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Abstract—Memetic algorithms are effective algorithms to
obtain reliable and accurate solutions for complex continuous
optimization problems. Nowadays, high dimensional optimiza-
tion problems are an interesting field of research. The high
dimensionality introduces new problems for the optimization
process, requiring more scalable algorithms that, at the same
time, could explore better the higher domain space around each
solution.

In this work, we proposed a memetic algorithm, MA-SW-
Chains, for large scale global optimization. This algorithm
assigns to each individual a local search intensity that depends
on its features, by chaining different local search applications.
MA-SW-Chains is an adaptation to large scale optimization
of a previous algorithm, MA-CMA-Chains, to improve its
performance on high-dimensional problems.

Finally, we present the results obtained by our proposal
using the benchmark problems defined in the Special Session
of Large Scale Global Optimization on the IEEE Congress on
Evolutionary Computation in 2010.

I. INTRODUCTION

It is well known that the hybridization of evolutionary al-

gorithms (EAs) with other techniques can improve the search

efficiency [2], [4]. EAs that have been hybridized with local

search (LS) techniques are often called memetic algorithms

(MAs) [11], [15], [16]. One commonly MA scheme improves

the new created solutions using an LS method, with the aim

of exploiting the best search regions gathered during the

global sampling done by the EA. That allows us to design

MAs for continuous optimization (MACO) that obtain high

accurate solutions for these problems [1], [9], [10], [18], [19].

Nowadays, high-dimensional optimization problems arise

as a very interesting field of research, since they appear

in many recent real-world problems (bio-computing, data

mining, etc.). Unfortunately, the performance of most avail-

able optimization algorithms deteriorates very quickly when

the dimensionality increases [21]. Thus, the ability of being

scalable for high-dimensional problems becomes an essential

requirement for modern optimization algorithm approaches.

In MAs, the LS method is the component more directly

affected by dimensionality. These methods are used to ex-

plore in a nearly region around the current solutions, and a

high dimension increases the domain search and the region
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to explore. Thus, this large area to explore suggests the

convenience to search around them with high intensity.

In a previous work, we have defined a MA for continu-

ous optimization, MA-CMA-Chains, specifically designed to

adapt the LS intensity, exploiting with higher intensity the

most promising individuals [12]. To adapt the LS intensity in

the proposed model the LS can be applied several times over

the same individual, using a fixed LS intensity, and storing its

final parameters, creating LS chains. Using these LS chains

an individual previously improved by an LS invocation may

later become the initial point of a next LS application,

using the final strategy parameter values achieved by the

previous one as its initial ones in the following application.

In this way, the continuous LS method may adaptively fit its

strategy parameters to the particular features of these regions.

MA-CMA-Chains achieved very good results for continuous

optimization for medium scale problems [12].

The original proposal was not applied for large scale

optimization because the original LS method used, CMA-

ES [8], is not able to tackle effectively problems when their

dimensionality is increased [7], [14]. However, the algorithm

is scalable when a different LS method is applied [13].

In this work, we present an algorithm, MA-SW-Chains,

that combines the ideas of MA-CMA-ES with a scalable

LS algorithm, the classic Solis Wets’ algorithm. To show its

behavior with large scale problems, we have applied this

algorithm to the specific test suite proposed in the Special

Session on Large Scale Continuous Global Optimization in

the 2010 IEEE Congress on Evolutionary Computation.

This paper is set up as follows. In Section II, we describe

MA-SW-Chains, the proposed MA. In Section III, we detail

the test suite and the followed experimental conditions. In

Section IV, we present the empirical study, comparing also

the results of MA-SW-Chains with other algorithms. Finally,

conclusions and future work are presented in Section V.

II. MACOS BASED ON LS CHAINS

In this section, we propose a MACO, MA-SW-Chains,

that uses the model proposed in [12], using the Solis Wets’

algorithm as its LS method. MA-SW-Chains is a steady-state

MA model that employs the concept of LS chain to adjust the

LS intensity assigned to the LS method. In particular, this

MACO handles LS chains, throughout the evolution, with

the objective of allowing the continuous LS algorithm to act

more intensely in the most promising areas represented in

the EA population. In this way, the continuous LS method
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may adaptively fit its strategy parameters to the particular

features of these zones.

In Section A, we introduce the foundations of steady-state

MAs. In Section B, we introduce the Solis Wets’ method. In

Section C, we explain the concept of LS chain. Finally, in

Section D, we give an overview of the proposed MA-SW-

Chains.

A. Steady-State MAs

In steady-state genetic algorithms (SSGAs) [22] usually

only one or two offspring are produced in each generation.

Parents are selected to produce offspring and then a decision

is made to select which individuals in the population will be

deleted in order to make room to new offspring. Steady-state

GAs are overlapping systems because parents and offspring

compete for survival. A widely used replacement strategy is

to replace the worst individual only if the new individual is

better. We will call this strategy the standard replacement

strategy.

Although steady-state GAs are less common than genera-

tional Genetic Algorithms (GAs), steady-state MAs (steady-

state GAs plus LS method) may be more stable (as the

best solutions do not get replaced until the newly generated

solutions become superior) and they allow the results of LS

to be maintained in the population.

The SSGA applied was specifically designed to promote

high population diversity levels by means of the combination

of the BLX − α crossover operator [3] with a high value

for its associated parameter (α = 0.5) and the negative

assortative mating strategy [5]. Diversity is favoured as well

by means of the BGA mutation operator [17].

B. Solis and Wets’ Algorithm

The classic Solis and Wets’ algorithm [20] is a randomized

hill-climber with an adaptive step size. Each step starts at

a current point x. A deviate d is chosen from a normal

distribution whose standard deviation is given by a parameter

ρ. If either x + d or x − d is better, a move is made to

the better point and a success is recorded. Otherwise, a

failure is recorded. After several successes (maxSuccesses)

in a row, ρ is increased to move quicker. After several

failures (maxFailures) in a row, ρ is decreased to focus

the search. Additionally, a bias term is included to put the

search momentum in directions that yield success. The size

search is defined by its strategy parameter ρ, and it can be

adapted very quickly. In our experiments we have applied

maxSuccesses=5, maxFailures=3, and initial ρ = 0.2. More

details about this procedure may be found in [20].

C. Local Search Chains

In steady-state MAs, individuals may reside in the popu-

lation during a long time. This circumstance allows these

individuals to become starting points of subsequent LS

invocations. In [12], Molina et al. propose to chain an LS

algorithm invocation and the next one as follows:

The final configuration reached by the former

(strategy parameter values, internal variables, etc.)

is used as initial configuration for the next appli-

cation.

In this way, the LS algorithm may continue under the

same conditions achieved when the LS operation was halted,

providing an uninterrupted connection between successive LS

invocations, i.e., forming a LS chain.

Two important aspects that were taken into account for the

management of LS chains are:

• Every time the LS algorithm is applied to refine a

particular chromosome, a fixed LS intensity should be

considered for it, which will be called LS intensity

stretch (Istr).

In this way, an LS chain formed throughout napp LS

applications and started from solution s0 will return the

same solution as the application of the continuous LS

algorithm to s0 employing napp · Istr fitness function

evaluations.

• After the LS operation, the parameters that define the

current state of the LS processing are stored along

with the final individual reached (in the steady-state

GA population). When this individual is selected to be

improved, the initial values for the parameters of the LS

algorithm will be directly available. In the case of Solis

Wets’ algorithm, the following parameters are stored:

success and failure numbers, and the parameters bias

and ρ.

D. MA-SW-Chains: A MACO that Handles LS Chains

In this section, we introduce MA-SW-Chains, which han-

dles LS chains (see Figure 1). It has the following main

features:

1) It is a steady-state MA model.

2) It applies the Solis Wets’ algorithm as its LS method.

3) Results could differ greatly in function of the ratio

of evaluations number invested in each component

(EA for exploration and LS method to exploitation).

We define rL/G as the ratio of evaluations used by

the LS method and the total evaluations number. Our

algorithm ensures than a fixed and predetermined rL/G

is always kept, which has strong influence on the final

behavior. Without this strategy, the application of the

LS method may induce MA-SW-Chains to prefer super

exploitation.

4) It favours the enlargement of those LS chains that

are showing promising fitness improvements in the

best current search areas represented in the steady-

state GA population. In addition, it encourages the

activation of innovative LS chains with the aim of

refining unexploited zones, whenever the current best

ones may not offer profitability. The criterion to choose

the individuals that should undergo LS is specifically

designed to manage the LS chains in this way (Steps

3 and 4).

The proposed MACO scheme defines the following rela-

tion between the steady-state GA and the intense continuous

LS method (Step 2): every nfrec number of evaluations
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1. Generate the initial population.
2. Perform the steady-state GA throughout
nfrec evaluations.
3. Build the set SLS with those individuals that
potentially may be refined by LS.
4. Pick the best individual in SLS (Let’s cLS

to be this individual).
5. If cLS belongs to an existing LS chain then
6. Initialize the LS operator with the LS state

stored together with cLS .
7. Else
8. Initialize the LS operator with the default

LS state.
9. Apply Solis Wets’ algorithm to cLS with an LS
intensity of Istr (Let’s cr

LS to be the resulting indi-
vidual).
10. Replace cLS by cr

LS in the steady-state GA

population.
11. Store the final LS state along with cr

LS .
12. If (not termination-condition) go to step 2.

Fig. 1. Pseudocode algorithm for the proposed MACO model

of the steady-state GA, apply the continuous LS algorithm

to a selected chromosome, cLS, in the steady-state GA

population. Since we assume a fixed rL/G, nfrec may be

calculated using the equation nfrec = Istr
1−rL/G

rL/G
, where

Istr is the LS intensity stretch (previous subsection), and

rL/G is defined as the percentage of evaluations spent doing

LS from the total assigned to the algorithm’s run.

The following mechanism is performed to select cLS

(Steps 3 and 4):

1) Build the set of individuals in the steady-state GA

population, SLS that fulfils:

a) They have never been optimized by the LS algo-

rithm, or

b) They previously underwent LS, obtaining a fit-

ness function improvement greater than δmin
LS (a

parameter of our algorithm).

2) If |SLS| 6= 0, then apply the Solis Wets’ algorithm to

the best individual in this set. On other case, the pop-

ulation of the steady-state MA is restarted randomly

(keeping the best individual).

With this mechanism, when the steady-state GA finds a

new best individual, it will be refined immediately. Fur-

thermore, the best performing individual in the steady-state

GA population will always undergo LS whenever the fitness

improvement obtained by a previous LS application to this

individual is greater than δmin
LS threshold.

Parameter setting: For the experiments, we have used

the same parameter values applied in [12]. The SSGA apply

BLX−α with α = 0.5. The population size is 60 individuals
and the probability of updating a chromosome by mutation

is 0.125. The nass parameter associated with the negative

assortative mating is set to 3. We have considered Istr = 500
and rL/G = 0.5. In this case, δLS

min = 0 because in the

functions there is no fitness threshold value.

III. EXPERIMENTS

The proposal has been tested on 20 scalable optimization

problems, defined for the organizers of the Special Session on

Large Scale in Global Optimization, presented in the IEEE

Congress on Evolutionary Computation 2010.

This test suite is composed by four types of high–

dimensional problems:

1) Separable functions:

a) F1 : Shifted Elliptic Function.

b) F2 : Shifted Rastrigins Function.

c) F3 : Shifted Ackleys Function.

2) Partially-separable functions, in which a small number

of variables are dependent while all the remaining ones

are independent (m=50):

a) F4 :Single-group Shifted and m-rotated Elliptic

Function.

b) F5 : Single-group Shifted and m-rotated Rastri-

gins Function.

c) F6 : Single-group Shifted and m-rotated Ackleys

Function.

d) F7 : Single-group Shifted and m-dimensional

Schwefels Problem 1.2.

e) F8 : Single-group Shifted and m-dimensional

Rosenbrocks Function.

3) Partially-separable functions that consist of multiple

independent subcomponents, each of which is m-non-

separable (m=50):

a) F9 : D
2m -group Shifted and m-rotated Elliptic

Function.

b) F10 : D
2m -group Shifted and m-rotated Rastrigins

Function.

c) F11 : D
2m -group Shifted and m-rotated Ackleys

Function.

d) F12 : D
2m -group Shifted and m-dimensional

Schwefels Problem 1.2.

e) F13 : D
2m -group Shifted and m-dimensional

Rosenbrocks Function.

f) F14 : D
m -group Shifted and m-rotated Elliptic

Function.

g) F15 : D
m -group Shifted and m-rotated Rastrigin’s

Function.

h) F16 : D
m -group Shifted and m-rotated Ackley’s

Function.

i) F17 : D
m -group Shifted and m-rotated Schwefel’s

Problem 1.2 Function.

j) F18 : D
m -group Shifted and m-rotated Rosen-

brock’s Function.

4) Fully-nonseparable functions:

a) F19 : Shifted Schwefels Problem 1.2.

b) F20 : Shifted Rosenbrocks Function.

We are going to analyze the results of our proposal in each

one of these categories.

The experiments have been carried out following the

instructions indicated in the documents associated to the

benchmark functions, to be able to compare our proposal
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with other algorithms presented in the same special session.

The main characteristics are:

1) Each algorithm is run 25 times for each test function,

and the average of error of the best individual of the

population is computed.

2) The study has been made with dimension D=1000.

3) The maximum number of fitness evaluations (FEs) is

3 ·106. Each run stops when this maximum number of

evaluations is achieved.

4) The error values have been recorded with FEs=1.2·105,

6 · 105, and 3 · 106.

IV. MAIN RESULTS

In this section, we analyze the results of our algorithm on

the test suite described in the previous section.

First, in section A, we observe the convergence curves

of MA-SW-Chains with several functions. In Section B,

we describe the behavior of MA-SW-Chains for each func-

tion category. Finally, in section C, we compare MA-SW-

Chains with the results of other algorithms presented by the

organizers: DECC-CG [23], and MLCC [24], showing the

convenience of our proposal.

A. Convergence Results

In this section, we are going to provide convergence curves

of MA-SW-Chains on the following eight selected functions:

F2, F5, F8, F10, F13, F15, F18, and F20. For each function,

the single convergence curve has been plotted using the

average results over all 25 runs.

Fig. 2. Mean results for function F2

Figures 2-9 show the convergence curve of functions F2-

F20, respectively. We can observe the following:

1) In function F2, we observe than MA-SW-Chains, after

a quickly convergence ratio, continues with a smaller

ratio, but the convergence has not finished, it is not at

a standstill.

2) In function F5, we observe than the best fitness is

improved by steps.

3) In function F8, we observe regions with different

convergence speed, and from evaluation 106 until 3·106

Fig. 3. Mean results for function F5

Fig. 4. Mean results for function F8

Fig. 5. Mean results for function F10

there are improvements, but the convergence curve is

almost horizontal.

4) In function F10, we observe that there are improve-

ments until the maximum FEs is reached.

5) In function F13, there is a good convergence curve until
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Fig. 6. Mean results for function F13

Fig. 7. Mean results for function F15

Fig. 8. Mean results for function F18

the evaluation 106, and then there are only very few

improvements.

6) In functions F15, after a quick improvement, the fitness

value is almost stabilized during the majority of the

evaluations.

7) For functions F18 and F20, the convergence curve has

a very steep slope.

Fig. 9. Mean results for function F20

B. Results of our algorithm

Table I contains the results obtained by MA-SW-Chains.

We can observe the following characteristics:

• In the majority of functions, differences between mean

and median are small. That implies the MA-SW-Chains

is a rather robust algorithm.

• The results of functions that differs only in the number

of variables with dependences, are very similar, show-

ing than MA-SW-Chains is robust against dependences

between variables.

• In many functions, results with FEs = 3 · 106 are

significantly better than with FEs = 6 ·105. Thus, MA-

SW-Chains achieves improvements until the maximum

FEs is achieved.

• Results in non-separable functions are very good, and

when the number of variable dependences is increased,

as F9 and F14, or F13 and F18, results are worse, but

not in a significant way.

C. Comparisons with other algorithms

In this section we compare the mean results obtained MA-

SW-Chains with the ones obtained by DECC-CG [23], and

MLCC [24].

First, we compare them using the Wilcoxon’s test, de-

scribed in [6]. Table II shows the results of Wilcoxon’s test,

using p-value=0.05.

TABLE II

MA-SW-CHAINS VERSUS DECC-CG AND MLCC (WILCOXON’S TEST

WITH p-VALUE = 0.05)

Algorithm R+ R− Critical value Sig. differences?

DECC-CG 203 7 52 Yes
MLCC 204 4 52 Yes

From Table II we can observe than our proposal achieves

the best results and the difference is statistically relevant.

3157



TABLE I

EXPERIMENTAL RESULTS WITH MA-SW-CHAINS

F1 F2 F3 F4 F5 F6 F7

FEs = 1.2e5

Best 2.15e+07 3.32e+03 1.13e+01 1.22e+12 9.35e+07 2.02e+01 4.54e+06

Median 2.76e+07 3.75e+03 1.15e+01 2.04e+12 2.64e+08 2.08e+01 4.91e+06

Worst 3.51e+07 1.00e+04 1.22e+01 3.35e+12 3.42e+08 1.16e+06 5.71e+06

Mean 2.83e+07 5.09e+03 1.16e+01 2.12e+12 2.52e+08 8.14e+04 4.90e+06

Std 3.06e+06 2.38e+03 2.68e-01 6.21e+11 6.49e+07 2.84e+05 2.59e+05

FEs = 6.0e5

Best 8.52e+02 2.36e+03 3.44e+00 4.29e+11 3.68e+07 3.61e+00 6.33e+04

Median 1.55e+03 2.68e+03 3.83e+00 5.75e+11 2.59e+08 1.78e+01 7.78e+05

Worst 7.28e+03 2.97e+03 4.60e+00 7.42e+11 3.24e+08 1.16e+06 4.61e+06

Mean 2.24e+03 2.67e+03 3.84e+00 5.79e+11 2.17e+08 8.14e+04 8.35e+05

Std 1.71e+03 1.63e+02 2.13e-01 6.46e+10 8.56e+07 2.84e+05 9.08e+05

FEs = 3.0e6

Best 3.18e-15 7.04e+02 3.34e-13 3.04e+11 2.89e+07 8.13e-07 3.35e-03

Median 1.50e-14 7.90e+02 6.11e-13 3.54e+11 2.31e+08 1.60e+00 9.04e+01

Worst 8.15e-14 9.37e+02 1.58e-12 3.97e+11 2.90e+08 1.16e+06 2.68e+02

Mean 2.10e-14 8.10e+02 7.28e-13 3.53e+11 1.68e+08 8.14e+04 1.03e+02

Std 1.99e-14 5.88e+01 3.40e-13 3.12e+10 1.04e+08 2.84e+05 8.70e+01

F8 F9 F10 F11 F12 F13 F14

FEs = 1.2e5

Best 3.30e+07 4.48e+08 3.62e+03 5.01e+01 2.20e+05 7.64e+05 8.16e+08

Median 4.17e+07 5.60e+08 4.15e+03 6.41e+01 2.40e+05 9.04e+05 8.81e+08

Worst 8.55e+08 6.45e+08 1.00e+04 7.13e+01 2.62e+05 1.11e+06 1.04e+09

Mean 1.21e+08 5.54e+08 5.12e+03 6.31e+01 2.40e+05 9.13e+05 8.95e+08

Std 2.11e+08 5.20e+07 2.20e+03 5.53e+00 1.26e+04 8.09e+04 6.60e+07

FEs = 6.0e5

Best 3.42e+06 6.93e+07 2.79e+03 2.77e+01 1.39e+03 1.08e+03 1.51e+08

Median 1.90e+07 8.08e+07 3.25e+03 3.79e+01 1.64e+03 3.06e+03 1.70e+08

Worst 6.11e+08 1.00e+08 3.54e+03 5.15e+01 1.91e+03 1.07e+04 1.95e+08

Mean 6.13e+07 8.18e+07 3.22e+03 3.83e+01 1.63e+03 4.34e+03 1.69e+08

Std 1.27e+08 8.36e+06 1.85e+02 7.23e+00 1.53e+02 3.21e+03 1.17e+07

FEs = 3.0e6

Best 1.54e+06 1.19e+07 1.81e+03 2.74e+01 2.65e-06 3.86e+02 2.79e+07

Median 3.43e+06 1.40e+07 2.07e+03 3.75e+01 3.50e-06 1.07e+03 3.09e+07

Worst 1.80e+08 1.62e+07 2.28e+03 5.11e+01 4.98e-06 2.92e+03 3.67e+07

Mean 1.41e+07 1.41e+07 2.07e+03 3.80e+01 3.62e-06 1.25e+03 3.11e+07

Std 3.68e+07 1.15e+06 1.44e+02 7.35e+00 5.92e-07 5.72e+02 1.93e+06

F15 F16 F17 F18 F19 F20 -

FEs = 1.2e5

Best 3.94e+03 2.01e+02 5.80e+05 2.22e+04 3.23e+06 2.01e+03

Median 4.29e+03 2.12e+02 6.78e+05 5.18e+04 3.63e+06 2.22e+03

Worst 9.63e+03 2.31e+02 7.50e+05 8.33e+04 4.05e+06 4.69e+03

Mean 4.83e+03 2.13e+02 6.78e+05 5.14e+04 3.63e+06 2.43e+03

Std 1.51e+03 9.19e+00 3.52e+04 1.64e+04 1.94e+05 5.43e+02

FEs = 6.0e5

Best 2.95e+03 8.51e+01 3.59e+04 1.80e+03 1.29e+06 1.02e+03

Median 3.19e+03 9.71e+01 4.29e+04 3.89e+03 1.42e+06 1.18e+03

Worst 3.45e+03 1.26e+02 5.01e+04 1.61e+04 1.58e+06 1.65e+03

Mean 3.19e+03 1.02e+02 4.31e+04 5.53e+03 1.41e+06 1.21e+03

Std 1.46e+02 1.42e+01 3.42e+03 3.94e+03 7.44e+04 1.42e+02

FEs = 3.0e6

Best 2.56e+03 8.51e+01 1.04e+00 7.83e+02 2.49e+05 9.25e+02

Median 2.72e+03 9.44e+01 1.26e+00 1.19e+03 2.85e+05 1.06e+03

Worst 2.96e+03 1.24e+02 1.63e+00 2.55e+03 3.32e+05 1.21e+03

Mean 2.74e+03 9.98e+01 1.24e+00 1.30e+03 2.85e+05 1.07e+03

Std 1.22e+02 1.40e+01 1.25e-01 4.36e+02 1.78e+04 7.29e+01
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TABLE III

EXPERIMENTAL RESULTS WITH DIFFERENT ALGORITHMS, FES=3E6

F1 F2 F3 F4 F5 F6 F7

DECC-CG

Best 1.63e-07 1.25e+03 1.20e+00 7.78e+12 1.50e+08 3.89e+06 4.26e+07

Median 2.86e-07 1.31e+03 1.39e+00 1.51e+13 2.38e+08 4.80e+06 1.07e+08

Worst 4.84e-07 1.40e+03 1.68e+00 2.65e+13 4.12e+08 7.73e+06 6.23e+08

Mean 2.93e-07 1.31e+03 1.39e+00 1.70e+13 2.63e+08 4.96e+06 1.63e+08

Std 8.62e-08 3.26e+01 9.73e-02 5.37e+12 8.44e+07 8.02e+05 1.37e+08

MLCC

Best 0.00e+00 1.73e-11 1.28e-13 4.27e+12 2.15e+08 5.85e+06 4.16e+04

Median 0.00e+00 6.43e-11 1.46e-13 1.03e+13 3.92e+08 1.95e+07 5.15e+05

Worst 3 .83e-26 1.09e+01 1.86e-11 1.62e+13 4.87e+08 1.98e+07 2.78e+06

Mean 1.53e-27 5.57e-01 9.88e-13 9.61e+12 3.84e+08 1.62e+07 6.89e+05

Std 7.66e-27 2.21e+00 3.70e-12 3.43e+12 6.93e+07 4.97e+06 7.37e+05

MA-SW-Chains

Best 3.18e-15 7.04e+02 3.34e-13 3.04e+11 2.89e+07 8.13e-07 3.35e-03

Median 1.50e-14 7.90e+02 6.11e-13 3.54e+11 2.31e+08 1.60e+00 9.04e+01

Worst 8.15e-14 9.37e+02 1.58e-12 3.97e+11 2.90e+08 1.16e+06 2.68e+02

Mean 2.10e-14 8.10e+02 7.28e-13 3.53e+11 1.68e+08 8.14e+04 1.03e+02

Std 1.99e-14 5.88e+01 3.40e-13 3.12e+10 1.04e+08 2.84e+05 8.70e+01

F8 F9 F10 F11 F12 F13 F14

DECC-CG

Best 6.37e+06 2.66e+08 1.03e+04 2.06e+01 7.78e+04 1.78e+03 6.96e+08

Median 6.70e+07 3.18e+08 1.07e+04 2.33e+01 8.87e+04 3.00e+03 8.07e+08

Worst 9.22e+07 3.87e+08 1.17e+04 2.79e+01 1.07e+05 1.66e+04 9.06e+08

Mean 6.44e+07 3.21e+08 1.06e+04 2.34e+01 8.93e+04 5.12e+03 8.08e+08

Std 2.89e+07 3.38e+07 2.95e+02 1.78e+00 6.87e+03 3.95e+03 6.07e+07

MLCC

Best 4.51e+04 8.96e+07 2.52e+03 1.96e+02 2.42e+04 1.01e+03 2.62e+08

Median 4.67e+07 1.24e+08 3.16e+03 1.98e+02 3.47e+04 1.91e+03 3.16e+08

Worst 9.06e+07 1.46e+08 5.90e+03 1.98e+02 4.25e+04 3.47e+03 3.77e+08

Mean 4.38e+07 1.23e+08 3.43e+03 1.98e+02 3.49e+04 2.08e+03 3.16e+08

Std 3.45e+07 1.33e+07 8.72e+02 6.98e-01 4.92e+03 7.27e+02 2.77e+07

MA-SW-Chains

Best 1.54e+06 1.19e+07 1.81e+03 2.74e+01 2.65e-06 3.86e+02 2.79e+07

Median 3.43e+06 1.40e+07 2.07e+03 3.75e+01 3.50e-06 1.07e+03 3.09e+07

Worst 1.80e+08 1.62e+07 2.28e+03 5.11e+01 4.98e-06 2.92e+03 3.67e+07

Mean 1.41e+07 1.41e+07 2.07e+03 3.80e+01 3.62e-06 1.25e+03 3.11e+07

Std 3.68e+07 1.15e+06 1.44e+02 7.35e+00 5.92e-07 5.72e+02 1.93e+06

F15 F16 F17 F18 F19 F20 -

DECC-CG

Best 1.09e+04 5.97e+01 2.50e+05 5.61e+03 1.02e+06 3.59e+03

Median 1.18e+04 7.51e+01 2.89e+05 2.30e+04 1.11e+06 3.98e+03

Worst 1.39e+04 9.24e+01 3.26e+05 4.71e+04 1.20e+06 5.32e+03

Mean 1.22e+04 7.66e+01 2.87e+05 2.46e+04 1.11e+06 4.06e+03

Std 8.97e+02 8.14e+00 1.98e+04 1.05e+04 5.15e+04 3.66e+02

MLCC

Best 5.30e+03 2.08e+02 1.38e+05 2.51e+03 1.21e+06 1.70e+03

Median 6.89e+03 3.95e+02 1.59e+05 4.17e+03 1.36e+06 2.04e+03

Worst 1.04e+04 3.97e+02 1.86e+05 1.62e+04 1.54e+06 2.34e+03

Mean 7.11e+03 3.76e+02 1.59e+05 7.09e+03 1.36e+06 2.05e+03

Std 1.34e+03 4.71e+01 1.43e+04 4.77e+03 7.35e+04 1.80e+02

MA-SW-Chains

Best 2.56e+03 8.51e+01 1.04e+00 7.83e+02 2.49e+05 9.25e+02

Median 2.72e+03 9.44e+01 1.26e+00 1.19e+03 2.85e+05 1.06e+03

Worst 2.96e+03 1.24e+02 1.63e+00 2.55e+03 3.32e+05 1.21e+03

Mean 2.74e+03 9.98e+01 1.24e+00 1.30e+03 2.85e+05 1.07e+03

Std 1.22e+02 1.40e+01 1.25e-01 4.36e+02 1.78e+04 7.29e+01
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To analyze the main differences for functions, we are going

to compare directly the results obtained by each algorithm,

because the number of functions for each category is not

high enough to apply a statistical test.

Table III shows the final results of each algorithm. For

remarking the best algorithm, we have put in bold the best

median and mean values for each function. From Table III

we have obtained the following conclusions:

• MA-SW-Chains achieves the best mean in 16 functions.

Only for F1, F2, F11, F16 our proposal does not achieve

the best result; F1 and F2, because MLCC is specialized

in separable functions like them; and F11 and F16,

because DECC-CG is better in the Ackleys’ function.

• MA-SW-Chains obtains the best results for all the

categories of functions, except for the easier group,

separable functions. This is very important, because it is

clearly the most adequate algorithm for problems with

a non-separable group of functions.

• The great differences of results in Functions F7 and

F12 between MA-SW-Chains and the others is clearly

remarkable.

• For many functions, the worst result obtained by MA-

SW-Chains is better than the best result obtained by the

other algorithms.

V. CONCLUSIONS

In this work, we have presented MA-SW-Chains. It uses

the idea of the MACO proposed in [12], applying the idea

of LS chaining, with the scalable LS method Solis Wets. We

have carried out an empirical study to analyze how scalable

is the proposal for large scale problems, following the test

suite proposed by the organizers of the Special Session of

Large Scale Global Optimization, on the IEEE Congress on

Evolutionary Computation in 2010. Experiments show that

the proposal, MA-SW-Chains, obtain good results in the

majority of functions, in particular, on the more complex

functions, combining separable and non-separable variables.
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