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Abstract

Genomes of many organisms have been se-
quenced over the last few years. However,
transforming such raw sequence data into
knowledge remains a hard task. A great num-
ber of prediction programs have been devel-
oped to address part of this problem: the lo-
cation of genes along a genome. We propose
a multi-objective methodology using fuzzy
logic to combine algorithms into an aggrega-
tion scheme in order to obtain optimal meth-
ods’ aggregations. Results show improve-
ments in specificity and sensitivity when our
methodology is compared to the performance
of individual methods for gene finding prob-
lems. The here proposed methodology is an
automatic method generator, and a step for-
ward to exploit all already existing methods,
by providing optimal methods’ aggregations
to answer concrete queries for a certain bi-
ological problem with a maximized accuracy
of the prediction. As more approaches are in-
tegrated, de novo accuracy can be expected
to improve further.

1 INTRODUCTION

Genomes of many organisms have been sequenced over
the last few years. However, transforming such raw
sequence data into knowledge remains a hard task. A
great number of prediction programs have been devel-
oped to address one part of this problem: the location
of genes along a genome [2, 3, 1, 9]. Unfortunately,
finding genes in a genomic sequence is far from being
a trivial problem. Gene prediction is one of the most
important problems in computational biology due to
the inherent value of the set of protein-coding genes
for other analysis.
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Despite the advances in the gene finding problem, ex-
isting approaches to predicting genes have intrinsic ad-
vantages and limitations [11]. Furthermore, there is
no program that can provide perfect predictions for
any given input. Our methodology combines these ap-
proaches into an aggregation scheme to provide bet-
ter predictions by taking advantage of the different
methodologies’ starknesses and avoiding their weak-
nesses. Moreover, we use a multi-objective approach
to extract the best aggregation of methods by maxi-
mizing the specificity and sensitivity of their predic-
tions.

We applied our methodology to a reference dataset
in gene prediction containing 570 multi-species DNA
sequences of known genes [5].

2 MATERIALS AND METHODS

The aggregation of methods is accomplished by using
fuzzy union -U- and fuzzy intersection -N- operators
[8, 14]. All potential aggregations conform a space of
potential hypotheses, which can be represented as a
lattice structure (Figure 1). We search for the best
aggregation of methods, moving from hypothesis to
hypothesis towards the most general (i.e., the union
of all methods) and the most specific (i.e., the inter-
section of all methods) which are located at the top
and the bottom of the lattice, respectively [12] (Fig-
ure 1). In the gene finding problem we explore three
methods, n = 3, termed M1 to M3, conforming a total
set of seven potential aggregations.

The aggregation of the different methods in the gene
finding problem is performed at a nucleotide level.
This aggregation joins two overlapping or adjacent ex-
ons into a new exon (Figure 2 amd 3) taking into ac-
count their exon probabilities.

Even though most ab initio gene finders develop a scor-
ing scheme for exon prediction, many of them only
report meaningless scores referring to the predicted
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Figure 1: Lattice of potential hypothesis, methods’
aggregations of My, --- M, using the -U- and -N- op-
erators. The solid arrows show the direction of the
search in the space of hypothesis.

exons. Although some gene finders, such as GEN-
SCAN, give a probabilistic score to every predicted
exon, the score does not respond to the likelihood cor-
rectly and is not reliable, especially when implement-
ing in large DNA sequences [4]. Therefore, we applied
the local polynomial regression method, a nonpara-
metric regression model, to transform the raw scores
to probabilistic ones as implemented in [10].

To perform the aggregation of exons using the fuzzy
union and intersection operators, we first need to intro-
duce some notation. We define the exon fuzzy set X as
the a pair (A, m) where A is a set and m : A — [0, 1].
For each x € A, m(z) is the grade of membership of z,
where m corresponds to the probabilistic score calcu-
lated from the raw scores of each gene finder.

The fuzzy union operator joins two overlapped ex-
ons —exon z and exon y— when m(z) and m(y) are
higher than a certain threshold. If m(z) > ~ while
m(y) < A, only exon z is kept (Figure 2 (c)). If
m(z) > 7 and m(y) > v, a new exon z is con-
structed by appending both exons (Figure 2 (b)) with
m(z) = max(m(z), m(y)). If there is no overlap, only
the exons with membership above threshold A are kept
(Figure 2 (a)).

The fuzzy intersection operator intersects two over-
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(c¢) Overlapped exons. m(y) >~ and m(z) < A

Figure 2: Example of exons aggregation by the fuzzy
union operator.

lapped exons —exon z and exon y— when m(z) and
m(y) are, again, higher than a certain threshold. If
m(z) > X and m(y) > A, a new exon z is constructed
by taking only those nucleotides appearing in both ex-
ons (Figure 3 (b)) with m(z) = min(m(x),m(y)). If
there is an overlap but m(z) < A or m(y) < A, then
no intersection is performed (Figure 3 (a)). If there is
no overlap, neither exon x nor exon y is kept (Figure

3 (c)).

For the experimental section we used a threshold v =
0.8 and a threshold A = 0.2.

2.1 DATASET

We selected the dataset from Guigé et al. [5] which
is a reference for assessing the quality of gene predic-
tion programs. This set contains 570 sequences from
vertebrate genomes 570, having only those sequences
representing only one complete spliceable functional
product of a gene in the forward strand. The pro-
grams used in this study are Genscan [1], GeneID (7]
and Augustus [16]. Genscan uses a general probabilis-
tic model for the gene structure of human genomic se-
quences. It has the capacity to predict multiple genes
in a sequence, to deal with partial as well as com-
plete genes, and to predict consistent sets of genes oc-
curring on either or both DNA strands [1]. GeneID
combines different algorithms using Position Weight
Arrays to detect features such as splice sites, start
and stop codons and Markov Models to score exons
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Figure 3: Example of exons aggregation by the fuzzy
intersection operator.

and Dynamic Programming (DP) to assemble the gene
structure [7]. Augustus is a gene predictor for eukary-
otic genomic sequences that is based on a generalized
hidden Markov model, a probabilistic model of a se-
quence and its gene structure [16].

2.2 MEASURE OF ACCURACY OF
PREDICTIONS

We measured the accuracy of a prediction on a test
sequence by comparing the predicted coding value
(coding or non-coding) with the true coding value
for each nucleotide along the test sequence. This
has been one of the most widely used approaches
in evaluating the accuracy of coding region identifi-
cation and gene structure prediction methods. Nu-
cleotide level accuracy is calculated as a comparison
of the annotated nucleotides with the predicted nu-
cleotides. Sensitivity (Sn) (Equation 1) is the pro-
portion of annotated nucleotides (as being coding or
part of an mRNA molecule) that is correctly predicted,
and specificity (Sp) (Equation 2) the proportion of
predicted nucleotides (as being coding or part of an
mRNA molecule) that is so annotated. As a summary
measure, we have computed the correlation coefficient
(CC) (Equation 3) between the annotated and the pre-
dicted nucleotides [5].
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sp= L 5
P=7p+7p
co - (TP x TN) — (FN x FP) ®
/(TP £ FN) x (TN P) x (TP + FP) x (TN + FN)
3 RESULTS

Out of all gene prediction programs analyzed and all
methods’ aggregations, the union of all methods —
Genscan U GenelD U Augustus— achieved the high-
est number of correctly predicted genes' (525 out of
570, over 92% of the dataset) and the highest average
CC, 0.896 (Table 1). Whats more, these percentage of
correctly predicted gene is increased by a 10% approx-
imately when compared with the best individual pre-
dictor, GenelD. The Genscan U GenelD methods’ ag-
gregation achieved the best specificity values while the
union of all methods obtained the highest sensitivity
value. All methods’ aggregations using the fuzzy union
operator obtained better sensitivity values compared
to the individual methods. Moreover, some of these
methods’s aggregations’ specificity values are also bet-
ter than most of the individual gene predictors, while
the others do not differentiate to much from them. If
a crisp union operator is used, the sensitivity values
are increase, but most of the time its specificity values
decrease (data not shown) [15].

On the other hand, the fuzzy intersection operator pro-
posed did not produce better results than individual
methods (Table 1). This is mainly due to the fact that
the fuzzy intersection greatly decreases the sensitivity
of the results, and thus producing a very low CC.

A graphical representation of the methods’ aggrega-
tions performance can also be seen in Figure 3. Speci-
ficity and sensitivity values are plotted for all methods’
aggregations, both using the fuzzy union or intersec-
tion fuzzy operators. Methods’ aggregations belong-
ing to the Pareto set are highlighted in red, i.e., those
methods that are both better in specificity and sensi-
tivity than the rest. We can therefore infer that Gen-
scan U GenelD U Augustus and Genscan U GenelD
methods’ aggregations are better in both specificity
and sensitivity than individual methods.

If we take a closer look into the results we can ex-
tract many specific genes where individual methods
fail, while the aggregation of methods produced better
results (e.g., MMU12565, HUMSEMIIB, MMIL5G).

1We express the accuracy of the method aggregation by
considering a gene correctly retrieved when its CC > 0.7.
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Method Sp | sn | cC piﬁﬁiﬁggy%
Genscan 0.885 | 0.753 | 0.753 78.42%
GenelD 0.899 | 0.808 | 0.830 82.28%
Augustus 0.829 | 0.715 | 0.796 73.33%
Genscan U GenelD 0.902 | 0.903 | 0.881 90.35%
Genscan U Augustus 0.882 | 0.841 | 0.847 84.56%
Augustus U GenelD 0.900 | 0.894 | 0.886 90.00%
Genscan U GenelD U Augustus | 0.893 | 0.928 | 0.896 92.11%
Genscan N GenelD 0.836 | 0.622 | 0.680 64.91%
Genscan N Augustus 0.783 | 0.586 | 0.657 61.93%
Augustus N GenelD 0.809 | 0.613 | 0.696 63.16%
Genscan N GenelD N Augustus | 0.757 | 0.517 | 0.601 52.98%

Table 1: Results obtained by all methods’ aggregation using both the fuzzy union and the fuzzy intersection
operators. The best result for each column is highlighted in italic and color-coded in blue.
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Figure 4: Graphical representation of the specificity
and sensitivity values obtained by the methods’ ag-
gregations using the fuzzy union and fuzzy intersection
operators to predict genes. Methods’ aggregations be-
longing to the Pareto set are highlighted in red.

4 DISCUSSION

We propose a methodology to combine programs into
a aggregation scheme using fuzzy logic operators. This
idea provides better predictions by combining the ad-
vantages of the different methodologies used in each
program. We introduced the use of a multi-objective
approach to extract the best aggregation of methods
by maximizing the specificity and sensitivity of their
predictions. This way we avoid redundant and over-
lapping predictions that might be produced depend-
ing on the methodologies and the aggregation scheme
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used. The application of the proposed methodology to
the gene finding problem to obtain optimal methods’
aggregations showed an improvement in both sensitiv-
ity and specificity when compared to the performance
of individual methods. The specificity levels obtained
by the aggregation of gene finding methods improved
or decreased depending on the methods used in the
aggregation. When determining which aggregation of
methods was the best one for the gene prediction prob-
lem, sensitivity and specificity were in contradiction.
Nevertheless, the calculation of the correlation coef-
ficient helped in the selection of the best methods’
aggregation. The best aggregations include methods
employing different algorithmic strategies that predict
correctly different subset of the genes in the dataset.
Although the statistical properties of coding regions
allow for a good discrimination between large coding
and non-coding regions, the exact identification of the
limits of exons or of gene boundaries remains difficult.

There are several previous works combining gene find-
ing programs [13, 17], but they fail to obtain good re-
sults as they use simultaneously all programs instead
of optimize their aggregation. De novo gene prediction
for compact eukaryotic genomes is already quite ac-
curate, although mammalian gene prediction lags way
behind in accuracy. One future scope would be the ap-
plication of this approach to identify ways to quickly
combine many or all-existing programs trained for the
same organism, and determine the upper limit of pre-
dictive power by aggregations of programs genome
wide [6].

In the last ten years, the existing competitive spirit has
increased the number of programs/algorithms created,
updated and adapted for the two biological problems
here presented [11, 2, 9]. On one side the development
of a new algorithm always implies the sacrifice of an
objective in favor of another, which makes very diffi-
cult for novel approaches to improve in absolute terms
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the quality of the existing ones. On the other side,
the impressive amount of alternative algorithms avail-
able for different biological problems is confusing the
users, who wonder what makes the programs differ-
ent, which one should be used in which situation and
which level of prediction confidence to expect. Finally,
users also wonder whether current programs can an-
swer all their questions. The answer is most probably
no, and will remain to be negative as it is unrealistic to
imagine that such complex biological processes can be
explained merely by looking at one objective. The here
proposed methodology is an automatic method gener-
ator, and a step forward to exploit all already existing
methods, by providing optimal methods’ aggregations
to answer concrete queries for a certain biological prob-
lem with a maximized accuracy of the prediction.
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