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Abstract We present a new mechanism to introduce diversity into twdiatjec-
tive approaches based on ant colony optimisation and raiseédrgreedy algorithms
to solve a more realistic extension of a classical indugpriablem: time and space
assembly line balancing. Promising results are shown afiplying the designed
constructive metaheuristics to ten real-like problemanses.
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1 Introduction

An assembly line is made up of a number of workstations, gedreither in series
or in parallel. These stations are linked together by a prarsystem that aims to
supply materials to the main flow and to move the productiem# from one station
to the next one.

Since the manufacturing of a production item is divided m#®t of tasks, a usual
and difficult problem is to determine how these tasks can bigm@sd to the stations
fulfilling certain restrictions. Consequently, the aimasgiet an optimal assignment
of subsets of tasks to the stations of the plant. Moreoveh &ssk requires an oper-
ation time for its execution which is determined as a funttdthe manufacturing
technologies and the employed resources.

A family of academic problems —referred to as simple asseribé balanc-
ing problems (SALBP)— was proposed to model this situat®nlp]. Taking this
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family as a base and adding spatial information to enricBéttista and Pereira
recently proposed a more realistic framework: the time grats assembly line
balancing problem (TSALBP) [2]. This framework considersaditional space
constraint to become a simplified version of real-world peols. The new space
constraint emerged due to the study of the specific charstitsrof the Nissan
plant in Barcelona (Spain).

As many real-world problems, TSALBP formulations have a tiotiteria na-
ture [4] because they contain three conflicting objectiedset minimised: the cycle
time of the assembly line, the number of the stations, ancitba of this stations.
In this paper we have selected the TSALBP-1/3 variant whriels to minimise the
number of stations and their area for a given product cynie tWe have made this
decision because it is quite realistic in the automotiveigtd,. The final aim is to
provide the plant manager with a well spread Pareto fronblft®ns with different
trade-offs between the number of stations and the area sé thimtions. This will
allow the plant manager to choose the most appropriate anieigther industrial
context.

TSALBP-1/3 has an important set of constraints like preneds or cycle time
limits for each station. Thus, the use of constructive apphes like ant colony op-
timisation (ACO) [10] is more convenient than others likedbor global search
procedures. ACO is a constructive metaheuristic [13] irespby the shortest path
searching behaviour of various ant species. Many diffef&® algorithms have
successfully solved different combinatorial problemshses the travelling sales-
man problem, the quadratic assignment problem, the sdglierdering problem,
production scheduling, timetabling, project schedulighicle and telecommuni-
cation routing, and investment planning [10].

Due to the two aforementioned reasons, i.e., the multitbgoature of the
problem and the need to solve it through constructive algms, a sensible choice
is to use a Pareto-based multiobjective ACO (MOACO) alganif12]. This fam-
ily involves different variants of ACO algorithms which aita find not only one
solution, but a set of the best solutions according to séwenaflicting objective
functions.

In [7], we successfully tackled the TSALBP-1/3 by means opacific proce-
dure based on the multiple ant colony system (MACS) algorith]. However, we
noticed that intensification could be too high in a specifgioe of the Pareto front
because of the station-oriented approach that was accsivedli In particular, the
approximations to the obtained Pareto fronts showed af&ignt lack of diversity
and an excessive convergence to the left-most region oftijeetive space. That is
an undesirable situation for the plant managers who shaufatdvided with all the
configurations of their contextual interest in the objeztpace.

In this paper we aim to introduce a new mechanism in two cootte meta-
heuristics in order to avoid that local convergence behavi®n the one hand,
we induce the generation of more diverse solutions by meémsmulti-colony
approach [14] according to different station filling ratesthie MACS algorithm.
On the other hand, the new filling threshold mechanism is edsluded on an-
other method. In particular, we consider a multiobjectiedomised greedy algo-
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rithm (MORGA), based on the first stage of the GRASP methotldhdi proposed
in [6]. It follows the same constructive scheme and Pareiged approach used in
the MACS algorithm. In this way, we have been able to compaearnfluence of
incorporating the new diversity improvement in both apptas, the MOACO algo-
rithm and the MORGA. These algorithms, with and without tee/miversification
component, will be tested on ten real-like TSALBP-1/3 insts.

The paper is structured as follows. In Section 2, the prolfiemmulation and
the MOACO algorithm and the MORGA are explained. Then, tteppsed multi-
colony approach to improve the proposals is described itid®e8. The experimen-
tation setup as well as the analysis of results is present8dgétion 4. Finally, some
concluding remarks are discussed in Section 5.

2 Preliminaries

In this section the problem preliminaries are presented fitsen, the main features
of the MACS algorithm and the MORGA to tackle the TSALBP-1/&&iant are
described.

2.1 The Time and Space Assembly Line Balancing Problem

The manufacturing of a production item is divided into a\éetf n tasks. Each task
j requires an operation time for its executipn> 0 that is determined as a function
of the manufacturing technologies and the employed ressuftaskj is assigned
to a single statiok. Each statiork has thus assigned a subset of taSkéS C V),
called its workload.

Each taskj has a set of direct predecessdPg, which must be accomplished
before starting it. These constraints are normally repiteskby means of an acyclic
precedence graph, whose vertices stand for the tasks and witérected ari, j)
indicates that taskmust be finished before starting taglon the production line.
Thus, ifi € §, andj € &, thenh < k must be fulfilled. Each statiok presents a
station workload timé(S) that is equal to the sum of the tasks’ lengths assigned to
the statiork. SALBP [15] focuses on grouping tasks in workstations byféinient
and coherent way. There is a large variety of exact and heupgoblem-solving
procedures for it [16].

The need of introducing space constraints in the assemmigdg’ldesign is based
on two main reasons: (a) the length of the workstation istéohin the majority of
the situations, and (b) the required tools and componetis sssembled should be
distributed along the sides of the line. Hence, an area @nstmay be considered
by associating a required araato each task and an available are# to each
stationk that, for the sake of simplicity, we shall assume it to be iabah for every
station and equal t&: A = maXyke (1.0} {Ax}- Thus, each statiokirequires a station
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areaa(&) that is equal to the sum of areas required by the tasks askigrstation
k.

This leads us to a new family of problems called TSALBP in [2inay be stated
as: given a set afi tasks with their tempora} and spatiab; attributes (1< j < n)
and a precedence graph, each task must be assigned to astatigla such that:
(i) every precedence constraint is satisfied, (i) no stati@rkload time {((&)) is
greater than the cycle time)( and (iii) no area required by any statica( %)) is
greater than the available area per statiin (

TSALBP presents eight variants depending on three opttioisariteria:m (the
number of stations}; (the cycle time) and\ (the area of the stations). Within these
variants there are four multiobjective problems and we taitkle one of them, the
TSALBP-1/3. It consists of minimising the number of staan and the station
areaA, given a fixed value of the cycle time

We chose this variant because it is quite realistic in theraotive industry since
the annual production of an industrial plant (and thereftire cycle timec) is usu-
ally set by some market objectives. For more information eferrthe interested
reader to [5].

2.2 TSALBP-1/3 Formulation

According to the TSALBP formulation [2], the 1/3 variant ¢eewith the minimisa-
tion of the number of stations), and the area ocuppied by those statidgsn the

assembly line configuration. We can mathematically forteutlais TSALBP variant
as follows:

UBm

o |
Min  f5(x) = m= le=T§)_(, Xk )
1 n
f*(x)= A= max X )
(%) kzlﬁz,.“.usmgl Xjk 2)
subject to:
Ll
Z xk=1 j=12..,n 3)
=
UBnm
kzljZTZa,.).(.,nXJk—m (4)

]

tjixjk < ¢, k=1,2,....UBn (5)
1
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n
Zajxjkgk k=1,2,....UBn (6)
=1
Li Lj
> ks Y kxjk, j=12..n VieR (7)
k=E; k=E;j
Xjk€{0,1}, j=1,2,..,n k=12, ,UBn (8)

where:

e nis the number of tasks,

Xjk is a decision variable taking value 1 if tagks assigned to statiok, and 0
otherwise,

a; is the area information for task

UBn, is the upper bound for the number of stations

E; is the earliest station to which tagknay be assigned,

L; is the latest station to which tagkmay be assigned,

UBp, is the upper bound of the number of stations. In our casegifjigl to the
number of tasks, and

Constraint in equation 3 restricts the assignment of exasly to just one station,
4 limits decision variables to the total number of statidhand 6 are concerned with
time and area upper bounds, 7 denotes the precedencenshii@among tasks, and
8 expresses the binary nature of variablgs

2.3 Multiple ant colony system

MACS was proposed as a was proposed as a multiobjectivestatenf the ant
colony system (ACS) [9]. MACS uses a single pheromone trairixt and several
heuristic information functiongX (in our casen?® for the operation time;j of each
taskj andn? for its areaa;j). From now on, we restrict the description of the algo-
rithm to the case of two objectives. In this way, an ant movesifnodei to nodej

by applying the following transition rule:

j={a9 maxeq (Tij - [N01MP - [N A-MF), if g < qo, ©)
I otherwise.

where Q represents the current feasible neighbourhood of thefanteights the
relative importance of the heuristic information with respto the pheromone trail,
andA is computed from the ant inddxasA = h/M, with M being the number of
ants in the colonygp € [0, 1] is an exploitation-exploration parametgis a random
value in[0, 1], andi is a node selected according to the probability distribug(j ):
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- (n)*P-[nf P
p(]) = JueQ Tiu‘["li%]AB‘["IilL,Nl*)‘)B’

)

if jeQ,
otherwise.

(10)

Every time an ant crosses edge, j >, it performs the local pheromone update
as follows:tj; = (1—p) - Tij+p- To

Initially, To is calculated by taking the average codtand f1, of each of the
two objective functionsf® and f1, from a set of heuristic solutions by applying the
expression:

1

~ o (11)

To

However, the value ofy is not fixed during the algorithm run, as usual in ACS,
but it undergoes adaptation. At the end of each iteratioeryegomplete solution
built by the ants is compared to the Pareto arcliyevhich was generated till that
moment. This is done in order to check if a new solution is adominated one. If
s0, itis included in the archive and all the dominated sohgiare removed. Then,
T, is calculated by applying equation (11) with the averageesbf each objective
function taken from the current solutions of the Pareto imechf 1} > 19, being
Tp the initial pheromone value, pheromone trails are reilsga to the new value
To = T Otherwise, a global update is performed with each solusiohthe Pareto
set approximation contained i applying the following rule on its composing
edges<i, j >:

o

fO(S)- F1(9) (12)

ij=(1-p) Tij+

2.4 A MACS algorithm for the TSALBP-1/3

In this section we describe the customisation made on alttimeponents of the
general MACS algorithm scheme to build our solution methogip

2.4.1 Heuristic information

MACS works with two different heuristic information value$j° and njl, each of
them associated to one criterion. In our caﬁ}éis related with the required opera-
tion time for each task anlqul with the required area:

o_t  [F 1_ 4 |Fi |

= ¢ maxeq |F | T~ UBa maxcq R |

whereU B, is the upper bound for the area (the sum of all tasks’ areablgis the
set of tasks that come after tagkThe second term in both formulae represents a
ratio between the number of successors of the jgtke cardinality of the succes-



Adding diversity to MO constructive metaheuristics for the TS/ 7

sors seF;) and the maximum number of successors of any eligible takning
to the ant’s feasible neighbourho6t Both sources of heuristic information range
in [0, 1], with 1 being the most preferable.

As usual in the SALBP, tasks having a large value of time (@daturation) and
area (occupying a lot of space) are preferred to be firsthcated in the stations.
Apart from area and time information, we have added anotifermation related
to the number of successors of the task which was alreadyin$2H Tasks with a
larger number of successors are preferred to be allocasged fir

Heuristic information is one-dimensional since it is onks@ned to tasks. In
addition, it can be noticed that heuristic information htis and dynamic com-
ponents. Tasks’ tim¢ and areaa; are always fixed while the successors rate is
changing through the constructive procedure. This is bezduis calculated by
means of the candidate list of feasible and non-assign&d gshat moment.

2.4.2 Pheromonetrail and 1o calculation

The pheromone trail information has to memorise which taskshe most appro-
priate to be assigned to a station. Hence, pheromone hasassbeiated to a pair
(stationy,taskj), beingk=1,...,nandj = 1,...,n. In this way, contrary to heuristic
information, our pheromone trail matrix has a bi-dimenalamature since it links
tasks with stations.

In every ACO algorithm, an initial value for the pheromoral has to be set up.
This value is calledp and it is normally obtained from an heuristic algorithm. We
have used two station-oriented single-objective greeglgrdhms, one per heuristic,
to compute it. These algorithms open the first station anectéthe best possible
task according to their heuristic information (relatecheitwith the duration time
and successors ran;—’;’, or the area and successors n#e; This process is repeated
till there is not any task that can be included because ofybke ¢ime limit. Then,

a new station must be opened. When no more tasks are to beessiga greedy
algorithm finishestg is then computed from the costs of the two solutions obtained

by the greedy algorithm using the following MACS equatiof= m

2.4.3 Randomised station closing scheme and transition rule

Our approach follows atation-oriented procedure, which starts opening a station
and selecting the most suitable task to be assigned. Whenuthent station is
loaded maximally, it is closed and the next one is opened aadyrto be filled.

At the beginning, we decided to close the station when it wilisrf relation to the
fixed cycle timec, as usual in SALBP and TSALBP applications. We found that
this scheme did not succeed because the obtained Pare®didmot have enough
diversity. Thus, we introduced a new mechanism in the coostm algorithm to
close the station according to a probability, given by tHmlrate of the station:
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p(dlosing §) = 257 (13)
This probability distribution is updated at each consinrcstep. A random num-
ber is uniformly generated if®, 1] after each update to decide whether the station
is closed or not. If the decision is not to close the statioa,clvoose the next task
among all the candidate tasks using the MACS transition anié the procedure

goes on.

Because of the one-dimensional nature of the heuristicrimdition, the original
transition rule (Equation 9) that chooses among all the icantel tasks at each step,
has been modified:

= { arg maxeq(tig - [nf1*F - [nf]-P), if 4 < o, (14)
i otherwise,

)

wherei is a node selected by means of the following probabilityriigtion:

rkj-[no]’\ﬁ-[n-l]u*")ﬁ .
p(J) = { Foco v PP e €D, (15)
otherwise.

b

2.5 MORGA

Our diversification generation mechanism behaves simitara GRASP construc-
tion phase [11]. The most important element in this kind afstauction is that the
selection of the task at each step must be guided by a stachestdy function that
is adapted with the pseudo-random selections made in th@peesteps.

We introduce randomness in two processes. On the one hémding each de-
cision to be randomly taken among the best candidates. Ouwtliiee hand, closing
the station according to a probability distribution.

We use the same constructive approach, with closing pritiebiat each con-
structive step, than in the MACS algorithm. The probabdistiterion to select the
next task that will be included in the current station is afehto be only based on
heuristic information. Therefore, to make a decision amalhthe current feasible
candidate tasks we use a single heuristic value given by:

b8 | Fi |

_bU : 16
= ¢ UBx maxeo |F | (16)

The decision is made randomly among the selected tasks iresitiécted can-
didate list (RCL) by means of the following procedure: wectdte the heuristic
value of every feasible candidate task to be assigned toutrert open station.
Then, we sort them according to their heuristic values and]lfi, we set a quality
threshold for the heuristic given lly= max;; —y- (max,, —minp, ).

All the tasks with a heuristic valug; greater or equal thaq are selected to
be in the RCL.y is the diversification-intensification trade-off contrarpmeter.
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Wheny = 1 there is a completely random choice inducing the maximussipte
diversification. In contrast, iff = 0 the choice is close to a pure greedy decision,
with a low diversification.

As MACS, the MORGA construction algorithm also incorposatemechanism
which allows us to close a station according to a probabdisgribution, given by
the filling rate of the station (see equation (13)).

3 Using a multi-colony approach on the MACS-TSALBP-1/3 and
MORGA algorithms

The MACS-based TSALBP-1/3 algorithm proposed in [7] cartiee problem of
not providing enough intensification in some Pareto fromaar since there is a
low probability of filling stations completely. Hence, tleds a need to find a better
intensification-diversification trade-off. This obje@igan be achieved by introduc-
ing different filling thresholds associated to the ants thald the solution. These
thresholds make the different ants in the colony have ardiffesearch behaviour.
Thus, the ACO algorithm becomes multi-colony [14]. In ouse&ahresholds are set
between 0.2 and 0.9 and they are considered as a prelimitggrypsfore deciding
to close a station.

Therefore, the solution construction procedure is modifigel compute the sta-
tion closing probability distribution as usual based ongtaion current filling rate
(equation (13)). However, only when the ant’s filling threkhhas been overcome,
the random decision of either closing a station or not adngréb that probabil-
ity distribution is considered. Otherwise, the stationl Wwé kept opened. Thus, the
higher the ant’s threshold is, the more complete the statibie likely to be. This
is due to the fact that there are less possibilities to clbdaring the construction
process.

In this way, the ant population will show a highly diverse redabehaviour, al-
lowing the algorithm to properly explore the different gadf the optimal Pareto
fronts by appropriately spreading the generated solutions

We have also used the same filling thresholds technique édWtBRGA. In the
MACS algorithm, these filling thresholds are applied in flat#llowing the multi-
colony approach. Unlike the MACS algorithm, different thinelds are only used in
isolation at each iteration in the case of the MORGA.
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4 Experimentation

4.1 Problem instances and parameter values

Ten problem instances with different features have beescta for the experi-
mentation:ar c111 with cycle time limits ofc = 5755 andc = 7520 (P1 and
P2),bart hol 2 (P3),bar t hol d (P4),heski a (P5),l ut z2 (P6),l ut z3 (P7),
nmukherj e (P8),schol | (P9), andweenag (P10). Originally, these instances
were SALBP-1 instances only having time information. Hoarewe have created
their area information by reverting the task graph to maketbi-objective (as done
in[2]) L.

We run each algorithm 10 times with different random seeéting the time
as stopping criteria (900 seconds). All the algorithms watmched in the same
computer: Intel Pentiuf D with two CPUs at 2.80GHz, and CentOS Linux 4.0.
On the one hand, the values of the parameters used in all theSvigorithms
with and without the new diversification component are ak¥e. We consider
ten different antsf3 = 2, andp = 0.2. Different values of the transition rule pa-
rameterqgo are also studied. In particulagy = 0.2,0.5,0.8. On the other hand, the
MORGA was launched with different diversification-intefitsition parameter val-
ues,y={0.1,0.2,0.3}

With respect to the parameters of our proposal on usingrdiftefilling thresh-
olds, there are two ants for each of the five ants’ threshaldsidered{0.2,0.4,0.6,
0.7,0.9} in the MACS algorithm. The same threshold values were usedhf®
MORGA.

4.2 Metrics of performance

We will consider two different multiobjective metrics [87]Lto evaluate the per-
formance of the two variants of the MACS-based TSALBP-1{pdathm and the
MORGA.

On the one hand, we selected the hypervolume ratio (HVR) franfirst group.
It can be calculated as follows:

HV (P)

HVR= 05

(17)

whereHV (P) and HV (P*) are the volume % metric value) of the approximate
Pareto set and the true Pareto set, respectively. VWhER equals 1, then the ap-
proximate Pareto front and the true one are equal. THV®R values lower than 1
indicate a generated Pareto front that is not as good asubéareto front.

1 Problem instances and more information available at

http://ww. ni ssanchai r. conl TSALBP
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We should notice that the true Pareto fronts are not knownuinreal-world
problem instances. Thus, we will consider a pseudo-optPaaéto set, i.e. an ap-
proximation of the true Pareto set, obtained by merginghal(approximate) Pareto

setsPi‘ generated for each problem instance by all the existingrigtfgos for the
problem in the different runs [5]. Thanks to this pseudaropt Pareto set, we can
computeHVR and consider it in our analysis of results.

On the other hand, we have also considered the binary setagavenetridC to
compare the obtained Pareto sets two by two based on theviiofexpression:

cpq)— HA€Q:IpEP p=alf (18)
Ql

wherep < gindicates that the solutiop, belonging to the approximate ParetoBet
dominates the solutiogof the approximate Pareto $@in a minimisation problem.

Hence, the valu€(P,Q) = 1 means that all the solutions @are dominated by
or equal to solutions iR. The oppositeC(P, Q) = 0, represents the situation where
none of the solutions iQ are covered by the s&. Note that bothC(P,Q) and
C(Q,P) have to be considered, sinCéP, Q) is not necessarily equal to-1C(Q, P).

We have used boxplots based on @eetric that calculates the dominance de-
gree of the approximate Pareto sets of every pair of algostfsee Figure 1 and 2).
Each rectangle contains ten boxplots representing theldison of theC values
for a certain ordered pair of algorithms in the ten problestances (P1 to P10).
Each box refers to algorithrA in the corresponding row and algorithBiin the
corresponding column and gives the fractiorBafovered byA (C(A,B)).

4.3 Analysisof results

The experimental results obtained by the two MACS variarits and without the
diversity mechanism can be seen in thenetric boxplots of Figure 1 and in the
HVRvalues in Table 1. Some conclusions can be reached from thgsisiof theC
metric values:

e Comparing both versions of MACS, the original one with a #iegalue ofqp
and its counterpart multi-colony extension, we can seesigatficantly “better?
results are provided by the latter MACS with thresholdsalpens regardless of
the value ofgp, and it is common in all the problem instances but P5 (heskia)
This is because of the nature of that problem instance, whseado-optimal
Pareto front is not wide enough. Every solution of this peabinstance is found
in the central part of the objective space, so the diversitpduced by the filling
thresholds is not useful.

2\When we refer to the best or better performance comparing thetric values of two algorithms
we mean that the Pareto set derived from one algorithm signiifjcdominates that one achieved
by the other. Likewise, the latter algorithm does not domitiaéeformer one to a high degree.
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Fig. 1 C metric values represented by means of boxplots comparing MAGIS anid without
multi-colony scheme (i.e. variable filling thresholds).

e We find less performance differences with a lower valuggpflt makes sense
since MACS with higheigg values gives more importance to a higher intensi-
fication in the selection procedure and thus, the Paretdsfrare more similar.
Hence, the algorithm does not take advantage of the diyersiuced by the
thresholds approach.

e If we compare every MACS variant with and without thresholdgardless of
the value ofqg, the conclusion is that MACS 0.2 with thresholds is the best
approach. It gets better results than MACS 0.5 and 0.8 witkstiolds in every
problem instance. It is only dominated by MACS 0.2 and 0.%wuit thresholds
in P5. Even in a non-common problem instance like P5, reatdtgood enough.
Hence, the diversity of the task selection procedure (a lmiwerofgg parameter)
and the use of variable station filling thresholds are bothartant to solve the
problem appropriately. Nevertheless, if we select MACSWit8 thresholds and
MACS without thresholds with lower values gf (0.2 and 0.5) to be compared,
we can notice that the former algorithm outperforms thefatvo in five and six
problem instances respectively. On the contrary, therlaite are better in four
of them. All of these algorithms have thus quite similar ifssiConsequently, the
variable filling thresholds in isolation are not enough td &good yield. There
is also a demand for diversity in the randomised task selegtiocedure of the
algorithm which requires a good diversification-intensifion trade-off.
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Table1l Mean and standard deviation values (in brackets) oHW®& metric for the MACS algo-
rithm. In each problem instance, the best mean value is in bold

Al: MACS 0.2 (without thr.) A2: MACS 0.5 (without thr.) A3: MACS 0.8 (without thr.)
A4: MACS 0.2 (with thr.),A5: MACS 0.5 (with thr.),A6: MACS 0.8 (with thr.)
P1 P2 P3 P4 P5

A1]0.5532 (0.023) 0.6655 (0.009) 0.6418 (0.026) 0.4297 ().04386 (0.006)
A2|0.5549 (0.019) 0.6600 (0.017) 0.6331 (0.012) 0.4475 ().033660 (0.006)
A3|0.5331 (0.008) 0.6418 (0.014) 0.6172 (0.016) 0.4629 ().063508 (0.007)
A4| 0.9051 (0.01) 0.8962 (0.013)0.8852 (0.020) 0.8176 (0.027) 0.8695 (0.022)
A5|0.8770 (0.009) 0.8839 (0.016) 0.8617 (0.016) 0.7969 ().028471 (0.013)
A6|0.8353 (0.008) 0.8522 (0.010) 0.8285 (0.023191 (0.018) 0.8114 (0.018)
P6 P7 P8 P9 P10

A1]0.6729 (0.022) 0.8222 (0.315) 0.5522 (0.019) 0.6014 (0.017830 (0.019)
A2|0.6833 (0.036) 0.7101 (0.246) 0.5480 (0.013) 0.5968 (0.0IEB19 (0.035)
A3|0.6486 (0.036) 0.6523 (0.239) 0.5365 (0.019) 0.6070 ().01B789 (0.014)
A4|0.8430 (0.022) 0.9723 (0.066) 0.8979 (0.011).8941 (0.011) 0.7674 (0.028)
A5|0.8368 (0.016) 0.8812 (0.058)8988 (0.013) 0.8829 (0.012) 0.7535 (0.037)
A6|0.7284 (0.054) 0.7330 (0.066) 0.8656 (0.011) 0.8506 ((.01BD67 (0.052)

Table2 Mean and standard deviation values (in brackets) oHW& metric for the MORGA. In
each problem instance, the best mean value is in bold

Al: MORGA 0.1 (without thr.) A2: MORGA 0.2 (without thr.) A3: MORGA 0.3 (without thr.)
A4: MORGA 0.1 (with thr.),A5: MORGA 0.2 (with thr.),A6: MORGA 0.3 (with thr.)
P1 P2 P3 P4 P5

A1/0.5792 (0.012) 0.6602 (0.018) 0.6017 (0.023) 0.4278 (004137 (0.007)
A2|0.5779 (0.012) 0.6550 (0.008) 0.6294 (0.042) 0.3957 ().038294 (0.010)
A3|0.5624 (0.026) 0.6789 (0.017) 0.6028 (0.019) 0.4129 ().019802 (0.009)
A4|0.9258 (0.005) 0.9093 (0.008)7560 (0.005) 0.8457 (0.020) 0.8642 (0.007)
A5|0.9333 (0.007) 0.9121 (0.005) 0.6528 (0.008) 0.9262 ().018953 (0.038)
A6|0.9542 (0.007)0.9385 (0.007) 0.6488 (0.009).9366 (0.016) 0.9149 (0.052)
P6 P7 P8 P9 P10

A1/0.5784 (0.020) 0.6914 (0.223) 0.5176 (0.015) 0.5861 (.012911 (0.026)
A2|0.5909 (0.029) 0.5447 (0.09) 0.5316 (0.022) 0.5807 (0.@IBY39 (0.027)
A3|0.6451 (0.043) 0.6730 (0.237) 0.5301 (0.026) 0.5873 ((.017994 (0.031)
A4|0.7611 (0.029) 0.7034 (0.260) 0.8769 (0.009) 0.8606 ().008568 (0.018)
A5|0.8361 (0.033) 0.7498 (0.039) 0.8797 (0.0083663 (0.004) 0.8726 (0.017)
A6|0.8847 (0.038)0.7466 (0.067)0.9011 (0.006) 0.8610 (0.007).8837 (0.022)

On the other hand, we show the results of the MORGA with antiowit the
diversity mechanism. In Figure 2, the boxplots of enetric are shown. Similar
conclusions can be obtained:
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Fig. 2 C metric values represented by means of boxplots comparing the®@fOMth and without
using the variable filling thresholds.

e The MORGA variants with the diversity mechanism almost gs\vachieve better
performance than those without it.

e Only in the P5 instance, there are solutions of the MORGAavds with the
diversity mechanism which are dominated by the algorithritboaut the new
approach.

e ltis clear how the MORGA witly = 0.3 is the best of the MORGA variants, and
its version with the diversity mechanism the best algorithm

In general terms, we can draw similar conclusions analysiabl VR metric val-
ues (see Tables 1 and 2). They are always higher in variatiighvesholds as they
better converge towards the true (i.e., pseudo-optimaBtBdronts. For example,
that is shown in the Pareto fronts of Figure 3 that graphjcstiiows the aggregated
Pareto fronts corresponding to P3 and P10 instances for ti&3valgorithm and
MORGA.
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Fig. 3 Pareto fronts of the MACS algorithm and MORGA for the P3 an@ Pdoblem instances
respectively.

5 Concluding remarks

In a previous contribution [7] we demonstrated that the dsawtiobjective con-
structive metaheuristics to tackle the TSALBP-1/3, paitidy a MACS algorithm,
was a good choice. And the consideration of a stochastiegtoe to decide when
to close a station performed better choice than a pure sthdsed approach. Nev-
ertheless, that solution still leads to situations wheterisification was too high in
a specific region of the Pareto front. That is an undesirablatson for the plant
managers who should be provided with all the configuratidntheir contextual
interest in the objective space.

To solve this problem, in this contribution we showed a lratieensification-
diversification trade-off. It could be achieved in a MOAC@ailithm by introduc-
ing different filling thresholds associated to the ants thald the solution in order
to provide a different search behaviour to the differensantthe colony. We also



16 Manuel Chica et al.

applied a modified version of this new diversity mechanisma toultiobjective ran-
domised greedy algorithm (MORGA).

Ten well-known problem instances of the literature weredeld to test our
proposal. From the obtained results we have found out tleabést yield to glob-
ally solve the problem belongs to the new MACS-TSALBP-1{goaithm using the
multi-colony scheme witltjp = 0.2. Likewise, the MORGA with additional diver-
sity clearly outperforms the results of the basic one.

In the future we aim to consider other multiobjective comstive metaheuristics
and apply a local search to increase the current performance
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