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Abstract—Nearest neighbor is one of the most successfully
used techniques for performing classification and pattern recog-
nition tasks. Its simplicity and effectiveness justify the use
of this technique in certain domains but it however presents
several drawbacks referring to time response, noise sensitivity
and storage requirements. Several solutions have been proposed
in order to alleviate these problems, such as improving the
technique for speeding up or carrying out a data reduction
process. Prototype generation is a suitable process for data
reduction that allows to fit a data set for nearest neighbor
classification. Position adjustment of prototypes is a successful
technique within the prototype generation methodology.
Evolutionary algorithms are adaptive methods based on

natural evolution that may be used for search and optimization.
Position adjustment of prototypes can be viewed as a search
problem, thus it could be solved using evolutionary algorithms.
In this paper, we perform a preliminary study on the use of
differential evolution algorithms to the prototype generation
problem. Differential evolution models are compared with
other algorithms for adjusting the position of prototypes and
the results are contrasted through non-parametrical statistical
tests. The results show that some differential evolution models
consistently outperform previously proposed methods.

I. INTRODUCTION

The k-Nearest Neighbors rule (kNN) [1] is one of the most
known and used nonparametric classifier in Machine Learn-
ing and Data Mining (DM) tasks [2]. It is included in a more
specific field of DM known as lazy learning, which refers
to the set of methods that predict the class label from raw
training data and do not obtain learning models. Although
kNN is a simple technique, it has demonstrated itself to be
one of the most interesting and effective algorithms in DM
and pattern recognition.
Classification typically involves partitioning samples into

training and testing categories. Let xp be a training sample
from n available samples in the training set. Let xt be a test
sample, and let ω be the true class of a training sample and ω̂
be the predicted class for a test sample (ω, ω̂ = 1, 2, . . . ,Ω).
Here, Ω is the total number of classes. During the training
process, we use only the true class ω of each training sample
to train the classifier, while during testing we predict the
class ω̂ of each test sample. With the kNN rule, where k=1
(1NN), the predicted class of test sample xt is set equal to
the true class ω of its nearest neighbor, where nni is a nearest
neighbor to xt if the distance
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d(nni, xt) = minj{d(nnj , xt)}.

For kNN, the predicted class of test sample xt is set equal
to the most frequent true class among k nearest training
samples. This forms the decision rule D : xt → ω̂.
It is well known that kNN suffers from several drawbacks

[3]. Mainly, four weaknesses cause a great impact in the
successful application of this classifier. The first one is the
necessity of high storage requirements in order to retain the
set of examples which defines the training set and allows
it to perform the decision rule. The second one is the low
efficiency obtained during the computation of the decision
rule, caused by multiple computations of similarities between
the test and training samples. Third, kNN (especially 1NN)
presents low tolerance to noise, due to the fact that it uses all
data as relevant even when the training set contains incorrect
data. Finally, kNN makes predictions over existing data and
it assumes that input data perfectly delimitates the decision
boundaries among classes.
Several approaches have been suggested and studied in

order to tackle the drawbacks mentioned. One of the most
important solutions consists of reducing data used for estab-
lishing a classification rule. Data reduction techniques [4]
could be divided into two different approaches, known as
prototype selection (PS) and prototype generation (PG) or
abstraction. The main difference between both approaches is
that PS methods assume that the best representative examples
can be obtained from a subset of the original data whereas
PG methods generate new representative examples if needed,
tackling also the fourth disadvantage mentioned above [5].
Evolutionary Algorithms (EAs) are general-purpose search

algorithms that use principles inspired by natural genetic
populations to evolve solutions to problems. The basic idea
is to maintain a population of chromosomes, which represent
plausible solutions to the problem and evolve over time
through a process of competition and controlled variation.
EAs have been used in data reduction tasks with promising
results [6], [7]
Differential evolution (DE) has been shown to be a simple

yet efficient EA for many optimization problems in real-
world applications [8]. Like other evolutionary algorithms,
two fundamental processes drive the evolution of a DE
population: the variation process, which enables exploring
different regions of the search space, and the selection pro-
cess, which ensures the exploitation of previous knowledge
about the fitness landscape [9].
Some sub-processes within the PG problem can be viewed
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as a real valued optimization problem with high degree of
difficulty. In fact, although most of the PG methods proposed
are based on heuristics, some of them could be dealt with
powerful optimization techniques, such the case of position
adjustment of prototypes. Some of them are based on EAs,
such as Genetic Algorithms [10], [11], Particle Swarm Op-
timization (PSO) [12], [13] and Artificial Immune Systems
[14]. DE algorithms have shown an excellent performance
in real valued optimization problems and, for this reason,
we propose the use of DE algorithms to tackle the position
adjustment of prototypes.
This paper is a preliminary study where we propose and

analyze the use of all the known schemes of the basic DE
algorithm [15], that is, 13 DE schemes will be studied.
Recent advances in DE in real valued optimization problems
are OBDE [16], SADE [17], DEGL [18], JADE [19] and
SFLSDE [20], but they are out of the scope of this pre-
liminary study. Then, we are interested in establishing the
best choice for adjusting the position of prototypes in 1NN,
and comparing this scheme with other two well known pro-
totype position optimization schemes described below. The
experimental study will include a statistical analysis based
on nonparametric tests and we will conduct experiments
involving a total of 25 classification data sets.
This paper is organized as follows. A background is given

in Section II, describing the PG problem, introducing DE and
a briefly summarizing the methods for adjusting prototypes
positioning used in the experimental comparison. In Section
III we present the DE algorithm proposed for tackling
the position adjustment problem. Section IV examines and
analyzes the results obtained and presents a discussion of
them. Finally, Section V concludes the paper.

II. BACKGROUND

This section is composed by three different parts. Subsec-
tion II-A, presents a background on PG. Next, subsection
II-B shows the main characteristics of DE, and finally,
subsection II-C collect a brief survey of the methods for
adjusting the position of prototypes that we use to compare
with our proposal.

A. Background on PG
PG is an important technique in data reduction. It has

been widely applied to instance-based classifiers and can be
defined as the application of instance construction algorithms
over a data set to improve the classification accuracy of a
nearest neighbor classifier.
More specifically, PG can be defined as follows: Let xp

be an instance where xp = (xp1, xp2, ..., xpm, xpω), with xp
belonging to a class ω given by xpω and a m-dimensional
space in which Xpi is the value of the i-th feature of the
p-th sample. Then, let us assume that there is a training
set TR which consists of n instances xp and a test set
TS composed by s instances xt. The purpose of PG is to
obtain a prototype generate set, which consists of r, r < n,
prototypes, which are either selected or generated from the

examples of TR. The prototypes of the generated set are
determined to represent efficiently the distributions of the
classes and to discriminate well when used to classify the
training objects. Their cardinality should be sufficiently small
to reduce both the storage and evaluation time spent by a
kNN classifier.
The PG approaches can be divided into several families

depending on the main heuristic operation followed. The
first approach we can find in the literature, called PNN [21]
belongs to the family of methods that carry out merging of
prototypes of the same class in successive iterations, generat-
ing centroids. One of the most important families of methods
are those based on Learning Vector Quantization (LVQ) [22].
Other well-known methods are those based on a divide-
and-conquer scheme, by separating the m-dimensional into
two or more subspaces with the purpose of simplifying the
problem in each step [23].

B. Differential Evolution
Differential evolution follows the general procedure of

an EA. DE starts with a population of NP candidate so-
lutions, so-called individuals. The initial population should
better cover the entire search space as much as possible.
In some problems, it is achieved by uniformly randomizing
individuals, but in other problem, such as the considered
in this contribution, a basic knowledge of the problem is
available and the use of other initialization mechanisms
is more effective. The subsequent generations in DE are
denoted by G = 0, 1, . . . , Gmax.
It is usually to denote each individual as a D-dimensional

vector Xi,G = {x1
i,G,..., xD

i,G}, it is called ”target vector”.
1) Mutation Operation: After initialization, DE applies

the mutation operator to generate a mutant vector Vi,G, with
respect to each individualXi,G, in the current population. For
each target Xi,G, at the generation G, its associated mutant
vector Vi,G= {V 1

i,G,..., V D
i,G}. The method of creating this

mutant vector is that which differentiates one DE scheme
from another. Six most frequently referred strategies are
listed below:

• ”DE/rand/1”:

Vi,G = Xri
1
,G + F · (Xri

2
,G −Xri

3
,G) (1)

• ”DE/best/1”:

Vi,G = Xbest,G + F · (Xri
1
,G −Xri

2
,G) (2)

• ”DE/rand-to-best/1”:

Vi,G = Xi,G+F ·(Xbest,G−Xi,G)+F ·(Xri
1
,G−Xri

2
,G)
(3)

• ”DE/best/2”:

Vi,G = Xbest,G+F ·(Xri
1
,G−Xri

2
,G)+F ·(Xri

3
,G−Xri

4
,G)
(4)

• ”DE/rand/2”:

Vi,G = Xri
1
,G+F ·(Xri

2
,G−Xri

3
,G)+F ·(Xri

4
,G−Xri

5
,G)
(5)



• ”DE/rand-to-best/2”:

Vi,G = Xi,G + F · (Xbest,G −Xi,G) +

F · (Xri
1
,G −Xri

2
,G) + F · (Xri

3
,G −Xri

4
,G) (6)

The indices ri1, ri2, ri3, ri4, ri5 are mutually exclusive
integers randomly generated within the range [1, NP ], which
are also different from the base index i. These indices are
randomly generated once for each mutation. The scaling
factor F is a positive control parameter for scaling the
difference vectors. Xbest,G is the best individual of the
population in terms of fitness.
The general convention, used for naming these strategies,

is DE/a/b/c, where DE stands for differential evolution,
a represent a string denoting the vector to be perturbed, b
denotes the number of difference vector considered to be
perturbed, and c informs us about the crossover type used.
2) Crossover Operator: After the mutation phase,

crossover operation is applied to increase the potential diver-
sity of the population. DE algorithm can use two kinds of
crossover schemes, known as ’Binomial’ and ’Exponential’
crossover. This operator is applied to each pair of the target
vector Xi,G and its corresponding mutant vector Vi,G to
generate a new trial vector that we denote Ui,G. The mutant
vector exchanges its components with the target vector Xi,G.
Binomial crossover scheme is performed on all the com-

ponents whenever a randomly picked number between 0 and
1 is less than or equal to the crossover rate (CR), The CR
is a user-specified constant within the range [0, 1), which
controls the fraction of parameter values copied from the
mutant vector. This scheme may be outlined as

U j
i,G =

{
V j
i,G if rand(0,1) <= CR or j = jrand

Xj
i,G Otherwise

j = 1, 2, ..., D. (7)

In exponential crossover we select an integer N between
[1, NP ]. N is the starting point in the target Vector XN

i,G

from where the crossover exchanges components with the
mutation vector. It is necessary to choose another integer
called L from the same interval [1, NP ]. This integer L
denotes the number of components that they will try to
exchange.

Ui,G =

{
V j
i,G for j = ‖N‖, ‖N + 1‖, ..., ‖N + L− 1‖

Xj
i,G for all other j ∈ [1, D]

(8)
where the ‖·‖ denote a modulo function with modulus D.
There is a different kind of crossover operator called

arithmetic crossover that it replace (7) and (8) with the ro-
tationally invariant arithmetic crossover operator to generate
the trial vector Ui,G by linearly combining the target vector
XiG and Vi,G, like this,

Ui,G = Xi,G +K · (Vi,G −Xi,G) (9)

Where K is the combination coefficient which is usu-
ally used in the interval [0, 1]. This strategy is known as
”DE/current-to-rand/1”.
3) Selection Operator: When the trial vector has been

generated we must decide which individual betweenXiG and
Ui,G should survive in the population to the next generation
G+1. If the new trial vector yields an equal or better solution
that the target vector, it replaces the corresponding target
vector in the next generation; otherwise the target is retained
in the population. Therefore, the population always get better
or retains the same fitness values, but never deteriorates.

Xi,G+1 =

{
Ui,G if f(Ui,G) is better than f(Xi,G)

Xi,G Otherwise
(10)

This one-to-one selection procedure is generally kept fixed
in most of DE algorithms.

C. Other studied techniques for adjusting the position of
prototypes
We attempt to describe LVQ and PSO as the main con-

tributors in this field, taking into account that they will be
used in the experimental study.
1) LVQ: Learning Vector Quantization: Learning vector

quantization was proposed by Kohonen in [22]. LVQ can be
understood as a special case of artificial neural network in
which a neuron corresponds to a prototype and a competition
weight based process is carried out in order to locate each
neuron in a concrete place of the m-dimensional space to
increase the classification accuracy.
Specifically, let us assume that xp is an instance which

belongs to TR, and the prototypes or codebooks are denoted
mi(t) : mi(t) ε TR, i = 1, 2, . . . , r, where r is the number of
prototypes for the reduced set, and t is the time coordinate.
A sequence of patterns xp will be used to learn. The r

prototypes or codebooks mi(t) will be the final reduced set,
they are initialized in some proper way; random selection
will be often suitable, and then, they are modified during the
learning phase using the sequence of xp.
The modifications are based on the concepts of reward

and punishment. For each xp one finds the mc closest to it,
according to some distance function. The position of mc is
updated, if xp and mc belong to the same class, then mc

is made closer to xp (reward, equation (11)) , otherwise,
mc is moved away from xp (punishment, equation (12)). A
parameter α(t) is used to control the movement.

mc(t+ 1) = mc(t) + α(t)[xp −mc(t)] (11)

mc(t+ 1) = mc(t)− α(t)[xp −mc(t)] (12)

This procedure is known as LVQ1, Kohonen has subse-
quently proposed modifications, LVQ2 and LVQ3, in order
to provide an improved performance near decision borders.
LVQ3 has reported the best results, and it consists on finding
the two prototypesmi(t) and mj(t) nearest to xp, and which



are relatively near to themselves according to a parameter,
known as window size. On the one hand, let mj(t) be an
instance with the same class as xp, and mi(t) with different
class, they are rewarded and punishment, respectively. On
the other hand, if both instances belong to the same class as
xp, both are rewarded.
2) PSO: Particle Swarm Optimization: Particle Swarm

Optimization [24] is a evolutionary algorithm which is based
on the social behavior of biological organisms, e.g. the
movement of bird flocking. This algorithm has been applied
in different fields, and it was proposed for PG by Nanni and
Lumini in [13].
The basic idea for applying this technique to PG is the

following. Initially, a population is initialized with NP ran-
dom solutions, each solution is called ”particle” Xi,G. Each
particle is composed of a random small set of r prototypes
which is selected from the TR. Then, the position of these
prototypes is adjusted using the PSO rules, attempting to
minimize the classification error.
Each particle Xi,G has an associate velocity Vi,G and

the best previous position of each particle is recorded as
Xbest,i. At each iteration particles are updated according to
the equation (13), previouly, the new velocity is calculated
following (14). This velocity equation provides to the PSO
algorithm the balance between global and local exploration.
Global exploration is the social part, i.e. the particle moves
according to the best particle position (Pbest), and local
exploration is the cognitive part, where the particle moves
according to its best position (Xbest,i).

Xi,G+1 = Xi,G + Vi,G+1; (13)

Vi,G+1 = w · Vi,G + c1Rand()(Xbest,i −Xi,G)

+c2Rand()(Pbest −Xi,G). (14)

The balance is controlled by two parameters, c1 and c2.
Furthermore, the influence of the last velocity is gradually
decreased with a new parameter w, known as inertial weight
[?].

III. DE FOR PROTOTYPE GENERATION
In this section we propose to apply the underlying idea

in DE for PG problem as a position adjusting of prototypes
scheme.
First of all, it is necessary to define the solution codifica-

tion. In the proposed DE algorithm, each individual in the
population encodes a complete solution, that is, a reduced
set of prototypes are encoded sequentially in each individual.
This type of codification is known as the Pittsburgh approach
[25]. The number of prototypes encoded in each individual
will define its individual size and it is denoted r as previously.
An user parameter will set this value r.
Following the notation used in subsection II-B, Xi,G

define the target vector, but in this case, the target vector
could be represented as a matrix. Table I describes the
structure of an individual.

TABLE I
ENCODING OF A SET OF PROTOTYPES IN A INDIVIDUAL FOR THE DE

ALGORITHM

Attribute 1 Attribute 2 ... Attribute m Class
Prototype 1 x1,p1 x2,p1 ... xm,p1 ωp1

Prototype 2 x1,p2 x2,p2 ... xm,p2 ωp2

...
Prototype r x1,pr x2,pr ... xm,pr ωpr

A. Initialization
Given that this problem provides some knowledge based

on the initial arrangement of training samples, DE initializes
its NP individuals by choosing r random prototypes with
its respective class from the TR for each one. In this
initialization process, we ensure that every class has at
least a representative prototype. We use different a priori
probabilities, i.e. the number of representatives instances for
each class is proportional to the number of them in the TR.
It is important to point out that every solution must have
the same structure, thus they must have the same number of
representatives per class, and they must have the same order.

B. Mutation Operator
The six mutation strategies explained in section II, have

been implemented to generate the mutant matrix Vi,G, with
respect to each individual Xi,G, in the current population.
The operations of addition, subtraction and scalar product
are carried out as typical matrices. This is the reason that
justifies the individuals to have the same structure, in order
to give sense to this mutation operator.
After applying this operator, it is necessary to check that

the mutant matrix Vi,G has been generated with correct
values for all features of the prototypes, i.e. we need to check
that the values are in the correct range. We normalize all
attributes of the data set to the [0, 1] range, so this procedure
only needs to check if there have been values out of [0, 1].

C. Crossover Operator
With the idea of increasing the potential diversity of

the population, we define the three crossover operators;
binomial, exponential and arithmetic, for our scheme. Instead
of interchanging attributes values, the mutant matrix Vi,G

exchanges its prototypes with the target Xi,G to generate a
new trial matrix Ui,G.

D. Selection Operator
This operator must decide which individual between XiG

and Ui,G should survive in the population to the next genera-
tion G+1. The 1NN rule guides this operator. The instances
in TR are classified with the prototype encoded in each
individual XiG or Ui,G with 1NN, and the corresponding
fitness values of them is measured as the classification rate
or accuracy obtained, measured as the number of successful
hits (correct classifications) relative to the total number of
classifications. We try to maximize this value, so the selection
operator can be viewed as follow:



Xi,G+1 =

{
Ui,G if accuracy(Ui,G) >= accuracy(Xi,G)

Xi,G Otherwise
(15)

IV. EXPERIMENTAL FRAMEWORK AND RESULTS
In this section we show the factors and issues related

to the experimental study. We provide the details of the
problems chosen for the experimentation and the parameters
of the algorithms in subsection IV-A. In subsection IV-B we
compare the different schemes of DE and identify the best
DE scheme for position adjustment of prototypes by using
statistical tests. Finally, subsection IV-C shows a comparative
study of the best DE with other PG techniques.

A. Experimental Framework
The performance of the algorithms is analyzed by using 25

datasets from the UCI repository [26]. Table II summarizes
the properties of the selected data sets. It shows, for each
data set, the number of examples (#Ex.), the number of
attributes (#Atts.), the number of numerical (#Num.) and
nominal (#Nom.) attributes, and the number of classes (#Cl.).
The data sets considered are partitioned using the ten fold
cross-validation (10-fcv) procedure.

TABLE II
SUMMARY DESCRIPTION FOR CLASSIFICATION DATA SETS

Data Set #Ex. #Atts. #Num. #Nom. #Cl.
appendicitis 106 7 7 0 2
balance 625 4 4 0 3
bands 539 19 19 0 2
bupa 345 6 6 0 2
car 1,728 6 0 6 4
cleveland 297 13 13 0 5
contraceptive 1,473 9 6 3 3
dermatology 366 33 1 32 6
ecoli 336 7 7 0 8
glass 214 9 9 0 7
haberman 306 3 3 0 2
hayes-roth 133 4 4 0 3
heart 270 13 6 7 2
hepatitis 155 19 19 0 2
iris 150 4 4 0 3
led7digit 500 7 0 1 10
mammographic 961 5 0 5 2
monks 432 6 6 0 2
pima 768 8 8 0 2
saheart 462 9 8 1 2
tic-tac-toe 958 9 0 9 2
wine 178 13 13 0 3
wisconsin 683 9 9 0 2
yeast 1,484 8 8 0 10
zoo 101 17 0 17 7

The parameters of the used algorithms are presented in
Table IV-A. These values have been established in order to
compare fairly between the algorithms. Hence, the reduction

rate has been fixed to 95% with the same values for all
algorithms. Furthermore, the EAs considered, PSO and DE,
have been initialized with the same number of particles or in-
dividuals. The rest of parameters values are chosen according
to the respective authors of the algorithms, assuming that the
choice of the values of the parameter was optimally chosen.
All methods used 1NN as baseline classifier with Euclidean
distance.

TABLE III
PARAMETER SPECIFICATION FOR ALL THE METHODS EMPLOYED IN THE

EXPERIMENTATION

Algorithm Parameters
LVQ3 Iterations = 500, α = 0.1, WindowWidth=0.2,

epsilon = 0.1, Number of Prototypes (r) = 5%
PSO SwarmSize = 40, Iterations = 500, ParticleSize (r) = 5%,

C1 = 1, C2 = 3, Vmax = 0.25, Wstart = 1.5, Wend = 0.5
DE PopulationSize = 40, Iterations = 500 ,

IndividualSize (r) = 5%, F = 0.5, CR =0.9

B. Results of DE schemes

Tables IV and V show the results in test data obtained
by 13 different schemes of DE in terms of accuracy. These
tables collect the average and standard deviation (SD) in
accuracy obtained by them over the 25 data sets considered.
The best result for each data set is remarked in bold (taking
into account both tables).
Some observations can be pointed out from these tables:
• The best performing models are those based on Bino-
mial crossover.

• Exponential crossover may produce a reduced number
of perturbations, causing low exploration capabilities.
Hence, exponential crossover schemes probably get
stuck at a local optimum.

• Among them, schemes with RandToBest mutation
scheme outperform the rest of schemes. These kind of
schemes perform a good balance between exploration
(random individual) and exploration (best individual)
and have a fast convergence speed [17].

• In principle, we can point out the DE/RandToBest/1/Bin
as the best model between both RandToBest models.

• The number of difference vectors to be perturbed by the
mutation operator does not seems to be an important
factor that influence over the final result obtained.

Considering only average results could lead us to erro-
neous conclusions. Due to this fact, we will accomplish
statistical comparisons over multiple data sets based on
non-parametric tests [27], [28]. Specifically, we will use
the Wilcoxon Signed-Ranks test [29]. Table VI collects the
results of applying Wilcoxon test among the 13 DE schemes
studied. With a level of significance α = 0.10, the table
reflects which schemes are outperformed by other. When the
scheme situated in the row is better than that situated in the
column, a ’+’ is used. In contrary case, a ’–’ symbol is used.
In case of ties, a ’=’ symbol is used. The p-value obtained is
depicted in the opposite diagonal of the table. The two last



TABLE IV
RESULTS OF DE SCHEMES USING BINARY CROSSOVER

Datasets DE/Rand/1/Bin DE/Best/1/Bin DE/RandToBest/1/Bin DE/Best/2/Bin DE/Rand/2/Bin DE/RandToBest/2/Bin
Acc SD Acc SD Acc SD Acc SD Acc SD Acc SD

appendicitis 86.09 9.19 85.91 9.48 86.91 7.34 85.09 8.31 86.09 10.84 83.27 11.28
bal 85.46 2.81 83.5 3.43 87.52 3.67 85.14 3.98 81.76 3.65 86.55 3.75

bands 66.81 5.8 67 6.6 70.14 4.1 67.53 3.9 67.36 6.64 70.15 5.64
bupa 60.75 10.34 61.8 11.6 62.31 8.87 62.89 8.38 62.66 8.81 64.96 3.49
car 82 2.12 83.85 2.02 83.45 2.39 84.43 2.59 82.64 2.53 81.77 2.22

cleveland 56.11 6.05 56.81 8.68 53.46 6.72 57.42 5.43 53.84 5.72 58.78 9.05
contraceptive 47.05 2.98 44.54 2.61 46.51 3.16 46.23 2.91 42.84 3.84 45.62 3.73
dermatology 94.8 4.13 96.72 1.63 96.18 2.77 95.63 4.24 96.18 2.16 95.65 3.86

ecoli 70.28 4.55 75.93 7.68 77.15 7.41 75.66 7.95 77.72 6.55 79.2 7.14
glass 61.51 11.16 62.03 9.82 65.73 8.1 64.1 12.61 61.51 8.3 62.34 9.42

haberman 73.22 4.48 69.55 6.21 71.19 5.85 69.91 3.71 72.88 3.17 71.19 4.88
hayes-roth 54.89 17.43 63.3 10.68 68.75 12.57 55.63 15.33 65.68 14.18 65.62 11.19

heart 81.85 8.52 81.11 9.14 81.11 9.14 80 10.37 80.37 12.29 82.59 6.21
hepatitis 85.08 8.95 82 11.03 83.25 10.02 78.79 9.89 81.96 6.18 84.58 8.28

iris 94.67 4 95.33 3.06 95.33 3.06 95.33 4.27 96 4.42 94 4.67
led7digit 57.4 4.29 71.4 3.9 71.8 4.6 71.8 4.51 70.2 4.33 71.2 3.71

mammographic 81.69 4.15 80.13 3.39 80.02 3.96 79.5 3.5 79.61 5.63 79.81 4.12
monks 92.89 4.11 79.18 6.74 89.43 6.13 80.6 8.59 79.11 4.32 85.54 4.43
pima 75.27 3.04 73.85 3.74 75.66 3.78 75.53 4.15 73.57 4.72 76.84 3.77

saheart 70.36 6.21 71.22 4.7 70.11 5.65 68.83 3.35 69.49 4.08 69.7 3.19
tic-tac-toe 69.21 3.66 72.35 4.11 76.51 2.94 72.55 6.4 73.39 4.85 72.65 4.6

wine 90.88 10.63 95.52 4.85 95.46 4.27 92.75 8.25 91.63 12.48 96.63 4.46
wisconsin 96.85 1.54 96.57 2.14 95.85 2.16 96.42 1.46 95.71 2.12 96.28 1.59

yeast 52.16 3.16 55.46 5.33 55.46 2.2 57.35 1.96 52.15 3.12 58.09 2.64
zoo 93.89 5.26 94.83 7.24 96.39 4.55 95.5 6.41 96.5 6.26 98.5 3.02

AVERAGE 75.25 76 77.43 75.78 75.63 77.26

TABLE V
RESULTS OF DE SCHEMES USING EXPONENTIAL AND ARITHMETIC CROSSOVER

Datasets DE/Rand/1/Exp DE/Best/1/Exp DE/RandToBest/1/Exp DE/Best/2/Exp DE/Rand/2/Exp DE/RandToBest/2/Exp DE/CurrentToRand/1
Acc SD Acc SD Acc SD Acc SD Acc SD Acc SD Acc SD

appendicitis 84.18 10.75 86 9.33 84.18 10.75 86 9.33 86.91 8.39 86 8.4 86 9.33
bal 87.04 2.3 84.95 4.34 87.04 2.3 84.95 4.34 86.07 4.65 84.79 5.6 87.04 2.21

bands 66.61 4.28 67.54 5.06 66.61 4.28 67.54 5.06 65.69 5.57 67.36 6.48 68.28 4.53
bupa 56.09 10.84 56.24 9.29 56.09 10.84 56.24 9.29 59.37 8.62 57.15 8.05 62.8 9.61
car 81.89 2.86 82.64 2.36 81.89 2.86 82.64 2.36 82.93 2.24 79.57 2.38 82 2.24

cleveland 57.76 4.54 58.76 7.45 58.06 7.03 58.09 6.09 59.46 7.05 57.41 4.44 58.75 4.89
contraceptive 47.8 4.18 49.01 3.98 47.8 4.18 49.01 3.98 46.16 2.78 46.71 3.7 47.93 2.62
dermatology 90.41 4.13 90.7 3.3 93.18 3.3 92.61 4.89 93.76 4.68 91.56 4.57 91.82 3.6

ecoli 70.27 6.18 71.77 6.62 70.55 6.29 72.98 7.44 74.43 4.35 73.57 5.93 74.71 3.92
glass 57.3 8.69 56.59 9.44 58.93 13.19 61.19 10.48 55.2 9.77 59.69 13.06 57.31 8.29

haberman 77.44 5.35 72.19 2.51 77.44 5.35 72.19 2.51 70.55 4.65 72.22 4.45 74.49 7.54
hayes-roth 44.66 10.21 52.85 12.86 44.66 10.21 52.85 12.86 52.52 15.11 52.99 14.52 48.4 8.43

heart 81.11 11.88 83.7 6.87 81.11 11.88 83.7 6.87 81.48 7.59 81.11 9.14 82.59 8.61
hepatitis 81.33 6.07 78.88 10.66 81.33 6.07 78.88 10.66 79.42 8.42 80.08 7.23 77.54 9.73

iris 94.67 5.81 95.33 4.27 94.67 5.81 95.33 4.27 96.67 4.47 96 4.42 93.33 2.98
led7digit 51.4 7.43 47.2 7.44 51.4 7.43 47.2 7.44 50.6 7.1 53.4 5.66 49.6 7.94

mammographic 80.75 4.85 79.61 4.51 80.75 4.85 79.61 4.51 81.17 4.87 79.08 3.07 79.71 4.52
monks 83.87 8.6 80.92 8.41 83.87 8.6 80.92 8.41 83.91 8.28 75.82 7.72 91.92 6.01
pima 75.4 3.1 74.49 3.7 75.4 3.1 74.49 3.7 73.97 4.46 75.15 4.53 76.31 4.4

saheart 71.22 4.2 69.93 5.33 71.22 4.2 69.93 5.33 69.04 3.26 72.07 4.53 70.78 3.4
tic-tac-toe 71.3 5.14 68.59 2.93 71.3 5.14 68.59 2.93 69.81 7.05 68.16 6.32 69.63 3.42

wine 94.93 3.01 94.38 5.56 94.93 3.01 94.38 5.56 93.82 5.31 95.52 5.45 94.35 6.27
wisconsin 96.57 2.57 96.57 2.32 96.57 2.57 96.57 2.32 96.99 2.26 96.57 2.32 96.13 2.23

yeast 49.94 4.95 51.21 2.51 47.78 5.84 50.14 3.58 49.4 4.5 50.61 4.54 51.69 4.38
zoo 65 10.36 65.08 10.89 91.92 7.27 93.44 8.05 87.64 9.5 89.64 9.01 89.47 11.24

AVERAGE 72.76 72.61 73.95 73.98 73.88 73.69 74.5

columns respectively show the number of ties and wins for
each scheme in the corresponding row.
As we can see, the observations mentioned above are

now statistically contrasted and justified. We could choose
DE/RandToBest/1/Bin and DE/RandToBest/2/Bin as the best
performing schemes, due to the fact that they statistically
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TIES WINS
DE/Rand/1/Bin • = – = = – + + = = + + = 6 4
DE/Best/1/Bin 0.326 • – = = – + + = = + + = 6 4

DE/RandToBest/1/Bin 0.042 0.009 • + + = + + + + + + + 1 11
DE/Best/2/Bin 0.339 0.786 0.010 • = – = = = = = + = 9 1
DE/Rand/2/Bin 0.976 0.282 0.001 0.443 • – = = = = = + = 9 1

DE/RandToBest/2/Bin 0.042 0.009 0.742 0.016 0.007 • + + + + + + + 1 11
DE/Rand/1/Exp 0.067 0.077 0.009 0.242 0.339 0.009 • = = = = = = 8 0
DE/Best/1/Exp 0.069 0.055 0.002 0.126 0.207 0.006 0.689 • = = = = – 7 0

DE/RandToBest/1/Exp 0.123 0.144 0.010 0.264 0.476 0.010 0.173 0.265 • = = = = 10 0
DE/Best/2/Exp 0.158 0.107 0.003 0.175 0.346 0.007 0.742 0.116 0.954 • = = = 10 0
DE/Rand/2/Exp 0.069 0.083 0.002 0.158 0.253 0.005 0.638 0.242 0.778 0.737 • = = 8 0

DE/RandToBest/2/Exp 0.028 0.017 0.002 0.054 0.089 0.001 0.648 0.465 0.605 0.523 0.861 • = 6 0
DE/CurrentToRand/1 0.607 0.276 0.040 0.397 0.757 0.034 0.166 0.072 0.658 0.511 0.242 0.440 • 9 1

TABLE VII
AVERAGE RESULTS OBTAINED BY THE BEST DE MODEL AND OTHER PG APPROACHES

Datasets 1NN LVQ3 PSO DE/RandToBest/1/Bin
Acc SD Acc SD Acc SD Acc SD

appendicitis 79.36 11.51 83.18 8.94 87.91 8.1 86.91 7.34
bal 79.04 6.46 80.97 3.69 86.39 2.65 87.52 3.67

bands 63.09 4.65 67.01 6.85 68.29 8.25 70.14 4.1
bupa 61.08 6.88 57.69 8.81 63.75 8.39 62.31 8.87
car 85.65 1.81 79.22 2.58 84.72 2.41 83.45 2.39

cleveland 53.14 7.45 57.81 5 58.11 5.49 53.46 6.72
contraceptive 42.77 3.69 40.73 3.89 45.62 2.35 46.51 3.16
dermatology 95.35 3.45 94.81 4.29 95.65 2.14 96.18 2.77

ecoli 80.7 7.51 72.69 8.34 77.36 4.13 77.15 7.41
glass 73.61 11.91 58.92 7.22 61.17 9.8 65.73 8.1

haberman 66.97 5.46 71.58 4 71.22 3.71 71.19 5.85
hayes-roth 35.7 9.11 40.66 20.98 65.74 11.46 68.75 12.57

heart 77.04 8.89 74.44 6.51 78.15 8.19 81.11 9.14
hepatitis 80.75 11.09 78.08 8.74 76.92 10.28 83.25 10.02

iris 93.33 5.16 90.67 8.54 93.33 4.22 95.33 3.06
led7digit 40.2 9.48 65.8 5.47 71.6 3.98 71.8 4.6

mammographic 73.68 5.59 70.76 3.88 80.75 4.03 80.02 3.96
monks 77.91 5.42 75.49 8.86 85.65 6.89 89.43 6.13
pima 70.33 3.53 68.08 3.92 75.41 4.06 75.66 3.78

saheart 64.49 3.99 67.52 5.49 69.92 4.36 70.11 5.65
tic-tac-toe 73.07 2.56 69.84 2.11 72.44 3.34 76.51 2.94

wine 95.52 4.85 94.93 1.69 94.35 5.76 95.46 4.27
wisconsin 95.57 2.59 96.42 2.23 96.71 1.82 95.85 2.16

yeast 50.47 3.91 47.51 4.84 55.26 3.02 55.46 2.2
zoo 92.81 6.57 82.92 15.26 93.75 5.31 96.39 4.55

AVERAGE 72.07 71.51 76.41 77.43



TABLE VIII
RESULTS OF THE WILCOXON TEST COMPARING THE BEST DE WITH

OTHER APPROACHES

Comparison Result (α = 0.05) p-value
DE vs. 1NN Better 0.001
DE vs. LVQ3 Better 0
DE vs. PSO Better 0.042

behave the same. However, we prefer to choose the former
basing on the average accuracy results achieved in Table IV.

C. Comparison with other PG models
Table VII shows the results in test data over the 25 data

sets used for 1NN, LVQ3, PSO and our best DE scheme.
As before, Wilcoxon test has been applied to contrast the
results. Table VIII shows the statistical comparison.
Observing the results, we can make the following analysis:
• All the DE schemes have reported better average results
than LVQ3 and 1NN algorithms.

• DE/rand-To-Best/1/bin proposal obtains the best average
results in accuracy measure with the same reduction rate
as LVQ3 and PSO algorithms. Note that the same size
of population and number of iterations have been also
used for both Evolutionary schemes PSO and DE. It
clearly outperforms the other techniques with a great
support, given by the Wilcoxon p-value. Furthermore,
the baseline algorithm, 1NN, has been outperformed
with a wide difference in terms of accuracy and also
with a high reduction rate.

V. CONCLUSIONS

The purpose of this contribution is to present a preliminary
study of the differential evolution algorithm for data reduc-
tion tasks. In concrete, it was used for optimizing the position
of prototypes for the nearest neighbor algorithm, acting as a
prototype generation method. This algorithm achieves a good
balance between exploration and explotation which allows
it to achieve results that are statistically better than other
methods shown. With a proper choice of the type of DE
scheme, other prototype generation algorithms such as LVQ
and PSO can be easily improved.
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[27] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[28] S. Garcı́a and F. Herrera, “An extension on ”statistical comparisons
of classifiers over multiple data sets” for all pairwise comparisons,”
Journal of Machine Learning Research, vol. 9, pp. 2677–2694, 2008.

[29] D. Sheskin, Handbook of parametric and nonparametric statistical
procedures, 2nd ed. Chapman & Hall/CRC, 2006.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


