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Equivalences Between Neural-Autoregressive Time
Series Models and Fuzzy Systems
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Abstract—Soft computing (SC) emerged as an integrating
framework for a number of techniques that could complement
one another quite well (artificial neural networks, fuzzy sys-
tems, evolutionary algorithms, probabilistic reasoning). Since
its inception, a distinctive goal has been to dig out the deep
relationships among their components. This paper considers two
wide families of SC models. On the one hand, the regime-
switching autoregressive paradigm is a recent development in
statistical time series modeling, and it includes a set of models
closely related to artificial neural networks. On the other hand,
we consider fuzzy rule-based systems in the framework of time
series analysis. This paper discloses original results establishing
functional equivalences between models of these two classes, and
hence opens the door to a productive line of research where
results and techniques from one area can be applied in the other.
As a consequence of the equivalences presented in this paper, we
prove the asymptotic stationarity of a class of fuzzy rule-based
systems. Simulations based on information criteria show the
importance of the selection of the proper membership function.

Index Terms—Autoregression, functional equivalence, fuzzy
rule-based models, regime-switching, time series.

I. Introduction

SOFT computing (SC) is a term coined by L. A. Zadeh [38]
to refer to a collection of methodologies that aim at

exploiting the tolerance for imprecision and uncertainty to
achieve tractability, robustness, and low-solution cost. Its prin-
cipal constituents are fuzzy logic, neurocomputing, evolution-
ary algorithms and probabilistic reasoning. Moreover, the orig-
inal inspiring philosophy still encourages the combination of
those techniques with new ones, e.g., support vector machines.

While successful engineering applications have led to a
speedy growth in interest in SC, the research into the founda-
tions of its components has also concentrated a serious effort
in the area. In particular, the study of the connections between
them has been a main concern. The relevance of this topic is
remarked by the availability of an extensive literature on it.
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Some examples are [2], [5], [8], [11], [13], [15], [18], [19],
[23], [24], and [35].

The list of benefits attained from those equivalence results
quickly grows: interpretations of one kind of models in terms
of others, procedures for knowledge extraction or injection,
transfer of properties or algorithms between techniques, to
name a few. In this paper, we focus on the connections between
fuzzy rule-based systems and neural-autoregressive models
used for time series analysis and forecasting.

Time series analysis is an application problem which has
always attracted the attention of SC researchers. Forecasting
future values of a series is usually a very complex task, and
many SC methods and models have been used to tackle it,
including artificial neural networks (ANNs) and fuzzy rule-
based systems (FRBSs) in their various formulations [30].
Notwithstanding, a common characteristic of those approaches
is that they usually consider time series as just another dataset
which requires some small adaptations to be cast into the
regression or classification format for which most SC models
were created.

However, time series analysis is a prominent field in Econo-
metrics, where it has been widely studied under a statistical
perspective during the last centuries. The works by Bachelier
[4], Kolmogorov [20], Khinchin [17], and Yule [37], all from
the first third of the 20th century, are some classic milestones
for the statistical time series theory. Recently, in 1970, the
old idea of forecasting future values of a time series as a
combination of its past values received a strong impulse after
[6]. In that work, Box and Jenkins proposed a modeling cycle
for the autoregressive integrated moving average model, of
which the autoregressive (AR) model is a popular special case.

Of course this linearity assumption implies certain limita-
tions, and in the last decades much statistical research has
been devoted to nonlinear models. Nonlinear and nonstationary
models are more flexible in capturing the characteristics of
data and, in some cases, are better in terms of estimation and
forecasting.

For some reason, SC researchers do not usually go deep into
time series analysis, disregarding all the knowledge gathered
through the years in the statistical field. In this paper, we
take a step forward in the quest for an SC-based time series
research which integrates methods and models coming from
the econometric perspective, introducing some equivalence
relationships between models from both areas.

The main contribution of this paper deals with the functional
equivalences which link the family of regime switching AR
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models and FRBSs. As evidenced by the influence of previous
papers on equivalence results, these propositions and theorems
have a high relevance by themselves in order to establish sound
foundations for the field. Furthermore, considering the number
of applied results which can be derived from them, they are
also of an undeniable practical importance. We illustrate this
by proving the asymptotic stationarity of additive FRBSs.

This paper is structured as follows. Regime switching AR
models are reviewed in Section II. Then, the original (equiv-
alence) results are provided in a constructive way along Sec-
tion III. Some immediate consequences, examples and impli-
cations of the results are disclosed in Section IV, whereas the
results of a Monte Carlo simulation are shown in Section V.
The paper is finished with conclusions gathered in Section VI.

II. Regime Switching Autoregressive Models

As stated above, in statistical time series modeling, one of
the oldest and most successful concepts is to forecast future
values of a time series as a combination of its past values.
This is a quite natural idea that we apply on every day life,
and it was popularised in 1970 after [6]. In that work, Box and
Jenkins formalised the use of the AR model, which assumes
that future values of a time series can be expressed as a linear
combination of its past values.

An AR model of order p ≥ 1 is defined as

yt = a0 + a1yt−1 + . . . + apyt−p + εt (1)

where {εt} ∼ N(0, σ2), usually known as Gaussian white
noise (equivalent to a random signal with a flat power spectral
density). For this model, we write {yt} ∼ AR(p), and the
time series {yt} generated from this model is called the AR(p)
process.

Such a simple model proved to be extremely useful and
suited to series which, at first sight, seemed to be too com-
plex as to be linear. Applications of the Box and Jenkins
methodology spread in the following decades, covering various
scientific areas such as biology, astronomy, or econometrics.

However, there were still many problems which could not be
addressed using linear models. In 1978, taking a step toward
nonlinearity, Tong [34] proposed a piecewise linear model:
the threshold autoregressive (TAR) model. The success of this
model in Econometrics gave birth to a new family of models,
the AR regime switching models, which are based on the idea
of partitioning the state-space into several subspaces, each of
which is to be modeled by an AR model.

A general AR regime switching model with k (k ≥ 2)
regimes can be defined as

yt =
k∑

i=1

a′
ixt · �i(zt; ψi) + εt (2)

where xt = (1, yt−1, yt−2, . . . , yt−p) is an input vector contain-
ing p lagged values of the series and ai defines the local AR
model i [note that a′

ixt encodes the skeleton of the AR model
defined by (1)]. The variable controlling the transition is zt

and normally is composed of a subset of the elements of xt

(hence, zt ∈ Rq with q ≤ p). The vector of parameters ψi

Fig. 1. Example of TAR model.

defines the location and shape of the transition functions �i,
whose functional form is one of the main differences among
the models of the family.

A. Threshold Autoregressive Model (TAR)

As mentioned above, the TAR is the seminal regime switch-
ing model, and is characterised by using the indicator function
as transition function, i.e., �i = IAi

. This function, described
below in detail, marks the sharp changes from one linear model
to another through a set of thresholds defined on one of the
variables involved. This variable can be an exogenous variable
associated to the process being modeled or one of the lagged
values of the series, in which case the model is called self-
exciting.

A self exciting threshold autoregressive (SETAR) model is
defined as

yt =
k∑

i=1

a′
ixt · IAi

(yt−d) + εt (3)

where yt−d is the value of the series at time t−d and is usually
known as the threshold variable, IAi

is an indicator (or step)
function (which takes the value zero below the threshold and
one above it) and {Ai} forms a partition of (−∞, ∞), with
∪k

i=1Ai = (−∞, ∞) and Ai ∩ Aj = ∅, ∀i �= j.
Usually, we define the interval Ai = (ci−1, ci), with

−∞ = c0 < c1 < · · · < ck = ∞, where the ci’s are called
thresholds. The ordering of the thresholds is required in order
to guarantee the identifiability of the model. Fig. 1 shows the
graphical representation of a two regimes SETAR model.

B. Smooth Transition Autoregressive Model (STAR)

A key feature of TAR models is the discontinuous nature
of the AR relationship as the threshold is passed. Taking
into account that nature is generally continuous, in 1994 an
alternative model called STAR was proposed by Teräsvirta
[33]. In STAR models there is a smooth continuous transition
from one linear AR to another, rather than a sudden jump.

In this model and variants, the indicator function is substi-
tuted by a smooth function with sigmoid characteristics. The
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Fig. 2. Example of two regime STAR model using logistic transition
function.

STAR model is defined as

yt =
k∑

i=1

a′
ixt · �i(yt−d ; ψi) + εt. (4)

The transition functions �i(yt−d ; ψi) are continuous func-
tions, bounded between 0 and 1, with parameters ψi. The
regime that occurs at time t is determined by the observable
lagged variable yt−d and the associated value of �i(yt−d ; ψi).
Different choices for the transition functions give rise to
different types of regime-switching behavior. A popular choice
is when �1 = 1 (the function constantly equal to 1) and
�2 = · · · = �k = f , where f is the first-order logistic function
with parameters ψi = (γi, ci)′ for regime i

f (yt−d ; ψi) = (1 + exp(−γi(yt−d − ci)))
−1 . (5)

The resultant model is called the Logistic STAR (LSTAR).
Fig. 2 shows a STAR model with two regimes for which �1 =
1 − f and �2 = f .

The parameters ci in (5) can be interpreted as the threshold
between two regimes, in the sense that the logistic function
changes monotonically from 0 to 1 as yt−d increases and
f (ci; γi, ci) = 0.5.

The parameter γi determines the smoothness of the transi-
tion from one regime to another. As γi becomes very large, the
logistic function approaches an indicator function and hence,
the change of f (yt−1; γi, ci) from 0 to 1 becomes instantaneous
at yt−d = ci. Consequently, the LSTAR nests TAR models as
a special case. Furthermore, when γ → 0 the LSTAR model
reduces to a linear AR model.

In the LSTAR model, the regime switches are associated
with small and large values of the transition variable yt−d

relative to ci. In certain applications it may be more appropri-
ate to specify a transition function such that the regimes are
associated with small and large absolute values of yt−d (again
relative to ci). This can be achieved by using, for example, the
exponential function, in which case the model may be named
ESTAR.

As it is the case for the TAR model, symmetries of the pa-
rameter space cause unidentifiability of the STAR i.e., it cannot
be uniquely identified. Enforcing the ordering of the regimes

Fig. 3. Example of an AR-NN with two hidden units.

(c1 < c2 < · · · < ck) partially solves this problem. Notwith-
standing, the logistic activation function (which verifies that
f (x) = 1 − f (−x)), is another source for unidentifiability, so
the restriction γi > 0 must also be respected for every i.

C. Autoregressive Neural Network Model (AR-NN)

After the success of ANNs in so many fields including Time
Series Analysis, some researchers [25], [32] considered them
as statistical nonlinear models and applied statistical inference
to the problem of their specification. They devised a “bottom-
up” strategy which allowed for proper statistical inference, as
well as an in-sample evaluation of the estimated model.

The autoregressive single hidden layer neural network
(AR-NN) model [25] is defined as

yt = a′
0xt +

k∑

i=1

αi�i(b′
izt; ψi) + εt (6)

being αi the connection weights and bi a vector of real valued
parameters defining a linear transformation on zt . For this AR
regime-switching model, the functions �i are assumed to be
logistic in this paper, �1 = · · · = �k = f , as defined in (5).
Although in the SC field it is frequent to take a0 = 0, the
original formulation of the AR-NN included this “linear unit.”

The geometric interpretation of this model considers that
the AR-NN divides the p-dimensional Euclidean space with
hyperplanes (defined by b′

izt) resulting in several polyhedral
regions. It computes the output as the sum of the contribution
of each hyper-region modulated by the smoothing function f .
Fig. 3 shows an example of the shape of the function generated
by an AR-NN with two hidden units.

Following [25], an AR-NN can be either interpreted as
a semi-parametric approximation to any Borel-measurable
function or as an extension of the LSTAR model where the
transition variable can be a linear combination of stochastic
variables.

Three characteristics of the model imply nonidentifiability.
The first one is the interchangeability property of the elements
of the AR-NN model. The value in the likelihood function of
the model remains unchanged if we permute the hidden units.
This results in k! different models that are indistinguishable



AZNARTE AND BENÍTEZ: EQUIVALENCES BETWEEN NEURAL-AUTOREGRESSIVE TIME SERIES MODELS AND FUZZY SYSTEMS 1437

from one another and in k! equal local maxima of the log-
likelihood function. The second characteristic is that, for
the transition function, f (x) = 1 − f (−x). This yields two
observationally equivalent parametrisations for each hidden
unit. Finally the presence of irrelevant hidden units is also
a problem. If (6) has hidden units such that αi = 0 for at least
one i, the parameters bi remain unidentifiable. Conversely,
if bi = 0 then αi can take any value without the likelihood
function being affected.

The approach devised by [25] overcomes these limitations
by imposing some restrictions on the parameters. The first
problem is solved by enforcing α1 > · · · > αk or b10 < · · · <

bk0. The second problem is solved by enforcing bi1 > 0 for
every i. Finally, the third problem is dealt with by applying
statistical inference in the model specification.

D. Linear Local Global Neural Network (L2GNN)

Another member of the regime switching family, and a
recent statistical approach to ANNs, is the local global neural
network (LGNN) model [31]. The central idea of LGNN is to
express the input-output mapping by a piecewise structure. The
model output is constituted by a combination of several pairs,
each of those composed by an approximation function and
by an activation-level function. The activation-level functions
are equivalent to the transition function of the general AR
regime switching model, and define the role of an associated
approximation function for each subset of the domain. Partial
superposition of activation-level functions is allowed. In this
way, the problem of approximation functions is faced through
the specialisation of neurons in each of the sectors of the
domain. In other words, the neurons are formed by pairs of
activation-level and approximation functions that emulate the
generator function in different parts of the domain.

The LGNN is defined as

yt =
k∑

i=1

L(xt; χi)�i(zt; ψi) + εt (7)

where the functions L and �i are the approximation and
transition functions, respectively.

In the original formulation [31], �i(zt; ψi) is noted as
B(zt; ψi) and is defined as the difference between two opposed
logistic functions

B(zt; ψi) = −
(
f (b′

izt; γi, c
(1)
i ) − f (b′

izt; γi, c
(2)
i )

)
(8)

where ψi =
(

bi, γi, c
(1)
i , c

(2)
i

)
, representing a linear transfor-

mation of zt encoded by bi, a steepness parameter γi and two
location parameters (c(1)

i , c
(2)
i ).

This model is closely related to the mixture-of-experts
approach [14] and offers a great deal of flexibility in the
functional form of the approximation function L(xt; χi). This
flexibility has not been fully explored so far, but there have
been attempts to combine in the same model linear approxi-
mators with nonlinear ones [12], for example.

A special case of the LGNN model is the L2GNN [31].
In this case, the approximation functions are linear, that is,
χi = ai is a vector of linear parameters and L(xt; χi) = a′

ixt .

Fig. 4. Example of a two regime L2GNN.

Hence, the L2GNN is closely related with the general AR
regime switching model of (2), and is defined as

yt =
k∑

i=1

a′
ixtB(zt; ψi) + εt. (9)

It is worth noting that, as in the previous models, this model
is neither locally nor globally identifiable. In [31] the restric-
tions which ensure identifiability are stated: for i = 1, . . . , k

the ordering of the thresholds is given by c
(1)
i < c

(1)
i+1 and

c
(2)
i < c

(2)
i+1 together with c

(1)
i < c

(2)
i , whereas the identifiability

problems posed by the symmetry of the transition function
are solved by enforcing γi > 0 and bi1 > 0. Fig. 4 shows a
simplified L2GNN model with two regimes.

E. Neuro-Coefficient Smooth Transition Autoregressive Model
(NCSTAR)

One of the latest developments in threshold-based models
is the Neuro-Coefficient STAR [26]. This model is a gen-
eralisation of some of the previously described models and
can handle multiple regimes and multiple transition variables.
This model can be seen as a linear model whose parameters
change through time and are determined dynamically by a
single hidden layer feed-forward neural network.

Consider a linear model with time-varying coefficients ex-
pressed as in (1) and let the coefficients vary through time
a0(t), a1(t), . . . , ap(t). The time evolution of such coefficients
is given by the output of a single hidden layer neural network
with k hidden units

aj(t) =
k∑

i=1

αijf
(
b′

izt; γi, ci

) − α0j (10)

where j = 0, . . . , p, αji, and αj0 are real coefficients (con-
nection weights) and f is a logistic function as defined in
expression (5).

Substituting the p realizations of (10) in the linear model,
we obtain the general form of the NCSTAR model

yt = α′
0xt +

k∑

i=1

α′
ixtf (b′

izt) + εt. (11)
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Similarly to ai in the previous models, αi represents a vector
of real coefficients, called linear parameters. In this model,
the value of the slope parameter γi is taken to be the norm of
bi. In the limit, when the slope parameter approaches infinity,
the logistic function becomes a step function.

As happened with previous models, this model is neither
locally nor globally identifiable, and this is due to the special
characteristics of its functional form that cause nonidentifia-
bility. In order to guarantee identifiability, we need to impose
some restrictions, namely ci < ci+1 and bi1 > 0. Also, it is
important to ensure that no irrelevant units are included, which
can be achieved by using the incremental building procedure
proposed in [28].

The choice of the elements of zt , which determines the
dynamics of the process allows a number of special cases. An
important one is when zt = yt−d . In this case, (11) becomes a
LSTAR model with k regimes. It should be noticed as well that
this model also nests the SETAR model. When γi → ∞ ∀i,
the LSTAR model becomes a SETAR model with k regimes.

Another interesting case is when α′
i = (αi0, 0, . . . , 0), ∀i >

0. Then, the model becomes an AR-NN model with k hidden
units. Finally, this model is related to the functional coefficient
autoregressive (FAR) model [9], to the single-index coefficient
regression model [36], and to fuzzy rule-based models, as we
shall see below.

III. Relations With Fuzzy Rule-Based Models

As stated above, establishing the equivalence of different
models has been important in the neural networks field since
its establishment (see [5], [8], [11], [15], [18], [23], [24]).
These results imply some useful consequences as the possibil-
ity of interpreting one family of models in terms of the others
or the transfer of properties and algorithms. Concerning neural
networks, these results allowed to overcome the “black-box”
characteristic as they led to knowledge extraction methods.

In [3] we explored the links existing between an AR model
and a fuzzy rule used in the time series framework. As well, we
proved that STAR models can be seen as a particular case of
a fuzzy rule-based system. Here, we will extend those results
to the neural AR models listed in Section II. For the sake of
clarity, let us first note the expression of the FRBS considered
here.

When dealing with time series problems the Takagi-Sugeno-
Kang paradigm is preferred over other variants of FRBSs.
When applied to model or forecast a univariate time series
{yt}, the rules of a TSK FRBS are expressed as

If yt−1 is B1 and · · · and yt−p is Bp

THEN yt = a0 + a1yt−1 + · · · + apyt−p. (12)

In this rule, all the input variables are lagged values of the
time series {yt}.

Concerning the fuzzy reasoning mechanism for TSK rules,
the firing strength of the ith rule is obtained as the t-norm
(usually, multiplication operator) of the membership values of

the premise part linguistic labels

wi(xt) =
p∏

j=1

µBi
j
(yt−j) (13)

where the shape of the membership function of the linguistic
terms µBi

j
can be chosen from a wide range of functions. One

of the most common is the Gaussian bell, although it can also
be a logistic function as in (5) or some nonderivable functions
as the triangular or trapezoidal functions.

The overall output is computed as a weighted average or
weighted sum of the rule’s output. In the case of the weighted
sum, the output expression for an FRBS with k rules is

yt =
k∑

i=1

a′
ixt · wi(zt) (14)

where ai are the so-called consequent parameters. While many
TSK FRBS perform a weighted average to compute the output,
additive FRBS are also a common choice. They have been used
in a large number of applications (for example, [7], [10], [16],
[21]).

A. AR Model and the TSK Fuzzy Rules

Fuzzy rules are the core element of fuzzy systems. When
applied to time series, as seen in (12), fuzzy rules can describe
the relationship between the lagged variables in some parts of
the state-space. A close look into this equation suggested the
following.

Proposition 1: When used for time series modelling, a TSK
fuzzy rule can be seen as a local AR model, applied on the
state-space subset defined by the rule antecedent.

This connection between the two models opened the possi-
bility of an exchange of knowledge from one field to another,
enabling us to apply what we know about AR models to fuzzy
rules and vice versa. From the point of view of Box–Jenkins
models, each of these rules represents a local AR model which
is applied only when some conditions hold. These conditions
are defined by the terms in the rule antecedent. The output
of the AR system is modulated by the membership degree of
the lagged variables to some fuzzy sets describing parts of
the state-space domain. This scheme is closely related to the
structure of the threshold autoregressive family of models, as
shown below.

B. STAR Model and Fuzzy Rule-Based Models

After the previous result, we were able to go further in
the exploration of the relationships between threshold models
and fuzzy logic-based models. On the one hand, we have
seen that AR models are good linear models applicable to
prediction problems. As well, we know that a TAR model
is basically a set of local AR models, and that it allows for
some nonlinearity in its computations. On the other hand,
we have seen how a fuzzy rule relates to an AR model, in
Proposition 1. Knowing that fuzzy rule-based models contain
sets of fuzzy rules, we were interested in considering the
relationship existing between threshold models and fuzzy rule-
based models.
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It is rather clear that there is some parallelism between
the two aforementioned families of models. At a high level,
models from both sides are composed of a set of elements
(AR—fuzzy rules) which happen to be closely related, as
stated above. On a lower level, both families of models rely
on building a hyper-surface on the state-space which tries
to model the relationship between the lagged variables of a
time series. Moreover, both define this hyper-surface as the
composition of hyper-planes which apply only in certain parts
of the state-space.

Indeed, the following was proved. For a deeper discussion
on these basic facts, refer to [3].

Proposition 2: The STAR model is functionally equivalent
to an Additive TSK FRBS with only one term in the rule
antecedents.

C. Neural Autoregressive Models and Fuzzy Rule-Based
Systems

As described in Section II, some of the most recent devel-
opments of the threshold AR family of models include AR-
NN, LGNN, and NCSTAR models. We will now explore the
consequences of Proposition 1 regarding those models.

1) Autoregressive Neural Network (AR-NN): Recalling (6),
it is clear that the AR-NN is composed of an AR linear term
plus a neural network. The neural network term is a regular
multilayered perceptron, and, as such, is interpretable as a
fuzzy additive system, in the way shown in [5]. This paper
states as well that, by using the interactive-or operator, it is
possible to view ANNs as Mamdani-type fuzzy rule-based
models.

Furthermore, under the FRBS paradigm, the AR term of
the AR-NN can be considered as a generic rule, that is, a
rule which applies on the whole domain of the problem. Such
generic rules, which fire unconditionally, produce a default
answer which is added to the values of the fired rules on
those areas covered by them. This type of rules has been
used previously by researchers and practitioners to encode
knowledge which is domain-wide applicable.

Thus, we can prove the following.
Proposition 3: The AR-NN model is functionally equiva-

lent to a TSK FRBS with a default rule.
Proof: Using the result in [5], which states that a neural

network is functionally equivalent to an FRBS, and consider-
ing the AR term as a rule of type

IF true THEN yt = a′
0xt (15)

the proof is trivial.
Viewing the AR-NN as a combination of an AR model and

a fuzzy inference system allows for linguistic interpretation
of the system. In addition, this let us include a priori expert
knowledge into the model. Other advantages of this equiv-
alence relationship will be addressed in Sections IV-A and
IV-B.

2) Local Global Neural Network: The more general ap-
proach of LGNN models, closely related to mixtures of experts
model, satisfies the following.

Proposition 4: Local global neural networks are a general-
ization of Additive TSK FRBS.

Proof: It is straightforward after considering the expres-
sion of TSK rules (12), and the expression for the LGNN
(7). Since L(xt; χi) can take any form, it can also be a linear
function of the inputs, which is exactly a TSK rule. As
the aggregation rule for LGNN is additive, we can conclude
that the LGNN model is a generalization of Additive TSK
FRBS.

For the same reason that after setting the general origi-
nal formulation of the LGNN, researchers straighforwardly
focused on linear approximation functions (linear LGNN
models), TSK rules are basically used with linear con-
sequents. It is generally preferred to keep the conse-
quents linear and to encode all the nonlinearity in the
antecedents.

If linear consequents were used (i.e., in the L2GNN
model), though, the relationship with Additive TSK FRBS is
immediate.

Proposition 5: L2GNN models are functionally equivalent
to Additive TSK FRBS using B(zt; ψi) as membership func-
tion.

3) Neuro-Coefficient Smooth Transition Autoregressive
Models: This kind of systems introduces time varying coeffi-
cients to combine AR models. Their mathematical formulation
is quite similar to the L2GNN model, varying only the form
of their activation level functions (which has a smaller number
of parameters).

Hence, when studying the links of the NCSTAR to FRBSs,
we find similar results to those obtained for the previous
statistical models. They can be expressed in terms of the
following.

Proposition 6: NCSTAR models are functionally equiv-
alent to Additive TSK FRBS with logistic membership
function.

Proof: We must recall equations (14) (Additive TSK
FRBS) and (11) (NCSTAR model). Considering that the
multidimensional logistic function is obtained as the product
of unidimensional logistic functions, it is easy to see that the
firing degree of a rule is equivalent to the transition function
of a hidden unit of the NCSTAR, and hence, that both models
are functionally equivalent.

Finally, the following Theorem condenses the results drawn
above.

Theorem 1: The TSK FRBS is a generalization of the
regime switching AR models TAR, STAR, AR-NN, L2GNN,
and NCSTAR.

Proof: Trivial in the light of Propositions 1, 2, 3, 5,
and 6.

IV. Consequences and Implications

Theorem 1 entails important implications that may affect
the way threshold models and FRBSs are understood and used.
Since each of these threshold models can be expressed as a
fuzzy rule based model, all the properties and tools of this SC
technique are directly applicable to it. The opposite is also
true: tools and properties of threshold models are valid for
fuzzy inference systems.
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Fig. 5. (a) Four local AR models (or fuzzy rules). (b) L2GNN model (or the fuzzy inference system) derived from them.

A. SC Implications

One of the major criticism of the SC models has historically
been the lack of mathematical proofs for their statistical
properties. This situation is starting to change nowadays. In
[25], a coherent modeling strategy which relies on statistical
inference is presented to build ANNs for time series. After our
results, a similar strategy can be applied to fuzzy systems.

The aforementioned modeling strategy, for example, uses a
“bottom-up” strategy to build the model, consisting of the three
stages usually applied in statistical modeling: specification, es-
timation, and evaluation. The three stages rely on well-known
statistical procedures: in the specification stage, a variable
selection is performed based on assuming the model as linear
and applying statistical techniques to choose the variables.
Estimation of the parameters, i.e., the number of hidden units,
is done by maximum likelihood. This procedure makes it
possible to obtain an idea of the uncertainty in the parameter
estimates through (asymptotic) standard deviation estimates.
This is not possible in most of the empirical approaches
adopted in SC. Finally, evaluation of the model is performed
through two in-sample misspecification tests: the first one tests
for the instability of the parameters and the second one tests
the assumption of no serial correlation in the errors.

For the NCSTAR model, an equivalent three-stage proce-
dure is given (the evaluation stage is explained in [27]). This
is again directly applicable to fuzzy additive systems based on
Proposition 6. In this case, specification is performed through
a sequence of Lagrange multiplier tests, which are also used to
evaluate the model’s parameter constancy, serial independence
and constant error variance.

Another example is given by the main property of the
L2GNN model: it is asymptotically stationary under mild
conditions (see Theorem 1 of [31]). After our Proposition 5,
the same can be said about fuzzy additive models. We further
develop this result in the remainder of this section.

1) Asymptotic Stationarity of the Model: Stationarity of
a random process is related to the mean value and variance
of the observation data, both of which should be constant
over time, and the covariance between the observations xt and
xt−d should only depend on the distance d between the two
observations and should not change over time. A time series is
weakly stationary if E(xt) = µ and cov (xt, xt+h) = κh, ∀t, i.e.,
means and covariances do not depend on time t. A stronger
criterion is that the whole distribution (and not only mean
and covariance) of the process does not depend on time, and
in this case it is called strictly stationary. Strong stationarity
implies weak stationarity if the second moments of the series
exist [22].

If {xt} is strictly stationary, then P(xt ∈ A) = π(A), ∀t,
and π(·) is called the stationary distribution of the series.
Obviously the series can only be stationary from the beginning
if it is started with the stationary distribution such that x0 ∼ π.
If it is not started with π, e.g., because x0 is a constant, then
we call the series asymptotically stationary if it converges to
its stationary distribution, that is

lim
t→∞ P(xt ∈ A) = π(A). (16)

In order to study the asymptotic properties of the threshold
AR family of models, the concept of characteristic equation
was introduced. The characteristic equation of an FRBS can
be defined as

λp − c1λ
p−1 − c2λ

p−2 − · · · − cp = 0 (17)

with

cj =
r∑

i=1

‖bij‖ j = 1, . . . , d (18)

being bij the jth coefficient of the ith linear model and r the
number of linear models (the number of rules).
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It is easy to verify that, when using Gaussian membership
functions, model (14) has a finite number of limiting linear
models of the form

yt = c
(k)
0 + c

(k)
1 yt−1 + · · · + c(k)

p yt−p + εt. (19)

Obviously, when all the limiting linear models of a model are
asymptotically stationary (their roots are inside the unit circle),
the model cannot be but asymptotically stationary itself. On
the other hand, if one or more of the limiting linear models
have roots outside the unit circle, or have unit roots, we must
study the model carefully, as its stationarity depends on the
membership functions used.

As explained in [31], if the membership functions are
“large,” being “active” in half the space, then an explosive
limiting regime will lead to asymptotically nonstationary
model with probability strictly greater than 0. This is the case
with sigmoid functions, and that is the reason why an FRBS
using the sigmoid function (5) as membership functions is not
guaranteed to be asymptotically stationary.

The problem is different, though, if Gaussian membership
functions, defined as

µG(xt; ψ) =
∏

i

exp

(
− (xi − ci)2

2σ2

)
(20)

are used, as these are “small” in the sense that they cover a
small fraction of any sufficiently large hypersphere. This is
similar to the case for the L2GNN, which uses as membership
function the difference of two sigmoid functions. The main
difference is that the L2GNNs membership functions are active
in the infinite space left between two parallel hyperplanes,
whilst the Gaussian functions are active only inside the limited
space of a hypersphere.

Theorem 2: The additive TSK FRBS is asymptotically sta-
tionary if it uses Gaussian membership functions with 1

σ
�= 0.

Proof: Immediate after Proposition 5 and Theorem 1
of [31]. With respect to the L2GNN, the conditions for an
explosive or unit-root limiting linear model to escape to
infinity are much simpler: the membership function must have
value 1 ( 1

σ
= 0) or it will always return close to the origin.

The effective application of these modeling strategies to
fuzzy systems may help overcome the traditional distrust
affecting some scientific areas with respect to SC.

B. Statistical Implications

The expression of a threshold model as a set of fuzzy rules
has an immediate advantage: the model may be interpretable
in terms of human language. Two consequences of this fact
allow for an improved use of threshold models.

1) There exists the possibility of extracting linguistic
knowledge from an already estimated model, in order
to contrast it with the knowledge of a human expert.
The advantages of this are clear: the human expert could
learn from the model and improve her or his knowledge
of the problem.

2) There exists the possibility of incorporating linguistic
knowledge to the models. This allows for a human
expert to teach the model about specific parts of the

problem which could be hard to capture for the building
procedure. As well, it is possible to give initial values to
the modeling algorithm based on the expert’s knowledge
instead of using other criteria.

As an example, let us revisit the example proposed in
[3]. Take a STAR model built to represent the consumer’s
expenditure in the U.K. sampled quarterly from 1955 to 1994
[29]. It is composed of three regimes

yt = 0.005 + 2.68yt−1 + 0.35yt−2 +

(−2.59yt−3) × �1(yt−3; 1.49, −0.014) +

(−1.50yt−1 − 0.98yt−2) × �2(yt−3; 0.16, 0.016) + εt. (21)

After Proposition 2, this STAR model can be seen as
an FRBS with three rules. The shape of the membership
functions, shown in Fig. 6, is such that it could be understood
as a fuzzy logic negation of the most commonly used Gaussian
membership function. If we assume that the membership func-
tions (�(yt−3; 1.495, −0.0136) and �(yt−3; 0.165, 0.0165))
mean not low and not high, respectively, the rule base might
be written as

If yt−3 is not low THEN yt = −2.59yt−3

If yt−3 is not high THEN yt = −1.50yt−1 − 0.98yt−2

In any case yt = 0.005 + 2.68yt−1 + 0.35yt−2.

Or, according to the econometric semantics attributed by the
authors to the regimes of STAR

If yt−3 is recessive THEN yt = −2.59yt−3

If yt−3 is expansive THEN yt = −1.50yt−1 − 0.98yt−2

In any case yt = 0.005 + 2.68yt−1 + 0.35yt−2.

Another consequence of this contribution is that the building
strategy for threshold models could use the SC advances in
automatic model specification and estimation. For example,
clustering techniques could be used to fix the number and
boundaries of the local regimes of threshold models. As well,
a myriad of SC optimization techniques are at hand to be
applied in fine-tuning the threshold model parameters.

V. Monte Carlo Experiment

From the discussion in Section III, it is clear that the main
difference between the set of models considered in this paper
is the functional form of the transition or membership function
selected, noted � in (2). In FRBSs, selecting the shape of � is
an important problem for which there is no definitive solution,
and which is usually related to efficiency and interpretability
considerations.

As a further consequence of the equivalence links presented
in this paper, we might consider the selection of the mem-
bership function of a FRBS from a statistical point of view.
In the framework of regime switching models, Monte Carlo
simulations are common to evaluate in finite samples if a given
method is valid or not, and in this section, we will use them
together with information criteria to assess if a chosen model
is correctly selected or not.
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Fig. 6. Exponential transition functions proposed by [29] for the STAR model describing the consumer’s expenditure in the U.K.

Let us consider the following general AR regime switching
model with two regimes, where xt = (1, yt−1, yt−2, yt−3)′:

yt = (−0.7, 0.2, −0.6, 0.18)′ xt · �1(zt; ψ1) +

(−0.3, −0.08, 0.5, 0.4)′ xt · �2(zt; ψ2) + εt. (22)

Depending on the functional form assumed for �1 and �2,
this model can be one of the models studied in this paper. For
example, if �1 = �2 and both are equal to a constant, model
(22) becomes an AR model, while if they are defined as in
(13), it could be seen as an FRBS.

For example, we can set

�1(zt; ψ1) = IA1 (yt−d)

�2(zt; ψ2) = IA2 (yt−d)
(23)

where A1 = (−∞, c], A2 = (c, ∞), and the threshold is fixed
at ψ1 = ψ2 = c = −1.0607. This is a self-exciting TAR model
with two regimes.

Then, given a series for which we know that its data
generating process is (22) with the transition functions defined
by (23), we are interested in knowing empirically which is the
functional form of � that is most suited to model it. In other
words, we are going to test empirically which one is the best
model for these series.

We proceed by simulating 100 series from this TAR model.
Each of the synthetic series is set to have a length of 500
and we discarded a first portion of the generated data to avoid
initialization effects.

These 100 artificially generated series are to be modeled
by models described in Section II, i.e., a linear AR model,
a TAR, a STAR, an AR-NN, and a FRBS or NCSTAR. In
order to compare amongst them, we will use the root mean
squared error (RMSE) and the akaike information criterion
(AIC) [1] which takes into account not only the goodness of
fit but also the number of degrees of freedom of the models.
The AIC has no meaning by itself, but it is a way to compare
different models, where low values for the AIC correspond
to more parsimonious and accurate models and high values
correspond to complex and inaccurate models.

Table I shows the values obtained from this Monte Carlo
experiment. As we can see, the lowest AIC corresponds to the
TAR model, whereas the highest belongs to the linear model.

TABLE I

Number of Parameters, Average RMSE, AIC, and Frequency of

a Model Achieving the Smallest AIC Obtained by the

Considered Models Over 100 Synthetic Series

#Param. RMSE AIC Freq. Min.
AR 4 27.895 227.963 0

TAR 9 22.029 2.607 99
STAR 10 22.047 5.429 1

AR-NN 51 21.632 68.296 0
FRBS 18 22.009 9.710 0

Even though the lowest RMSE corresponds to the AR-NN,
the high number of parameters required by this model to give
good results makes it one of the worst in terms of AIC.

The fact that the TAR gets the lowest value for the AIC
clearly indicates that, for the simulated series, a TAR model
is the most effective alternative. This is also supported by the
frequency of obtaining the smallest value of the AIC, which
reaches the 99% of the instances for the TAR model.

Apart from demonstrating the importance of correctly se-
lecting the shape of the transition functions when using
the family of models studied in this paper, this simulation
shows that statistical tools such as information criteria can
be used to properly identify, on average, the correct regime
switching model for a given time series. From the point of
view of SC models, this represents still another consequence
of the equivalence relationships established above. It points
to a better understanding of the classical statistic time series
analysis (which in turn might lead to better neural or fuzzy-
based time series models).

VI. Conclusion

In this paper, we have shown how some neural-based regime
switching models, coming from the econometric approach to
time series analysis, are closely related to FRBSs. In fact,
we proved that a fuzzy rule based model can be seen as
a generalization of the TAR, STAR, AR-NN, L2GNN, and
NCSTAR models.

These results are another step in a continuing effort toward
the merger of the statistical-based time series analysis and the
SC methods and techniques devoted to this problem. Practical
advances stemming from these theoretical results are being
developed and are expected to produce improvements in the
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resolution of the time series analysis and forecasting problem.
Some immediate consequences were demonstrated through the
formal proof of the asymptotic stationarity of the additive TSK
FRBSs and through Monte Carlo simulations concerning the
selection of the transition function.
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