 0.7498 (0.039) 0.8797 (0.008)0.8663 (0.004) 0.8726 (0.017)
A6 0.8847 (0.038)0.7466 (0.067)0.9011 (0.006) 0.8610 (0.007)0.8837 (0.022)

On the other hand, we show the results of the MORGA with and without the
diversity mechanism. In Figure 2, the boxplots of theC metric are shown. Similar
conclusions can be obtained:
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Fig. 2 C metric values represented by means of boxplots comparing the MORGA with and without
using the variable filling thresholds.

• The MORGA variants with the diversity mechanism almost always achieve better
performance than those without it.

• Only in the P5 instance, there are solutions of the MORGA variants with the
diversity mechanism which are dominated by the algorithms without the new
approach.

• It is clear how the MORGA withγ = 0.3 is the best of the MORGA variants, and
its version with the diversity mechanism the best algorithm.

In general terms, we can draw similar conclusions analysingtheHV R metric val-
ues (see Tables 1 and 2). They are always higher in variants with thresholds as they
better converge towards the true (i.e., pseudo-optimal) Pareto fronts. For example,
that is shown in the Pareto fronts of Figure 3 that graphically shows the aggregated
Pareto fronts corresponding to P3 and P10 instances for the MACS algorithm and
MORGA.
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Fig. 3 Pareto fronts of the MACS algorithm and MORGA for the P3 and P10 problem instances
respectively.

5 Concluding remarks

In a previous contribution [7] we demonstrated that the use of multiobjective con-
structive metaheuristics to tackle the TSALBP-1/3, particularly a MACS algorithm,
was a good choice. And the consideration of a stochastic procedure to decide when
to close a station performed better choice than a pure station-based approach. Nev-
ertheless, that solution still leads to situations where intensification was too high in
a specific region of the Pareto front. That is an undesirable situation for the plant
managers who should be provided with all the configurations of their contextual
interest in the objective space.

To solve this problem, in this contribution we showed a better intensification-
diversification trade-off. It could be achieved in a MOACO algorithm by introduc-
ing different filling thresholds associated to the ants thatbuild the solution in order
to provide a different search behaviour to the different ants in the colony. We also
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applied a modified version of this new diversity mechanism toa multiobjective ran-
domised greedy algorithm (MORGA).

Ten well-known problem instances of the literature were selected to test our
proposal. From the obtained results we have found out that the best yield to glob-
ally solve the problem belongs to the new MACS-TSALBP-1/3 algorithm using the
multi-colony scheme withq0 = 0.2. Likewise, the MORGA with additional diver-
sity clearly outperforms the results of the basic one.

In the future we aim to consider other multiobjective constructive metaheuristics
and apply a local search to increase the current performance.
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