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Abstract— When dealing with problems using Fuzzy Rule
Based Classification Systems it is difficult to know in advance
whether the model will perform well or badly.

In this work we present an automatic extraction method to
determine the domains of competence of Fuzzy Rule Based
Classification Systems As a case of study we use the Fuzzy
Hybrid Genetic Based Machine Learning method. We consider
twelve metrics of data complexity in order to analyze the
behavior patterns of this method, obtaining intervals of such
data complexity measures with good or bad performance of it.
Combining these intervals we obtain rules that describe both
good or bad behaviors of the Fuzzy Rule Based Classification
System mentioned.

These rules allow describe both good or bad behaviors of the
Fuzzy Rule Based Classification Systems mentioned, allowing
us to characterize the response quality of the methods from
the data set complexity metrics of a given data set. Thus, we
can establish the domains of competence of the Fuzzy Rule
Based Classification Systems considered, making it possible to
establish when the method will perform well or badly prior to
its application.

I. INTRODUCTION

Fuzzy Rule Based Classification Systems (FRBCSs) [12],
[15] are widely employed due to their capability to built a
linguistic model interpretable to the users and the possibility
of mixing different information such as that coming from
expert knowledge and information coming from mathemati-
cal models or empiric measures. There is a vast literature in
the field of FRBCSs, which is very active at this time. New
FRBCS models have been proposed on standard classifica-
tion [10], [11], [17] and data streams [2] among others. They
have also been also applied widely including, but not limited
to, the detection of intrusions [20], medical applications [1],
[21], [19] and in the imbalanced data framework [7].

On the other hand, the prediction capabilities of classifiers
are often strongly dependent on the problem’s characteristics.
An emergent field has arisen that uses a set of complexity
measures [4] applied to the problem to describe their difficul-
ties [4], [9]. These measures quantify particular aspects of the
problem which are considered relevant to the classification
task [4]. Studies of data complexity metrics applied to
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particular classification algorithms can be found in [6], [5],
[8], [18].

The complexity in the data can be used for characterizing
FRBCSs’ performance and it can be considered a new
trend in the use of FRBCSs in pattern recognition. No
data complexity metrics have been analyzed together with
FRBCSs up to now, except in our previous study [16].

In this work we propose a novel automatic extraction
method for characterizing FRBCSs by means of data com-
plexity measures. In particular we consider twelve types of
data complexity measures based on the overlaps in feature
values from different classes; separability of classes; and
measures of geometry, topology, and density of manifolds.

In order to perform this study, we consider the Fuzzy Hy-
brid Genetic Based Machine Learning (FH-GBML) method
proposed by Ishibuchi et al. [14]. We have created 438
binary classification data sets from real world problems, and
computed the value of the twelve metrics proposed by Ho
and Basu [9].

The automatic extraction method of the domains of com-
petence consider the following steps:

• It obtains intervals that describe when the FRBCS
perform well or badly attending to the data complexity
values.

• It formulates one rule for each interval where some
information and conclusions about the behavior of these
methods can be stated.

• It combines the individual rules in order to improve their
support and interpretability.

• Finally, one rule which discriminates the good or bad
behavior of the FRBCS is obtained.

The intervals which describe the performance are based on
the following average values:

• Classification ratio, considering the average accuracy
and test rate, and its difference with the global behavior.

• Detection of the over-learning, by means of the distance
between the training accuracy and test accuracy ratio.

The rest of this contribution is organized as follows. In
Section II the description of the FH-GBML method and the
considered complexity measures are introduced. Section III
describes the automatic method proposed in this work. In
Section IV we include the experimental framework and the
analysis of the obtained rules with the automatic method
along with their analysis. Finally, in Section V some con-
cluding remarks are pointed out.
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II. PRELIMINARIES

In this section we introduce the FRBCS used and the
parameters used in Subsection II-A. The data complexity
metrics considered in this contribution are described in
Subsection II-B.

A. FH-GBML Description and Parameters
The FH-GBML FRBCS is a Pittsburgh method in which

each rule set is an individual. Besides it contains a
cooperative-competitive learning approach (on individual
represents one rule), which is used as an heuristic mutation
in order to partially modify each rule set.

This method uses standard fuzzy rules with weights [13] in
which each input variable xi is represented by one linguistic
term or label. The system define 14 possible linguistic terms
for each attribute, and a special “don’t care” set.

In the learning process, Npop rule sets are created by
selecting randomly Nrule training examples. Then a fuzzy
rule is generated from each training pattern by means of
choosing one fuzzy set as antecedent randomly from the 14
candidates (P (Bk) = µBk

(xpi)∑14
j=1 µBj

(xpi)
); and each antecedent

(fuzzy set) of the generated fuzzy rule is replaced by don’t
care using a fixed probability Pdon′t care.

Npop−1 rule sets are generated by the selection, crossover
and mutation mechanisms as it is usually performed in Pitts-
burgh approaches. Next, with fixed probability, one single
iteration of the cooperative-competitive algorithm is applied
to each generated rule set.

Finally the best rule set is added, in the current population,
to the new generated rule sets (Npop -1) in order to create
the new population. Then if the stop criterion is not satisfied,
the genetic process is repeated again. The winning rule fuzzy
reasoning method is used in order to classify the examples.

We have used fixed parameters due to the necessity of
analyze the characterization of FH-GBML independently to
the procedure of adjusting of them, and therefore this task
is out of the scope of this contribution. However, we have
performed several experiment and adjusted the parameters
empirically to obtain a good performance. In Table I we have
summarized the parameters.

TABLE I
PARAMETERS USED BY FH-GBML (p IS THE NUMBER OF ATTRIBUTES

IN THE DATA SET)

Number of fuzzy rules: 5× p rules.
Number of rule sets (Npop): 200 rule sets.
Crossover probability: 0.9.
Mutation probability: 1/p.
Number of replaced rules: All rules except the best-one
(Pittsburgh-part, elitist approach), number of rules/5 (Michigan-part).
Total number of generations: 1,000 generations.
Don’t care probability: 0.5.
Probability of the application of the Michigan iteration: 0.5

B. Data Complexity Measures
In our analysis we have used the 12 data complexity

measures proposed by Ho and Basu [9] that quantify difficult
characteristics of the data sets for the classification task. They
are summarized in Table II, and a deeper description can be
found in [4].

TABLE II
COMPLEXITY METRICS USED IN THIS STUDY

Type Id. Description
Measures of F1 maximum Fisher’s discriminant ratio

Overlaps in Feature F2 volume of overlap region
Values from F3 maximum (individual) feature efficiency

Different Classes
L1 minimized sum of error distance by linear programming

Measures of L2 error rate of linear classifier by Linear Programming
Separability N1 fraction of points on class boundary
of Classes N2 ratio of average intra/inter class NN distance

N3 error rate of 1NN classifier
L3 nonlinearity of linear

Measures of classifier by linear programming
Geometry, Topology N4 non-linearity of 1NN classifier

and Density T1 fraction of points with associated
of Manifolds adherence subsets retained

T2 average number of points per dimension

III. AUTOMATIC EXTRACTION METHOD

In this section the motivation behind the proposal is pre-
sented in Subsection III-A. In Subsection III-B the definition
of the good or bad behavior points and intervals is given. The
method is described in Subsection III-C.

A. Problem Analysis

To determine when a method will perform good or bad is
not a trivial task, considering the accuracy as performance
measure. One primary indicative of the method’s perfor-
mance is the training accuracy. However, this is not always
a precise measure. Figure 1 contains the accuracy results
in training and test for FH-GBML over all the 438 data
sets, plotted in ascending training accuracy value. We would

0102030405060708090100

0 50 100 150 200 250 300 350 400 450%Training Accuracy FH-GBML % Test Accuracy FH-GBML
Fig. 1. Accuracy in Training/Test for FH-GBML sorted by training
accuracy

like to point out how over-fitting is continuously present in
them. Therefore the necessity of other kinds of tools for
characterizing the behavior of the methods appears.

The data complexity measures presented in the previous
section can be used to carry out the characterization of the
FRBCSs. One direct approach is to analyze the relationship
between the data complexity value for a given data set and
the performance obtained by the method. Using enough data
sets sorted by a particular data complexity measure, we
could observe regions in which the method is performing
noticeably well or badly. In Figure 2 the FH-GBML method’s
results sorted by the N1 data complexity measure can be
easily separated between good and bad results. However, this
case does not usually appear when considering all the data
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complexity measures. Figure 3 shows an example of a data
complexity measure in which no significative regions could
be found neither for good or bad behavior for the FH-GBML
method.
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Fig. 2. Accuracy in Training/Test for FH-GBML sorted by N1
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Fig. 3. Accuracy in Training/Test for FH-GBML sorted by T1

In the study performed in [16] an ad-hoc method used
for extracting intervals for the FH-GBML was proposed.
The intervals were extracted over the sorted data sets as
described above. This ad-hoc method was based on the
selection of intervals of data complexity metrics’ values with
some interest for the user according to the graphical window
of the good results. With the combination of the manually
extracted intervals, the characterization of the behavior of the
FH-GBML for the considered data sets was achieved.

Two main problems were found when dealing with the
ad-hoc process of extracting intervals in [16]:

• The cut points which define the intervals were arbitrary
selected according to the graphics.

• It is possible to omit intervals with similar characteris-
tics to the extracted ones. That is, the user is not using a
formal description of the bad or good behavior intervals.

These issues can be tackled by the rigorous definition of
the good and bad intervals, and creating an automatic search
method to finding them.

B. Good or Bad Behavior Definitions

In order to overcome the issues indicated in the previ-
ous subsection, we propose an automatic method that can

extract the intervals in which the learning method shows a
prominent behavior. The automatic method decides which
data complexity measures are useful as they contain inter-
esting intervals, and which measures are discarded (without
providing any interval for them).

The automatic method analyzes a list of data sets sorted by
a particular data complexity measure, where each data set has
an associated performance measure of the FRBCSs (typically
the training and test accuracy rates). Then it extracts intervals
of values of such data complexity measure. These intervals
correspond to the given definition of good and bad behavior
of the FRBCSs performance.

Definition 1: Let U = {u1, u2, . . . , un} be a list of paired
training and test accuracy values for n different data sets,
where utra

i is the training accuracy value associated to the
data set ui and utst

i is the test accuracy value associated to
the data set ui. Each data set ui has associated a particular
value of every data complexity measure considered.

Definition 2: Given a list of paired training and test ac-
curacy values U = {u1, u2, . . . , un}, we define the average
training accuracy over U as Ū tra = 1

n

∑n
i=1 utra

i and the
average test accuracy as Ū tst = 1

n

∑n
i=1 utst

i .
Definition 3: Given a list of paired training and test ac-

curacy values U = {u1, u2, . . . , un}, we define an interval
V = {ui, . . . , uj} ⊆ U . The lower and upper bound values
of V are defined as:

• Mlow(V ) = minvk∈V {V }.
• Mup(V ) = maxvk∈V {V }.
In our proposal, we distinguish between two kinds of good

and bad behavior elements.
• Based on quality points, which take into account the

presence of overlearning.
• Based on intervals V , which take into account differ-

ences in their average accuracy V̄ with respect to the
global one Ū .

Both kind of elements are defined next.
Definition 4: A good behavior point ui is such that
1) utra

i − utst
i ≤ overLearningDifference; and

2) utra
i ≥ minGoodTraining.

Definition 5: A bad behavior point ui is such that
1) utra

i − utst
i > overLearningDifference; or

2) Ū tra − utra
i ≥ minBadGlobalDifference.

Definition 6: An interval of good behavior V =
{ui, . . . , uj} is such that

1) V̄ tra − Ū tra ≥ intTrainDifference; and
2) V̄ tst − Ū tst ≥ intTestDifference.
Definition 7: An interval of bad behavior V =
{ui, . . . , uj} is such that

1) Ū tra − V̄ tra ≥ minBadGlobalDifference; or
2) (V̄ tra − V̄ tst) − (Ū tra − Ū tst) ≥

overLearningDifference; or
3) Ū tst − V̄ tst >≥ intTestDifference.
The definitions of points and intervals of good or bad

behavior are parameterized, and they can be adjusted by the
user. The meaning and adjusted experimentally values of the
parameters used are shown next:
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• overLearningDifference = 5. It describes the differ-
ence limit between training and test accuracy in order
to consider the presence of overlearning.

• minGoodTraining = 90. It defines the minimum
training accuracy of a point in order to consider it a
good behavior point.

• minBadGlobalDifference = 10. It defines the min-
imum difference with the global training accuracy in
order to be a bad behavior point.

• intTrainDifference = 3. This parameter indicates
the minimum difference with the global training accu-
racy needed to consider a good behavior interval.

• intTestDifference = 6. This parameter indicates
the minimum difference with the global test accuracy
needed to consider a good behavior interval.

C. Automatic Extraction Method Description

For each FRBCSs considered, we obtain a list of paired
training and test accuracy values U . With the previous
definitions, the automatic method is capable of extracting
a series of intervals. In order to do that, it is necessary
that the data sets in U are sorted by the data complexity
measures. That is, for a given data complexity measure CM ,
∀i < j; CM(ui) ≤ CM(uj);ui, uj ∈ U ; i, j ∈ {1, . . . , n}.

We present the main outline of the automatic method
in Algorithm 1. The functions present in it are defined as
follows:

• nextImportantGoodPoint(ui, U): Looks for the in-
dex of the next good behavior point uk in the subset
V = {ui, . . . , un} ⊆ U . If no good behavior point could
be found it returns −1.

• nextImportantBadPoint(ui, U): Looks for the index
of the next bad behavior point uk in the subset V =
{ui, . . . , un} ⊆ U . If no bad behavior point could be
found it returns −1.

• extendGoodInterval(pos, U): From the reference
point upos this method creates a new interval of good
behavior V = {ul, . . . , um} ⊆ U from the initial
interval such that upos ∈ V .

• extendBadInterval(pos, U): From the reference point
upos this method creates a new interval of bad behavior
V = {ul, . . . , um} ⊆ U from the initial interval such
that upos ∈ V .

• mergeOverlappedIntervals(A): In this function, an
interval Vk is dropped from A if ∃Vm ∈ A; Mup(Vm) ≥
Mup(Vk) and Mlow(Vm) ≤ Mlow(Vk). Moreover it
tries to merge overlapped intervals or intervals separated
by a maximum gap of 5 points, provided that the new
merged intervals satisfies the previous definitions of
good or bad behavior.

IV. EXPERIMENTAL STUDY

In this section the analysis of the automatic extraction
method is presented. This study begins with the intervals
obtained by the automatic extraction method for the three
FRBCSs for the initial 438 data sets considered. From

Algorithm 1 Automatic Method
Input: A set of performance results in training and test of

the learning method U = {u1, u2, . . . , un} sorted by a
particular data complexity measure

Output: A set of intervals G in which the learning method
shows good or behavior, and a set of intervals B where
the learning method shows bad behavior
Steps:
i← 1
G← {}
B ← {}
while i < n do

pos← nextImportantGoodPoint(ui, U)
if pos ̸= −1 then

interval← extendGoodInterval(pos, U)
G← G ∪ {interval}
ui ←Mup(interval)

end if
end while
i← 1
while i < n do

pos← nextImportantBadPoint(ui, U)
if pos ̸= −1 then

interval← extendBadInterval(pos, U)
B ← B ∪ {interval}
ui ←Mup(interval)

end if
end while
G← mergeOverlappedIntervals(G)
B ← mergeOverlappedIntervals(B)
return {G,B}

these intervals we construct several rules that model the
performance of the used FRBCSs.

In order to perform this analysis, we have divided this
section into the following two subsections.

1) Data sets generation for the experimental study in
Subsection IV-A.

2) Extraction of individual rules based on the FRBCSs’
behavior in Subsection IV-B.

3) Analysis of the disjunctive rules and their conjunctive
combination in Subsection IV-C.

A. Data Sets Generation

We evaluate the FH-GBML method on a set of 438 binary
classification problems. These problems are generated from
pairwise combinations of the classes of 21 problems from the
University of California, Irvine (UCI) repository [3]. These
are iris, wine, new-thyroid, solar-flare, led7digit, zoo, yeast,
tae, balanced, car, contraceptive, ecoli, hayes-roth, shuttle,
australian, pima, monks, bupa, glass, haberman and vehicle.

In order to do that, first we take each data set and extract
the examples belonging to each class. Then we construct a
new data set with the combination of the examples from two
different classes. This will result in a new data set with only
2 classes and the examples which have two such classes as
output. We perform this process for every possible pairwise
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combination of classes. However, if an obtained data set with
this procedure proves to be linearly-separable, we discard it
(since we could classify it with a linear classifier with no
error). The complexity measure L1 from [9] indicates if a
problem is linearly-separable if its value is zero, so every
data set with a L1 value of zero will be discarded.

This method for generating binary data sets is limited by
the proper combinatorics, and we can only obtain over 200
new data sets with the original 20 data sets with this first
approach. In order to obtain more data sets, we group the
classes two by two, that is, we create a new binary data
set, and each of its two classes are the combination of two
original classes each. For this second approach we have used
ecoli, glass and flare data sets, since they have a high number
of class labels. Again, those data sets with a L1 value of zero
are discarded. Finally, all these combinations resulted in 438
binary classification problems.

To estimate the learning methods’ accuracy we have used
a 10-fold cross validation scheme once all the measures are
computed. We have taken the average accuracy of training
and test of the 10 partitions as a representative measure of
the FH-GBML’s performance.

In Table III we have summarized the global Training and
Test accuracy obtained by the FH-GBML. The high standard
deviation (std. dev.) present in the results (over the 10% in
test) agrees with the irregularity observed in Figure 1.

TABLE III
GLOBAL AVERAGE TRAINING AND TEST ACCURACY/STD. DEV. FOR

FH-GBML OVER THE 438 DATA SETS

Global % Accuracy Training Global % Accuracy Test
Global Training std. dev. Global Test std. dev.

FH-GBML 85.39% 85.39%
11.70 12.30

B. Intervals and Rule Extraction with the Automatic Extrac-
tion Method

Once we have obtained the average FH-GBML’s accuracy
in training and test for every data set (of the 438), we have
sorted them according to the different data complexity mea-
sures. Then we have used the automatic extraction method
described above in order to obtain a series of intervals of such
data complexity measures in which FH-GBML has obtained
a significant good or bad behavior with respect to the global
performance. In Table IV we have summarized the intervals
obtained by the automatic method.

In Table V we depict the rules derived from the intervals
obtained, and it is organized with the following columns for
each rule:

• The first column corresponds to the identifier of the rule
for further references.

• The “Range” column presents the domain of the rule.
• The third column “Support” presents the percentage of

data sets which verify the antecedent part of the rule.
• The column “% Training, Std. Dev.” shows the average

accuracy in training of all the examples which are
covered by the rule. The standard deviation of the
average training accuracy is computed as well.

TABLE IV
INTERVALS OBTAINED BY THE AUTOMATIC METHOD FOR THE 438 DATA

SETS FOR FH-GBML

Good behavior Bad behavior
Measure Range Measure Range

N1 [0.001,0.05] F1 [0.03,0.86]
N2 [0.01,0.24] N1 [0.30,1.00]
L1 [0.03,0.22] N2 [0.59,1.05]
L2 [0.00,0.12] N3 [0.16,0.54]

N4 [0.19,0.49]
L2 [0.25,0.56]
T1 [0.96,1.00]
T2 [0.56,14.00]

• The column “Training Diff.” contains the difference be-
tween the training accuracy of the rule and the training
accuracy across all 438 data sets.

• The column “% Test, Std. Dev.” shows the average
accuracy in test of all the examples which are covered
by the rule. The standard deviation of the average test
accuracy is computed as well.

• The column “Test Diff.” contains the difference between
the test accuracy of the rule and the test accuracy across
all 438 data sets.

As we can observe in this table, the positive rules (denoted
with a “+” symbol in their identifier) always show a positive
difference with the global average, both in training and test
accuracy. The negative ones (with a “-” symbol in their
identifier) verify the opposite case.

From these three tables we can point out the following:
• The support of the rules shows us that we can charac-

terize a wide range of data sets and obtain significant
differences in accuracy.

• The measures N1 and N2 and L2 are used in order
to find both good and bad behavior intervals. Therefore
they appear to be interesting measures for characterizing
both aspects of FH-GBML.

• Most of the data complexity measures used to describe
the good behavior belong to the measures of separability
of classes category, which appears to be very interesting
to describe the good data sets for the FH-GBML.

• The data complexity measures F2, F3 and L3 have not
been used by the automatic method.

• The automatic method use more data complexity mea-
sures for the bad behavior intervals, while the support
are similar to the good behavior intervals.

With these simple and individual rules, an initial charac-
terization of the good or bad data sets for the FRBCSs can
be considered.

C. Combination of the Individual Rules

The objective of this section is to analyze the effect of
combining the rules of good behavior, and the combination of
the rules of bad behavior is considered as well. By means of
merging the individual rules we can arrive at a more general
description, with a wider support, of the behavior of the FH-
GBML method.

Therefore we have considered the disjunctive combination
of all the positive rules to obtain a single rule (Positive Rule
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TABLE V
RULES OBTAINED FOR FH-GBML FROM THE AUTOMATIC INTERVALS

Good behavior rules
Id. Range % Support % Training Training % Test Test

Accuracy Difference Accuracy Difference
R1+ N1 ∈ [0.001,0.05] 17.352 99.768 6.199 98.222 9.981
R2+ N2 ∈ [0.01,0.24] 26.941 99.195 5.625 96.654 8.412
R3+ L1 ∈ [0.03,0.22] 22.603 98.764 5.195 95.754 7.512
R4+ L2 ∈ [0.00,0.12] 40.411 98.014 4.444 94.890 6.648

Bad behavior rules
Id. Range % Support % Training Training % Test Test

Accuracy Difference Accuracy Difference
R1- F1 ∈ [0.034,0.86] 24.201 89.202 -4.367 82.182 -6.060
R2- N1 ∈ [0.30,1.00] 21.005 83.645 -9.924 74.959 -13.283
R3- N2 ∈ [0.59,1.05] 15.982 82.182 -11.387 73.561 -14.681
R4- N3 ∈ [0.16,0.54] 21.005 83.531 -10.038 74.521 -13.721
R5- N4 ∈ [0.19,0.49] 21.689 87.069 -6.501 80.847 -7.394
R6- L2 ∈ [0.25,0.56] 30.137 87.911 -5.658 79.299 -8.943
R7- T1 ∈ [0.96,1.00] 27.397 89.572 -3.998 82.201 -6.041
R8- T2 ∈ [0.56,14.00] 23.973 89.878 -3.692 82.235 -6.007

Disjunction -PRD-), that is, we use the or operator to com-
bine the individual positive rules. The same procedure is done
with all the negative ones so we obtain another rule (Negative
Rule Disjunction -NRD-). The new disjunctive rules will
be activated if any of the component rules’ antecedents are
verified.

The PRD and NRD rules may present overlapping in their
support, and a mutual exclusive description of the good
and bad regions is desirable. We consider the conjunctive
operator and and the difference and not between the PRD
and NRD rules in order to tackle this issue. The difference
will remove the data sets for which FH-GBML presents good
or bad behavior from the disjunctive negative or positive rule,
respectively. That is, by means of the difference we have
tried to remove the data sets of the opposite type from the
considered disjunctive rule. Thus we obtain three different
kinds of intersections and an extra region:

• Intersection of positive disjunction and the negative
disjunction (PRD∧NRD).

• Intersection of positive disjunction and not the negative
disjunction (PRD∧qNRD).

• Intersection of negative disjunction and not the positive
disjunction (NRD∧qPRD).

• Not characterized region, in which no rule covers its
data sets.

In Table VI we have depicted the new collective rules for
the FH-GBML method.

From the new obtained rules, we can point out the follow-
ing for FH-GBML:

• The Positive Rule Disjunction (PRD) offers a high
support and it also gives a good training and test
accuracy (over the 98% and 94% respectively).

• The Negative Rule Disjunction (NRD) obtains a wide
support as well (over the 66%). However, the differences
in both training and test have decreased due to this
increment in support with respect to the single rules
of bad behavior.

• The Positive and Negative Rule Disjunction
(PRD∧NRD) is more specific than PRD in isolation. It

is also similar to PRD in the training and test accuracy
difference. This rule obtains positive differences in
training and test accuracy, representing good data sets
for the FRBCSs covered by the rules of bad behavior
(NRD rule). That means that these data sets could not
be recognized as good data sets for the FH-GBML as
they were mixed with bad data sets.

• The Positive and Not Negative Rule Disjunction
(PRD∧qNRD) has a lower support than PRD∧NRD.
Its difference is higher than PRD and PRD∧NRD rules,
since the data sets with low accuracy for the FRBCSs
present in PRD∧NRD have been removed from PRD,
becoming a more specific rule.

• The Negative and Not Positive Rule Disjunction
(NRD∧qPRD) is a good rule to describe the bad be-
havior of the FRBCSs. It has a high support and both a
high difference in training and test sets. When removing
the good data sets of PRD∧NRD, the NRD∧qPRD rule
becomes more accurate.

• The data sets not characterized neither by the PRD rule
or the NRD rule present a positive difference with the
global accuracy both in training and test.

From all the disjunctive and new conjunctive rules, we can
present PRD as a representative description of good data sets,
and NRD∧qPRD as a representative description for bad data
sets. On the other hand, the not characterized data sets can be
defined as good data sets for FH-GBML due to their positive
difference in test accuracy. Therefore the union of PRD and
not characterized data sets can be considered as the final
characterization of the good data sets for the FRBCSs.

In Figure 4 we have depicted the two block regions for the
FH-GBML method. On the left side the data sets not covered
by NRD∧qPRD are depicted, distinguishing between those
covered by the PRD rule and the not covered ones. On the
right side the data sets covered by NRD∧qPRD are plot. The
behavior of the FH-GBML is clearly differentiated in the two
main distinguished regions.
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TABLE VI
DISJUNCTION AND INTERSECTION RULES FROM ALL SIMPLE RULES FOR FH-GBML

Id. Range % Support % Training Training % Test Test
Accuracy Difference Accuracy Difference

PRD If R1+ or R2+ or R3+ or R4+ 42.24 98.08 4.51 94.96 6.72
then good behavior

If R1- or R2- or R3- or R4- 66.89 91.06 -2.51 84.72 -3.53
NRD or R5- or R6- or R7- or R8-

then bad behavior
If PRD and NRD then 22.60 97.20 3.63 93.40 5.16

PRD ∧NRD good behavior
If PRD and not NRD then 19.63 99.09 5.52 96.75 8.51

PRD ∧q NRD good behavior
If NRD and not PRD then 44.29 87.93 -5.64 80.28 -7.96

NRD∧qPRD bad behavior
not If not (PRD or NRD) 13.47 97.97 4.40 93.35 5.11

characterized then good behavior

0102030405060708090100

0 50 100 150 200 250 300 350 400 450% Training Accuracy FH-GBML % Test Accuracy FH-GBMLgood behavior - 55.71% NRD^¬PRD - bad behavior44.29%

PRD - 42.24%

Fig. 4. FH-GBML block representation for PRD, not characterized and NRD∧qPRD covered data sets

V. CONCLUDING REMARKS

We have proposed a new automatic method to characterize
the domains of competence of FRBCSs. In order to analyze
it, we have performed a study over a large set of binary data
sets with the FH-GBML method. First we have computed
twelve data complexity measures for each data sets. Next
we have used the automatic method and we have obtained
a set of intervals different for the FRBCS in which its
performance is significantly good or bad. Then we have
constructed descriptive rules from this intervals and we have
studied the interaction between the proper rules and we have
obtained one rule which is precise to describe the both good
and bad performance of each of FH-GBML.

We present the possibility of determining automatically
which data sets would prove to be good or bad for this
FRBCS prior to its execution, using the data complexity
measures. Moreover, the definition of good or bad domains
of competence is provided and they can be adjusted to the
user’s needs.

We must point out that this is a study for a particular
method. As a future work, more FRBCSs needs to be used

to analyze the generalization properties of our proposal.
An extra amount of data sets is also needed in order to
validate the obtained domains of competence. This work
presents a new challenge that could be extended to other
learning methods and to automatically analyze their domains
of competence.
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