
Expert Systems with Applications 37 (2010) 8333–8342
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Pattern recognition to forecast seismic time series

A. Morales-Esteban a,1, F. Martínez-Álvarez b,*,1, A. Troncoso b, J.L. Justo a, C. Rubio-Escudero c

a Department of Continuum Mechanics, University of Seville, Spain
b Area of Computer Science, Pablo de Olavide University of Seville, Spain
c Department of Computer Science, University of Seville, Spain
a r t i c l e i n f o

Keywords:
Time series
Earthquakes forecasting
Clustering
0957-4174/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.eswa.2010.05.050

* Corresponding author.
E-mail addresses: ame@us.es (A. Morales-Esteban

nez-Álvarez), ali@upo.es (A. Troncoso), jlj@us.es (J.L
Rubio-Escudero).

1 These authors equally contributed to this work.
a b s t r a c t

Earthquakes arrive without previous warning and can destroy a whole city in a few seconds, causing
numerous deaths and economical losses. Nowadays, a great effort is being made to develop techniques
that forecast these unpredictable natural disasters in order to take precautionary measures. In this paper,
clustering techniques are used to obtain patterns which model the behavior of seismic temporal data and
can help to predict medium–large earthquakes. First, earthquakes are classified into different groups and
the optimal number of groups, a priori unknown, is determined. Then, patterns are discovered when
medium–large earthquakes happen. Results from the Spanish seismic temporal data provided by the
Spanish Geographical Institute and non-parametric statistical tests are presented and discussed, showing
a remarkable performance and the significance of the obtained results.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

A time series is a sequence of values observed over time and,
consequently, chronologically ordered. Given this definition, it is
usual to find data that can be represented as time series in many
research areas.

The study of the past behavior of a variable may be extremely
valuable to help to predict its future behavior. If, given a set of past
values, it is not possible to predict future values with reliability, the
time series is said to be chaotic. This work is included in this con-
text, since events related to earthquakes are apparently unforeseen.

Assuming that the nature of the earthquakes time series is sto-
chastic, the clustering technique used in this paper shows that
these time series exhibit some temporal patterns, making the mod-
eling and subsequent prediction possible. To avoid dependent data,
both aftershocks and foreshocks have been removed from the
earthquakes time series analyzed (Kulhanek, 2005). An aftershock
is defined as a minor shock following the main shock of an earth-
quake and a foreshock as a minor tremor of the earth that precedes
a larger earthquake originating at approximately the same
location.

This paper analyzes and forecasts earthquakes time series by
means of the application of clustering techniques. To be precise,
seismogenic areas are used as a data source. A seismogenic area is
ll rights reserved.
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defined as a source of earthquakes with homogenous seismic and
tectonic characteristics. This means that the process of earthquakes
generation in each area is homogenous in space and time. It may be
linear, such as a fault, a line of faults, or a set of parallel faults that
are near and at a considerable distance from the site in which the
earthquake is generated. However, an areal source may be an area
where the faults are too numerous, randomly orientated or not well
defined. From a tectonic point of view, a seismogenic area may in-
clude one or several tectonic structures and its geometry is based
upon historical, seismic and tectonic information.

The challenge of finding successful methods to forecast earth-
quakes has been faced for over 100 years (Geller, 1997). The use
of historic seismic data in earthquake forecasting is absolutely pre-
valent nowadays and there is a well-known working group for the
development of the Regional Earthquake Likelihood Model (RELM)
that surged to design multiple models for hazard estimations
(Field, 2007).

Hence, the aim is to find temporal patterns and to model the
behavior of time series that comprise the occurrence of medium–
large earthquakes, which are considered events with a magnitude
greater or equal to 4.5 in this work. Once these patterns are ex-
tracted, they are used to predict the behavior of the system as
accurately as possible.

Although clustering techniques have been successfully used to
study different time series (Martínez-Álvarez, Troncoso, Riquelme,
& Riquelme, 2007, Sfetsos & Siriopoulos, 2004), the application to
earthquake occurrences as a crucial step of prediction has not been
widely exploited. Note that a group of smaller shocks preceding or
following a larger one is denoted earthquake clustering by seismol-
ogists. However, this concept must not be confused with the
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clustering techniques used in this paper, which are one of the main
goals of the Artificial Intelligence. In this sense, the novelty of this
work lies on discovering clustering-based patterns and the use of
them as seismological precursor in Spanish temporal data.

Cluster analysis is the basis of many classification algorithms
that provide models of systems (Xu & Wunsch, 2005). The main
aim of this analysis is to generate grouping of data from a large
dataset with the intention of producing an accurate representation
of the behavior of a system. Thus, these algorithms are focused on
extracting useful information to find patterns in data.

The rest of the work is divided as follows. Section 2 introduces
the methods used to predict the occurrence of earthquakes. The
Spanish seismic database is described in Section 3. The fundamen-
tals that support the theory exposed in this work are presented in
Section 4. Section 5 presents how the pattern recognition has been
performed. Finally, the experimental results are shown in Section 6.
2. Seismicity-based forecasting methods

Many authors have proposed different methods to predict the
occurrence of earthquakes. The work in Ward (2007) added five
different models to the RELM. The first one, similar to the model
presented in Kagan, Jackson, and Rong (2007), was based on
smoothed seismicity and predicted earthquakes with magnitude
greater or equal to 5.0. The second model is similar to the one pro-
posed in Shen, Jackson, and Kagan (2007). The third is based on
fault data analysis. The fourth model is a combination of the first
three models and, finally, the last one is based on earthquake sim-
ulations (Ward, 2000).

Kagan et al. (2007) have obtained forecasts of earthquakes with
magnitude greater or equal to 5.0 for five-years in Southern Cali-
fornia. The forecasts were based on spatially smoothed historical
earthquake catalogue using the methodology described in Kagan
and Jackson (1994).

The authors in Helmstetter, Kagan, and Jackson (2007) have
developed a time-independent forecast for California by smoothed
seismicity, similar to Kafka and Levin (2000), but including smaller
events and removing aftershocks. The working group on California
Earthquake Probability (Petersen, Cao, Campbell, & Frankel, 2007)
has presented the Uniform California Earthquake Rupture Forecast
version 1 composed of four types of earthquake sources with dis-
tributed seismicity, similar to the National Seismic Hazard Map
Frankel et al. (2002).

Another forecast of five-years was provided by the Asperity-
based Likelihood Model (ALM), which assumes a Gutenberg–Rich-
ter distribution of events (Wiemer & Schorlemmer, 2007) and con-
siders the size distribution of recent micro-earthquakes to be the
most relevant information for predicting events of magnitude
greater or equal to 5.0.

The Pattern Informatics model (Holliday et al., 2007) forecasts
the regions where earthquakes are most likely to occur in a near
future (5 to 10 years) by discovering zones with a high seismic
activity.

Equally remarkable was the work in Shen et al. (2007), in which
the authors developed a method based on geodetically observed
strain rate averaged over a time period, a decade concretely, for
Southern California.

Bird and Liu (2007) proposed a two-step process for estimating
long-term average seismicity of any region. The first step incorpo-
rates all plate tectonic, geologic, geodetic and stress-direction data
into the model. The second one converts the deformation or mo-
ment rate into rate of earthquakes by applying the Seismic Hazard
Inferred from Tectonics hypothesis, which states that the provided
forecasts using the plate tectonic theory are more accurate than
those based on past samples.
Gerstenberguer, Jones, and Wiemer (2007) developed a method
to spatially map the probability of earthquake occurrences in 24 h
based on foreshock/aftershock statistics.

The model in Rhoades (2007) performed forecasts for one year
based on the notion that every earthquake is a precursor in accor-
dance with the scale. For this aim, the previous earthquakes of
minor magnitude were used to forecast those with major one.

Finally, two forecasting methods were provided in Ebel, Cham-
bers, Kafka, and Baglivo (2007). The first method was based on the
assumption that the average of several statistical variables, such as
spatial and temporal occurrences of earthquakes with magnitude
greater or equal to 4.0, during the forecasting period was the same
as the average of those variables over the past 70 years. The second
method used a hidden Markov model for making predictions for
the next day.

The authors in Murru, Console, and Falcone (2009) presented a
short-term forecast model based on the propagation of aftershock
sequences simulating the spreading of an epidemic.
3. Description of the Spanish seismic data

The database used for this study is the catalogue of Spanish
Geographical Institute (SGI), which has calculated the location
and magnitude of Spanish earthquakes. The SGI has produced
weekly and monthly catalogues for the area between 35N to 44N
and 10W to 5E.

López and Muñoz (2003) reviewed how the magnitudes that
appear in the Spanish bulletins and catalogues were calculated
by the different authors that proposed them. The estimate of mag-
nitude based upon amplitude was obtained from Lg-wave registers
or, generally, from the maximum train of the S-waves. The equa-
tion for this estimate was corrected using a selection of earth-
quakes, whose magnitude had been measured by the United
States Coast and Geodetic Survey (USCGS). Formerly, the difficulty
in measuring the maximum amplitude for analog data, which pro-
duces unreliable magnitude estimates, encouraged some authors
such as Tsumura (1967) to develop formulas based on the duration
of their signals. Lee, Bennet, and Meagher (1972) defined a formula
based on trace duration between the arrival of the P-wave and the
S-wave end. Owing to the development of these formulas, data re-
corded before 1962 were calculated using the earthquakes dura-
tion and after 1962, due to technological advances, using
amplitude and period of waves.

Once aftershocks and foreshocks have been removed from the
catalogue, the first step is to determine the year of completeness
of the catalogue for each area, defined as the year from which all
the earthquakes of magnitude equal or larger to M have been re-
corded. The year 1978 has been determined as the year of com-
pleteness for Spanish seismic data in Justo Alpañés, Carrasco, and
Martín Martín (1999).

Magnitude estimates in the earthquake catalogue are not
homogeneous, because the calculation of the registers obtained be-
fore 1962 was carried out using a different procedure. However,
this does not have an effect on this study as only the registers from
1978 onwards are used, because this is the completeness date of
the seismic catalogue for magnitudes greater or equal to the cutoff
magnitude (Ranalli, 1969).

The procedure used for the location of earthquakes is described
in Mezcua, Rueda, and García Blanco (2004). The location of the
older earthquake epicenters has been found graphically, using
isoseismic maps. The earthquake location has been found with
the application HYPO 71, based on the arrival time of the waves
to the stations and a model of the crust. Location errors have been
reduced from an average error of 25 km in 1964 to 3 km in 1996
(see Giner, Molina, Jauregui, & Delgado, 2002).
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Fig. 2. Gutenberg–Richter law for the earthquakes (removing foreshocks and
aftershocks) from the SGI database.
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4. Fundamentals

This section exposes all the mathematical fundamentals that
support the methodology applied. First, the Gutenberg–Richter
law is described. Then, the parameter used to perform predictions
– the b-value – is introduced and its relevance as an earthquake
indicator is discussed.

4.1. Gutenberg–Richter law

Earthquake magnitude distribution has been observed from the
beginning of the 20th Century. Gutenberg and Richter (1942) and
Ishimoto and Iida (1939) observed that the number of earthquakes,
N, of magnitude greater or equal to M follows a power law distri-
bution (see Fig. 1) defined by:

NðMÞ ¼ aM�B; ð1Þ

where a and B are adjustment parameters.
Gutenberg and Richter (1954) transformed this power law into

a linear law (see Fig. 2) expressing this relation for the magnitude
frequency distribution of earthquakes as:

log10ðNðMÞÞ ¼ a� bM: ð2Þ

This law relates the cumulative number of events N(M) with magni-
tude greater or equal to M with the seismic activity, a, and the size
distribution factor, b. The a-value is the logarithm of the number of
earthquakes with magnitude greater or equal to zero. The b-value is
a parameter that reflects the tectonic of the area under analysis (Lee
& Yang, 2006) and it has been related with the physical character-
istics of the area. A high value of the parameter implies that the
number of earthquakes of small magnitude is predominant and,
therefore, the region has a low resistance. On the other hand, a
low value shows that the relative number of small and large events
is similar, implying a higher resistance of the material.

Gutenberg and Richter used the least squares method to esti-
mate coefficients in the frequency–magnitude relation from (2).
Shi and Bolt (1982) pointed out that the b-value can be obtained
by this method but the presence of even a few large earthquakes
has a significative influence on the results. The maximum likeli-
hood method, hence, appears as an alternative to the least squares
method, which produces estimates that are more robust when the
number of infrequent large earthquakes changes. They also dem-
onstrated that for large samples and low temporal variations of
b, the standard deviation of the estimated b is:

rðb̂Þ ¼ 2:30b2rðMÞ; ð3Þ

where:
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Fig. 1. Number of earthquakes against magnitude (removing foreshocks and
aftershocks) from the SGI database.
r2ðMÞ ¼
Pn

i¼1ðMi �MÞ2

n
ð4Þ

and n is the number of events and Mi the magnitude of a single
event.

It is assumed that the magnitudes of the earthquakes that occur
in a region and in a certain period of time are independent and
identically distributed variables that follow the Gutenberg–Richter
law (Ranalli, 1969). This hypothesis is equivalent to suppose that
the probability density of the magnitude M is exponential:

f ðM;bÞ ¼ b exp½�bðM �M0Þ�; ð5Þ

where

b ¼ b
logðeÞ ð6Þ

and M0 is the cutoff magnitude.
Thus, in order to estimate the b-value, a previous estimation of

b is necessary. In Utsu (1965), the maximum likelihood method
was applied to obtain a value for b, defined by:

b ¼ 1
M �M0

; ð7Þ

where M is the mean magnitude of all the earthquakes in the
dataset.

From all the aforementioned possibilities, the maximum likeli-
hood method has been selected for the estimation of the b-value in
this work.

4.2. The b-value as seismic precursor

The b-value of the Gutenberg–Richter law is an important
parameter, because it reflects the tectonics and geophysical prop-
erties of the rocks and fluid pressure variations in the region con-
cerned (Lee & Yang, 2006, Zollo, Marzocchi, Capuano, Lomaz, &
Iannaccone, 2002). Thus, the analysis of its variation has often been
used in earthquake prediction (Nuannin, Kulhanek, & Persson,
2005). It is important to know how the sequence of b-values has
been obtained, before presenting conclusions about its variation.
The studies of both Gibowitz (1974) and Wiemer et al. (2002) on
the variation of the b-value over time refer to aftershocks. They
found an increase in b-value after large earthquakes in New Zea-
land and a decrease before the next important aftershock. In gen-
eral, they showed that the b-value tends to decrease when many
earthquakes occur in a local area during a short period of time.

Other authors Schorlemmer, Wiemer, and Wyss (2005),
Nuannin et al. (2005) infer that the b-value is a stress meter that
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depends inversely on differential stress. Hence, Nuannin et al.
(2005) presented a very detailed analysis on b-value variations.
He studied the earthquakes in the Andaman–Sumatra region. To
consider variations in b-value, a sliding time-window method
was used. From the earthquake catalogue, the b-value was calcu-
lated for a group of fifty events. Then the window was shifted by
a time corresponding to five events. They conclude that earth-
quakes are usually preceded by a large decrease in b, although in
some cases a small increase in this value precedes the shock.

Sammonds, Meredith, and Main (1992) clarifies the stress
changes in the fault and the variations of the b-value surrounding
an important earthquake. They state: ‘‘A systematic study of tem-
poral changes in seismic b-values has shown that large earth-
quakes are often preceded by an intermediate-term increase in b,
followed by a decrease in the months to weeks before the earth-
quake. The onset of the b-value can precede earthquake occurrence
by as much as seven years”.

5. Pattern recognition in seismic temporal data

The methodology proposed in order to discover knowledge
from earthquakes time series is described in this section.

First of all, the earthquakes dataset is constructed as follows.
Each earthquake is represented by three features: the magnitude,
the b-value and the date of occurrence. Thus, the ith earthquake
is defined by:

Ei ¼ ðMi; bi; tiÞ; ð8Þ

where Mi is the magnitude of the earthquake, bi is the b-value asso-
ciated to the earthquake and ti is the date in which the earthquake
took place.

The b-value is determined from (6) and (7) considering the fifty
preceding events Nuannin et al. (2005). Fig. 1 illustrates that the
number of earthquakes with magnitude greater or equal to three
follows an exponential law allowing the application of the Guten-
berg–Richter law from (5). Therefore, the cutoff magnitude is set to
three.

Furthermore, data are grouped into sets of five chronologically
ordered earthquakes according to the methodology proposed in
Nuannin et al. (2005). Thus, a simpler law with easier interpreta-
tion is provided. Each group Gj is represented by the mean of the
magnitude of the five-earthquakes, the time elapsed from the first
earthquake and the fifth one and the signed variation of the b-val-
ues in this time interval, i.e.,

Gj ¼ fEk�4; . . . ; Ekg with k ¼ 5j and j ¼ 1; . . . ; bN=5c; ð9Þ

where N is the number of earthquakes in the dataset and b N/5c is
the greatest integer less than or equal to N/5. Thus,

Gj ¼ ðMj;Dbj;DtjÞ; ð10Þ

where

Mj ¼
1
5

Xk

i¼k�4

Mi; with k ¼ 5j; ð11Þ

Db ¼ bk � bk�4; with k ¼ 5j; ð12Þ
Dtj ¼ tk � tk�4; with k ¼ 5j: ð13Þ

Finally, the dataset is composed by the temporal sequence of all Gj,

DS ¼ fG1;G2; . . . ;GbN=5cg: ð14Þ

The goal is to find patterns in data that precede the apparition of
earthquakes with a magnitude greater or equal to 4.5. Hence, the
K-means algorithm is applied to the dataset, DS, with the aim of
classifying the samples into different groups. As a previous step,
the optimal number of clusters has to be determined since the K-
means algorithm needs this number as input data. For this purpose,
a well-known validity index – silhouette index – is applied over
clustered data for different numbers of clusters. Thus, each sample
is considered only by the label assigned by the K-means algorithm
in further analysis. Once these labels have been obtained, specific
sequences of labels are searched as precursors of medium–large
earthquakes.

Sections 5.1 and 5.2 detail the K-means algorithm and the sil-
houette index.

5.1. The K-means algorithm

The K-means algorithm was originally presented by Macqueen
(1968). For each cluster, its centroid is used as the most represen-
tative point. The centroid of a group of elements is the center of
gravity of all the elements in the cluster. Consequently, it can only
be applied when the average of each cluster can be defined, i.e., the
K-means algorithm can classify datasets containing quantitative
features.

The algorithm gathers n objects into K sets and increases the in-
tra-cluster similarity at the same time. This similarity is measured
with respect to the centroid of the objects that belong to the clus-
ter. Then, the aim is to minimize intra-cluster variance defined as
the following squared error function:

V ¼
XK

i¼1

X

xj�Ci

jxj � lij
2
; ð15Þ

where K is the number of clusters, Ci is the cluster i, li is the cen-
troid of the cluster i and xj is the j-th object to be clustered.

The K-means algorithm is an efficient and simple method espe-
cially useful when large datasets are handled and it converges ex-
tremely quick in most practical cases. In this work, K-means is
applied several times in order to avoid that local minima are found
and to reduce the dependency to the initial centers of clusters
which are randomly selected.

5.2. Selecting the optimal number of clusters

The number of clusters selected to carry out classification is one
of the most critical decisions in clustering techniques. Choosing a
large number of clusters does not necessarily imply better classifi-
cations. On the contrary, results could be unclear and confusing.

The selection of an optimal number of clusters is still an open
task. Recently, several approaches have been developed in order
to determine this number (Hamerly & Elkan, 2003; Yan & Ye,
2007) and its application has been shown to be useful in many
engineering applications. In this sense, the silhouette index (Kauf-
mann & Rousseeuw, 1990) provides a measure of the separation of
clusters and can be used as a general-purpose method to deter-
mine the number of clusters.

Let be an object xj that belongs to cluster Ci. The average dissim-
ilarity of xj to all the other objects included in Ci, a(j), is evaluated
as follows:

aðjÞ ¼ 1
sizeðCiÞ

X

xi2Ci

dðxi; xjÞ; with xi – xj; ð16Þ

where d(�,�) is a distance measure. Analogously, the average dissim-
ilarity of xj to all the objects belonging to Cm with m – i is called
dis(xj,Cm) and defined by:

disðxj;CmÞ ¼minfdðxj; xlÞ; 8l 2 Cmg; with m – i: ð17Þ

The next step consists in evaluating the dis(xj,Cm) for every m – i
and, subsequently, the smallest dissimilarity is chosen as follows:

bðjÞ ¼minfdisðxj;CmÞ; 8m – ig: ð18Þ
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Thus, b(j) represents the dissimilarity of xj to its nearest neighboring
cluster. Finally, to determine how well an object xj is clustered the
following silhouette index is applied:

silhðjÞ ¼ bðjÞ � aðjÞ
maxfaðjÞ; bðjÞg : ð19Þ

Its value ranges from �1 to +1, where +1 and �1 indicates points
with adequate or questionable cluster assignment, respectively. If
cluster Ci is a set containing a single member, then silh(j) is not de-
fined and a conventional choice is to set silh(j) = 0. The best cluster-
ing is achieved when the average of silh(j) over the n objects to be
classified is maximized.
6. Experimental results

The patterns obtained by the application of the K-means algo-
rithm to the seismic temporal data are presented in this section.
First, the datasets used are detailed as well as the estimation of
the b-value over these data. Second, the clustering process is de-
scribed showing how the number of clusters is selected. Then, a
measure of quality of the results is provided and a statistical anal-
ysis is carried out with the aim of determining if the results ob-
tained by the clustering are significative.
6.1. Dataset

The seismogenic areas used in this paper were established by
Martín Martín (1989) according to tectonic, geological, seismic
and gravimetric data. Twenty-seven areas are enumerated in Table
1. Fig. 3 shows the epicenters of earthquakes localized in these 27
seismogenic areas from the year 1978. When the magnitude is
greater or equal to 3.0 and less than 4.0 the epicenters are repre-
sented by dots; when it is greater or equal to 4.0 and less than
5.0 the epicenters are marked with white circles; and finally, for
earthquakes with magnitude greater or equal to 5.0, their epicen-
ters are represented by black solid.
Table 1
Seismogenic areas of Spain and Portugal.

Area Description

]1 Granada basin
]2 Penibetic area
]3 Area to the East of the Betic system
]4 Quaternary Guadix–Baza basin
]5 Area of moderate seismicity to the North of the Betic system
]6 Area of moderate seismicity including the Valencia basin
]7 Sub-betic area
]8 Tertiary basin in the Guadalquivir depression
]9 Algarve area
]10 South-Portuguese unit
]11 Ossa Morena tectonic unit
]12 Lower Tagus Basin
]13 West Portuguese fringe
]14 North Portugal
]15 West Galicia
]16 East Galicia
]17 Iberian mountain mass
]18 West of the Pyrenees
]19 Mountain range of the coast of Catalonia
]20 Eastern Pyrenees
]21 Southern Pyrenees
]22 North Pyrenees
]23 North–Eastern Pyrenees
]24 Eastern part of Azores–Gibraltar fault
]25 North Morocco and Gibraltar field
]26 Alboran Sea
]27 Western Azores–Gibraltar fault
Foreshocks and aftershocks have been removed and only the
earthquakes located between 35N to 44N and 10W to 5E have been
selected. The samples include 4017 earthquakes, whose magnitude
varies between 3.0 and 7.0, during the 29 year period from the year
1978 to the year 2007. Moreover, the catalogue is complete for
earthquakes with magnitude greater or equal to 3.0 due to the year
of completeness for the Spanish seismic data is the year 1978. At
present, the proposed methodology has only been applied to the
under-water seismogenic areas ]26 and ]27 (Alboran sea and Wes-
tern Azores–Gibraltar fault, respectively) because there are not en-
ough data in the remaining areas to carry out such an analysis. For
both seismogenic areas, the maximum likelihood method has been
used to obtain the b-value of the Gutenberg–Richter law. The cutoff
magnitude is equal to three and the b-value is determined from (6)
and (7) considering the fifty preceding events Nuannin et al.
(2005).

6.2. Data clustering results

Fig. 4 presents the mean of the silhouette index values versus
the number of clusters for the seismogenic areas ] 26 and ]27. It
can be observed that the optimal number of clusters is three since
the index reaches the maximum value for three clusters in both
areas. Notice that the maximum values were equal to 0.6901 and
0.7532 for the areas ]26 and ]27, respectively, leading to a great
accuracy. Fig. 5 shows the values of the silhouette index for all
earthquakes from dataset which have been clustered. It can be
noted an excellent adjustment of the data to the chosen number
of clusters as nearly no negative values appear and the negative
values indicate earthquakes with wrong cluster assignment.

Table 2 shows the values of the centroids of the obtained clus-
ters by using the K-means algorithm and the percentage of earth-
quakes that belong to each cluster for seismogenic areas ] 26 and
]27. Once the earthquakes have been clustered, the values 1, 2
and 3 are the labels assigned to the different clusters. Notice that
the majority of the earthquakes belong to the cluster one and three
for the area ]26 (34.38% and 56.24%, respectively). With reference
to the b-value, clusters 1, 2 and 3 are characterized as follows. Clus-
ter 1 presents a decrease of the b-value, cluster 2 an increment
close to zero and, finally, cluster 3 an increase of the b-value. More-
over, the magnitude of the centroid of the cluster 1 is greater to
that of the cluster 2, and that of the cluster 2 is greater to that of
the cluster 3 for both areas. In short, all earthquakes with magni-
tude greater or equal to 4.5 have been classified into cluster 1
and characterized, therefore, by an increment of the b-value
negative.

Figs. 6 and 7 present the earthquakes temporal data, DS, classi-
fied into 3 clusters along with the evolution of the b-value from the
year 1978 to 2007. All the earthquakes of the dataset with magni-
tude greater or equal to 4.5 are also represented by a black circle.

Seismogenic area ]26 is characterized by moderate seismicity
with a Gutenberg–Richter b-value of 1.14 determined from (6)
and (7) and a standard deviation of 0.05 obtained from (3). Analo-
gously, the seismogenic area ]27 presents a higher rate of large
earthquakes with a b-value of 0.70 ± 0.03. In spite of the annual
rate of earthquakes per square kilometer being similar in both
areas (3.75E-04 in area ]26 and 3.89E-04 in area ] 27), events of
magnitude greater or equal to 4.5 are much more frequent in the
West of Azores–Gibraltar fault than in the Alboran Sea. It is known
that the b-value reflects the tectonics of the region under analysis
(Lee & Yang, 2006) and, thus, a high value indicates that the rocks
of the area have low strength and, consequently, the number of
earthquakes with small magnitude is more frequent (Lowrie,
2007).

From Fig. 6, it can be observed that all the earthquakes of
magnitude greater or equal to 4.5 (black circles) are preceded by
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five-earthquake groups that belong to the cluster 3, except for one
earthquake, occurred from the year 1993 to 1994, preceded by a
five-earthquake group that belongs to the cluster 1. This only
earthquake can be considered a separately case or an outlier for
this area.

When the set of the preceding five-earthquakes was classified
into cluster 3, the mean magnitude of this set is low and the incre-
ment of the b-value is positive according to the Table 2. When an
earthquake of magnitude greater or equal to 4.5 occur, the group
of five-earthquakes including this large earthquake belongs to
the cluster 1. Therefore, it can be noted that the sequence of labels
that characterize the earthquakes with magnitude greater or equal
to 4.5 for this area is 3–1. The change of the membership from clus-
ter 3 to cluster 1 entails that the b-value decreases in a short time
(from 1 to 2 months) nearby the occurrence of the shock (see Table
2). Consequently, a decrease of the b-value is a precursor of earth-
quakes of magnitude greater or equal to 4.5 for the area ]26.



Table 2
Centroids of the clusters.

Area Cluster M Db Dt Membership (%)

]26 ]1 3.56 �0.047 0.16 34.38
]2 3.39 �0.013 0.83 9.38
]3 3.28 +0.028 0.16 56.24

]27 ]1 3.99 �0.028 0.140 34.62
]2 3.54 �0.005 0.091 43.59
]3 3.33 +0.035 0.519 21.79
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It can be observed that several five-earthquake groups with
small magnitude are classified into the cluster 2, in which the b-va-
lue is nearly constant and probably no important stress changes
occur.

From Fig. 7, it can be stated that the seismogenic area ]27 fol-
lows a similar pattern to area ]26 until the year 2000. That is,
the membership of five-earthquake groups to clusters changes
from cluster 3 to 1 when a moderate–large earthquake occurs.
Around the year 2000, a period of great tectonic activity take place
where many earthquakes of magnitude greater or equal to 4.5 are
Fig. 6. Clustering of earthqua

Fig. 7. Clustering of earthquakes for
recorded. This period is characterized by short time intervals in
which five–earthquake groups change their membership from
cluster 2 to 1, from cluster 1 to 2 and from cluster 1 to 1. However,
all earthquakes of magnitude greater or equal to 4.5 (black circles)
are classified into cluster 1 and most of them are preceded by five–
earthquake groups that belong to the cluster 2 or 1 (sequences of
labels 2–1 and 1–1). It can be observed that most of preceding
earthquakes classified into cluster 1 are, at the same time, pre-
ceded by earthquakes that belong to the cluster 2. Let be 1–12

the subset of earthquakes classified into the cluster 1 and preceded
by earthquakes belonging to the cluster 1 that are preceded by
earthquakes classified into the cluster 2. Moreover, three earth-
quakes with magnitude greater or equal to 4.5 classified into clus-
ter 1 also appeared in the last quarter of the year 2006. However,
the preceding five-earthquake groups are not classified into the
cluster 2 but into the cluster 3, in contrast to what it happens in
the 1–12 sequence. This sequence is denoted by 1–13. Therefore,
the sequences that characterize the earthquakes with magnitude
greater or equal to 4.5 for the area ]27 are 2–1, 1–12 and 1–13.

Thus, a decrease of the b-value is considered a precursor of
moderate–large earthquakes for this area due to the change of
kes for the Alboran sea.

the West Azores–Gibraltar fault.
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membership of preceding earthquakes from cluster 3 to 1 in the se-
quence 1–13 and from cluster 2 to 1 in the sequences 1–12 and 2–1
(see Table 2).

Moreover, it can be noticed that several earthquakes with small
magnitude, occurring before the year 1995 with a longer period of
time among them, are classified into cluster 3 implying a large in-
crease of the b-value.

In short, when a group of small earthquakes is classified into the
cluster 3 or 2 and the b-value begins to decrease, the occurrence of
an earthquake with magnitude greater or equal to 4.5 in a near fu-
ture is forecasted and furthermore, this large earthquake will be
classified into the cluster 1.

6.3. Quality of the results

All earthquakes with a magnitude greater or equal to 4.5 are
classified into cluster 1 and most of these earthquakes were pre-
ceded by others belonging to cluster 3, cluster 2, sequence of clus-
ters 2–1 or sequence of clusters 3–1. Therefore, the sequences of
labels 3–1, 2–1, 1–12 and 1–13 are now going to be studied in order
to provide a measure of the quality of the obtained results in the
previous subsection.

Table 3 provides the distribution of all earthquakes for different
clusters taking into consideration the cluster in which the preced-
ing earthquakes are classified. The Hits columns identify those
earthquakes that have magnitudes greater or equal to 4.5. It can
stated that most of Hits are represented by sequences of labels
3–1, 2–1 and 1–12 (13, 9 and 7, respectively).

The last column makes reference to the existing ratio between
the number of earthquakes with magnitude greater or equal to
4.5 classified into each sequence and the total occurrences of such
sequence. Note that the ratio corresponding to the sequences 3–1,
2–1 and 1–12 are 0.65, 0.56 and 1, respectively. These values are
the highest ones among that of all sequences except for the se-
quence 1–13, which has a similar ratio to the ones in sequences
3–1 and 2–1 (0.60 versus 0.65 and 0.56, respectively). Thus, the se-
quence 1–13 is also considered to be representative, as it was sta-
ted in the previous section.

True positives (TP) identify the occurrence of earthquakes with
magnitude greater or equal to 4.5 when any of the considered se-
quences of labels are present. On the other hand, the false nega-
tives (FN) represent the number of cases in which a medium–
large earthquake also occurs but no proposed sequences of labels
are found. True negatives (TN) and false positives (FP) refer to
the situation in which no earthquakes occurred. However, the TN
denotes that no proposed sequences appear, while the FP makes
reference to the apparition of any of the considered sequences.

In addition, two well-known indices are provided, the sensitiv-
ity and the specificity. In this context, the sensitivity quantifies the
Table 3
Distribution of earthquakes into different sequences.

Sequences Area #26 Area #27 Ratio

Cases Hits Cases Hits

1–11 7 1 3 3 0.40
1–12 1 0 6 7 1
1–13 4 0 1 3 0.60
1–2 1 0 14 0 0
1–3 16 0 2 0 0

2–1 2 0 14 9 0.56
2–2 2 0 16 2 0.11
2–3 5 0 4 1 0.11

3–1 17 9 3 4 0.65
3–2 6 0 4 0 0
3–3 35 0 10 0 0

Total 96 10 77 29
grade of reliability of the method when real events take place
while the specificity measures the reliability of the method when
sequences of labels are discarded. These indices are defined by
the following equations:

Sensitivity ¼ TP
TP þ FN

; ð20Þ

Specificity ¼ TN
FP þ TN

: ð21Þ

Table 4 measures the quality of the results obtained from the earth-
quakes temporal data distribution shown in Table 3. It can be ob-
served that the method obtains good levels of accuracy, since
sensitivities of 90.00% and 79.31% are reached for areas #26 and
#27, respectively. Furthermore, the specificity reaches values great-
er than 80% and 90% for the areas #26 and #27, respectively. In short,
not only medium–large earthquakes are detected with a good reli-
ability, but also those cases in which earthquakes with a magnitude
lesser than 4.5 appear are properly discarded. The obtained perfor-
mance is considered relevant for geophysical data analysts as the
occurrences of earthquakes present a high level of uncertainty.

6.4. Statistical analysis

The well-known Wilcoxon rank-sum (WRS) test is applied in or-
der to show that the magnitude distributions of the earthquakes
that belong to the sequences 3–1, 2–1, 1–13 and 1–12 come from
the same distribution with equal medians. The test has been ap-
plied to all possible two–sequence combinations.

The WRS is a standard non–parametric test for two independent
samples based on data ranking and it has been chosen because the
required conditions to apply parametric tests, such as normality of
data, are not satisfied. A null hypothesis is an assumption about the
population to be tested. This hypothesis is accepted or rejected by
the test according to the p-value. When the p-value is lesser or
greater than a certain level of significance the hypothesis is re-
jected or accepted, respectively. Therefore, the level of significance
is the probability of rejecting the null hypothesis being true. For in-
stance, when the level of significance is 0.05, the probability of
making a mistake rejecting the null hypothesis is 5%.

In this context, the samples are the maximum magnitudes of
the groups of five-earthquakes classified into the cluster 1 for all
sequences of clusters 3–1, 2–1, 1–13 and 1–12 versus the remaining
sequences of two clusters. Therefore, the null hypothesis assumes
that these magnitudes are equally likely to occur. The level of sig-
nificance has been set to 0.05 as it is considered a typical level of
significance in most of statistical tests. The test has been applied
to the joining of all samples from both areas #26 and #27 since
the number of the earthquakes classified into some of the se-
quences 3–1, 2–1, 1–13 and 1–12 is not representatively enough
for both areas separately. For instance, the sequence of labels 2–
1 only appears twice in area #26 and the sequence 3–1 only ap-
pears three times in area #27.

Table 5 shows the p-values obtained by the application of the
WRS test to the samples for seismogenic areas #26 and #27, where
the number in brackets represents the number of occurrences of
Table 4
Results performance.

Parameters Area #26 Area #27

TP 9 23
FN 1 6
FP 15 5
TN 71 47

Sensitivity 90.00% 79.31%
Specificity 82.56% 90.38%



Table 5
p-values for the WRS test.

Shifts 3–1 2–1 1–13 1–12 Mean

1–11 (7/3) 0.648 0.542 0.867 0.168 4.4
1–12 (1/6) 0.363 0.365 0.219 1.000 4.8
1–13 (4/1) 0.376 0.507 1.000 0.134 4.4
1–2 (1/14) 0.013 0.005 0.023 0.005 4.0
1–3 (16/2) 0.000 0.000 0.000 0.000 3.5

2–1 (2/14) 1.000 1.000 0.814 0.365 4.6
2–2 (2/16) 0.004 0.003 0.035 0.003 4.0
2–3 (5/4) 0.002 0.000 0.013 0.002 3.8

3–1 (17/3) 1.000 0.898 0.376 0.390 4.6
3–2 (6/4) 0.001 0.000 0.005 0.000 3.8
3–3 (35/10) 0.000 0.000 0.000 0.000 3.7
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each sequence of clusters for areas #26 and #27, respectively. The
sequence 1–11 is the subset of earthquakes classified into the clus-
ter 1 and preceded by earthquakes belonging to the cluster 1 that
are preceded by earthquakes classified into the cluster 1 at the
same time. The last column provides the mean of the samples cor-
responding to each sequence of clusters. It can be noticed that the
average magnitudes of the earthquakes classified into the se-
quences of clusters 3–1, 2–1 and 1–12 are higher than those of
other sequences (greater or equal to 4.5, concretely).

Moreover, the p-values obtained for the samples of the se-
quences 3–1, 2–1, 1–13 and 1–12 are greater than 0.05. Therefore,
the null hypothesis cannot be rejected and the distributions of
earthquakes that belong to these sequences are the same, accord-
ing to their magnitude. The null hypothesis cannot be either re-
jected for the sample corresponding to the sequence 1–11 since
the values provided by the WRS test are higher than 0.05. Never-
theless, the number of earthquakes with a magnitude greater or
equal to 4.5 that are classified in this sequence is low regarding
the total occurrences of this sequence (a ratio of 0.4, concretely)
but these earthquakes have magnitudes specially high, leading to
a mean magnitude equal to 4.4, very close to the considered
threshold.

The null hypothesis for the remaining sequences is rejected
since the p-values are lesser than 0.05 and 0 in many cases. This
means that the magnitudes of the earthquakes classified into se-
quences of clusters 1–2, 1–3, 2–2, 2–3, 3–2 and 3–3 have a distri-
bution different to those of the sequences 3–1, 2–1, 1–13 and 1–12.
In short, the sequences of clusters 3–1, 2–1, 1–13 and 1–12 are sig-
nificant sequences to discover patterns as precursors of moderate–
large earthquakes.

7. Conclusions

In this paper a pattern recognition based on K-means algorithm
is proposed to forecast earthquakes with magnitude greater or
equal to 4.5. Results corresponding to the Spanish seismic temporal
data provided by the Spanish Geographical Institute are reported,
yielding a sensitivity and a specificity which are 90.00% and
82.56% in area #26 and 79.31% and 90.38% in area #27. Moreover,
all medium–large earthquakes have been characterized by a decre-
ment of the b-value. Thus, this parameter can be considered a seis-
mic precursor for the Spanish seismic data. It can be stated that the
K-means approach has a good performance, particularly when the
uncertainty of earthquakes occurrences is taken into account.
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