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In time series analysis remaining autocorrelation in the errors of a model implies that it
is failing to properly capture the structure of time-dependence of the series under study.
This can be used as a diagnostic checking tool and as an indicator of the adequacy of
the model.

Through the study of the errors of the model in the Lagrange Multiplier testing
framework, in this paper we derive (and validate using simulated and real world exam-
ples) a hypothesis test which allows us to determine if there is some left autocorrelation
in the error series. This represents a new diagnostic checking tool for fuzzy rule-based
modelling of time series and is an important step towards statistically sound modelling
strategy for fuzzy rule-based models.
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1. Introduction

In general, once a time series model is built and estimated, it has to be evaluated.

This is true in the Soft Computing framework as well as in the classical Statistics

approach. By evaluating a model we aim at finding out if the model satisfies a set of

quality criteria that allow us to say if the model is actually succeeding in capturing

the interesting characteristics of the system under study.
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Notwithstanding, this set of evaluation criteria is heavily dependent on several

considerations: the final use that the model is built for, the inner characteristics

of the system that are to be captured and whether the emphasis is put on the

empirical behaviour of the model or if there are theoretical considerations that are

considered to be more important. This is evident when we consider the evaluation

means used in the Soft Computing field as opposed to those used in the statistical

approach to time series analysis.

In the usually engineering-oriented Soft Computing framework, there has been

an overwhelming preeminence of just one evaluation criterion, and this has been

the goodness of fit. Generally, evaluation of a model consists on computing the pre-

diction (or classification) error produced when it is faced with a previously unseen

problem of the same type of the one used to estimate it. This measure, in its differ-

ent flavours (mean squared error, mean average error and so on) is affected by some

inherent limitations: it is not very meaningful for a single model unless compared

against other models, and is usually range-dependent, which makes it difficult to

compare the same model applied to different problems represented by data sets

with different characteristics.

On the other hand, evaluation in the statistical approach to time series has

usually more to do with obtaining an estimate of the probability that the model

is effectively capturing the interesting characteristics of the data set, and this is

achieved, among other forms, through developing hypothesis tests, also known as

misspecification tests.

The inclusion of the error term εt in the expression of Fuzzy Rule-Based Models

(FRBM) in the context of time series analysis has been suggested.3 In general, the

main assumption behind modelling is that a part of the system under study behaves

according to a model but there is another part which cannot be explained by it (and

which is described by a known or unknown probability distribution). This is the

main idea encoded in the expression of the general time series model

yt = G(xt;Ψ) + εt , (1)

where xt is the input of the system, usually a vector of time series lagged values,

and Ψ is a vector of parameters. The idea is also behind the diagnostic checking

procedure presented here.

It is interesting to obtain a precise knowledge about the series of the errors of

the model, usually referred to as the series of residuals and expected to be normal,

independent and identically distributed, i.e., εt ∼ NID(0, σ2). For example, we could

be interested in determining if its values are autocorrelated. If the residuals were

autocorrelated, that would mean that the model is failing to capture an important

part of the behaviour of the series, and hence it should be respecified.

The test presented in this paper is developed under the same framework of the

Breusch-Godfrey-Pagan test5,15–17 and is a LagrangeMultiplier (LM) applied to the

errors of fuzzy rule based models. The test proposed in this paper is similar to the

ones discussed in Medeiros and Veiga, 200329 and Eirthein and Teräsvirta, 1996.10
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Our main goal is to show that the LM testing framework of Breusch-Godfrey-Pagan

can be applied to a fuzzy rule based model as long as the model has been estimated

consistently.

Other existing nonlinear correlation tests as the one proposed by Zhang et al,

200737 and the alternatives reviewed therein are also applicable to FRBM. To our

knowledge, so far no attention has been paid to this field of diagnostic checks

in the framework of FRBM, and this work should be seen as an invitation to

FRBM researchers and practitioners to further study and systematically apply these

procedures.

This paper is one more step in the authors’ line towards the development and

difussion of statistical inferecen methods in the framework of Computational Intel-

ligence. The relevance of this issue has already being recognized by a number of

researchers from both fields —i.e. Statistics and Computational Intelligence–, for

example,11–13,27

The structure of the paper is as follows: in Sec. 2 we will briefly review the fuzzy

rule-based models in their application to time series forecasting. Section 3 contains

the derivation of the test and a simplified procedure to calculate it. Finally, Sec. 4

and Sec. 5 show a Monte Carlo experiment with simulated series and the application

of the test to three real world time series, respectively. The paper ends with Sec. 6,

where the main conclusions are gathered.

2. Fuzzy Rule-Based Models for Time Series Forecasting

When dealing with time series problems (and, in general, when dealing with any

problem for which precision is more important than interpretability), the Takagi-

Sugeno-Kang paradigm is preferred over other variants of FRBM. When applied to

model or forecast a univariate time series {yt}, the autoregressive rules used by a

TSK FRBM are expressed as:

rule i : If yt−1 is Ai1 and . . . and yt−q is Aiq

THEN yt = b′

ixt = bi0 + bi1yt−1 + . . .+ bipyt−p. (2)

In this rule, all the variables yt−j are lagged values of the time series.

The value of p and q determine, respectively, the number of variables present

in the consequent and in the antecedent of the rule. We will call xt ∈ R
p,xt =

(yt−1, . . . , yt−p) the consequent variables and zt ∈ R
q the antecedent variables,

being common that zt is composed of a subset of the elements of xt (thus q ≤ p).

Concerning the fuzzy reasoning mechanism for TSK rules, the firing strength

of the ith rule is obtained as the t-norm (usually, multiplication operator) of the

membership values of the of the linguistic variables included in the antecedent:

f(zt;ψi) =

q
∏

j=1

µAij
(yt−j) , (3)
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where ψi is the vector of parameters for the i-th rule. The shape of the membership

function of the linguistic terms µAij
can be chosen from a wide range of functions.

Some of the usual functional forms are the Gaussian bell

µAij
(yt−j ; cij , σij) = exp

(−(yt−j − cij)
2

2σ2
ij

)

, (4)

the logistic function

µAij
(yt−j; cij , ωij) = (1 + exp ((cij − ωijyt−j)))

−1
, (5)

and also non-derivable functions such as triangular or trapezoidal functions. In this

paper, we will consider the case of the logistic function. By substituting (5) in (3)

and operating results in a rule firing strength defined as

f(zt;ψi) = (1 + exp (γi(ci − ω′

izt))
−1

, (6)

where ψi = (γi,ωi, ci) and γi is the norm of ωi.

The overall output is computed as a weighted average or weighted sum of the

rules’ outputs. In the case of the weighted sum, the output expression for a fuzzy

rule-based model with k rules is:

yt = G(xt, zt;Ψ) + εt =

k
∑

i=1

f(zt;ψi) · b′

ixt + εt , (7)

where G is a general nonlinear autoregressive function with parameters Ψ =

(ψ1,b1, . . . ,ψk,bk). While many TSK FRBMs perform a weighted average to com-

pute the output, additive FRBMs are also a common choice. They have been used

in a large number of applications.6,8,21,22

It has been proved2 that this specification of the FRBM nests some models from

the autoregressive regime switching family. More precisely, it is closely related with

the Threshold Autoregressive model (TAR),35 the Smooth Transition Autoregres-

sive model (STAR),34 the Linear Local-Global Neural Network (L2GNN)33 and the

Neuro-Coefficient STAR.30

This relation gave place to an exchange of knowledge and methods from the

statistical framework characterising those models to the fuzzy rule-based modelling

of time series. For instance, a linearity test against FRBMs has been developed,3

and other contributions are yet to come.

3. Testing for Remaining Autocorrelation in the Residuals

If we are able to find any remaining autocorrelation in the residuals series {εt}, we
would be able to conclude that our model is failing to capture a part of the inner

behaviour of the series, and that it should hence be re-specified.

To study the autocorrelation of the residuals, it might seem a good idea to

use the autocorrelation function (ACF) and the partial autocorrelation function

(PACF) functions, or the Ljung-Box (LB) test.23 It should be clear that the LB test,

which is based on the estimated autocorrelation function (ACF) of the residuals, is



June 24, 2010 14:15 WSPC/118-IJUFKS S021848851000660X

Testing for Remaining Autocorrelation of the Residuals 375

not a valid test in the context of nonlinear models. The reason is that the LB test

does not take into account that the estimated model is nonlinear and its asymptotic

null distribution is unknown if the test is based on estimated residuals of a nonlinear

model.10

Consider the following FRBM with autocorrelated errors:

yt = G(xt, zt;Ψ) + εt =
∑k

i=1 f(zt;ψi) · b′

ixt + εt
εt = ρ

′νt + ut

, (8)

where r is the order of the autocorrelation, ρ = [ρ1, ρ2, . . . , ρr] is a vector of pa-

rameters, ν ′

t = [εt−1, εt−2, . . . , εt−r] and ut ∼ NID(0, σ2). Note that r is the order

of the autoregressor considered for the residuals series.

In the context of this model, we can formulate the null hypothesis of non-

autocorrelation of the residuals as H0 : ρ = 0. We assume that εt is a stationary

linear process, and furthermore, that under the assumption εt ∼ NID(0, σ2), that

is, under H0, {yt} is stationary and ergodic such that the parameters of (8) can be

consistently estimated by nonlinear least squares.

Following Medeiros and Veiga, 2003,29 the conditional normal log-likelihood,

given a fixed set of starting values, has the form

lt = −1

2
ln (2π)− 1

2
lnσ2 − 1

2σ2

×
{

yt −
r
∑

j=1

ρjyt−j −G(xt, zt;Ψ) +

r
∑

j=1

ρjG(xt−j , zt−j ;Ψ)

}2

. (9)

The information matrix related to (9) is block diagonal such that the element

corresponding to the second derivative of (9) forms its own block. The variance σ2

can thus be treated as a fixed constant in (9) when deriving the test statistic. The

first partial derivatives of the normal log-likelihood with respect to ρ and ψ are

∂lt
∂ρj

=
( ut

σ2

)

{yt−j −G(xt−j , zt−j ;Ψ)} , j = 1, . . . , r

∂lt
∂Ψ

= −
( ut

σ2

)

{

∂G(xt, zt;Ψ)

∂Ψ
−

r
∑

j=1

ρj
∂G(xt−j , zt−j ;Ψ)

∂Ψ

}

.

(10)

Under the null hypothesis, the consistent estimators of (10) are

∂l̂t
∂ρ

∣

∣

∣

∣

H0

=
1

σ̂2
ε̂tν̂t and

∂l̂t
∂Ψ

∣

∣

∣

∣

H0

= − 1

σ̂2
ε̂tĥt , (11)

where ε̂t are the residuals estimated under the null hypothesis, ν̂t = [ε̂t−1, . . . , ε̂t−r],

σ̂2 = (1/T )
∑T

t=1 ε̂
2
t and ĥt is the gradient of the model,

ĥt = ∇G(xt, zt; Ψ̂) =
∂G(xt; Ψ̂)

∂Ψ
. (12)
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The LM statistic can be thus written as

LM =
1

σ̂2

T
∑

t=1

ε̂tν̂t
′

×
{

T
∑

t=1

ν̂tν̂t
′ −

T
∑

t=1

ν̂tĥ
′

t ×
(

T
∑

t=1

ĥtĥ
′

t

)−1

×
T
∑

t=1

ĥtν̂t
′

}

×
T
∑

t=1

ν̂t
′ε̂t , (13)

where T is the length of the series.

Under the condition that the moments implied by (13) exist, the LM statistic

is asymptotically distributed as a χ2 with r degrees of freedom.

3.1. The test in three steps

Although it may look complicated at first sight, the application of this test is

straightforward. Imagine we have built and adjusted an FRBM as in Equation (7),

that is, assuming that the null hypothesis is true, to model and predict a given

time series. Having as inputs the residuals and the gradient of the model, we can

perform the test in three stages as follows:29

(1) Take the residuals of our model and orthogonalize them by regressing them on

the gradient ĥt. Now compute the residual sum of squares of such regression,

SSR0 = (1/T )
∑T

t=1 ε̃
2
t .

(2) Regress the residuals of the regression of step (1), ε̃t, on ĥt and ν̂t, that is, on

the gradient of the model under the alternative hypothesis. Compute a second

residual sum of squares SSR1 = (1/T )
∑T

t=1 v̂
2
t .

(3) Using the two sums of squares previously calculated, we can compute the χ2

statistic as

LMχ2 = T
SSR0 − SSR1

SSR0

.

As mentioned by Teräsvirta, 1994,34 the χ2 statistic suffers from size problems

when the series is short. In such cases, we can still compute an alternative

statistic which responds to the F (Fisher-Snedecor) distribution as follows:

LMF =
(SSR0 − SSR1)

r

(

SSR1

(T − r − n)

)

−1

.

Under H0, the statistic LMχ2 is asymptotically distributed as a χ2 with r degrees of

freedom and LMF has approximately an F distribution with r and T−r−n degrees

of freedom, being n the number of elements of ĥt (i.e. the number of parameters

of the model under the null). Fixing a significance value allows us to obtain the

p-value and to decide upon accepting or rejecting the null hypothesis.

If H0 is rejected, this implies that the residuals might be autocorrelated up to

the r-th order.
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Fig. 1. Synthetic time series obtained by using an FRBM with 3 fuzzy rules (Eq. (15)) as data
generating process.

4. Monte Carlo Power Analysis

In order to assess the effectivity of a hypothesis tests its power must be conveniently

analyzed. That is the goal of this section.

A common procedure to study the behaviour and modelling capabilities of sta-

tistical models is to use synthetic data sets. Recently, this has been also studied in

the framework of Soft Computing.3,4

Here we propose the use of synthetic data sets in order to empirically validate

the usefulness of the aforementioned test. The idea behind the experiment is to

simulate two sets of series: one set obtained from a model with autocorrelated

residuals and another with non-autocorrelated residuals. Then, apply the test over

these sets of series to compare the obtained results with the expected outcome of

each simulation.

In order to do so, we can define a fuzzy rule-based model with the following

rules:

If yt−1 is A11 and yt−2 is A12Then yt = b′

1xt = 0.2 + 0.3yt−1 − 0.9yt−2

If yt−1 is A21 and yt−2 is A22Then yt = b′

2xt = −0.5− 1.2yt−1 + 0.7yt−2 (14)

In any case yt = b′

3xt = 0.5 + 0.8yt−1 − 0.2yt−2 .

This model can also be written as:

yt = (0.2 + 0.3yt−1 − 0.9yt−2)× f(zt;ψ1)

+ (−0.5− 1.2yt−1 + 0.7yt−2)× f(zt;ψ2)

+ 0.5 + 0.8yt−1 − 0.2yt−2 + εt , (15)

where the membership functions are logistic (as in Eq. (6)) with parameters

ψ1 = [γ1,ω1, c1] = [8.49, (0.7071,−0.7071),−1.0607] ,

ψ2 = [γ2,ω2, c2] = [8.49, (0.7071,−0.7071), 1.0607] .

Note that this model has three fuzzy rules, being the third rule a default rule, i.e. a

rule which applies to the whole input space as its antecedent membership function

is always equal to 1.
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Table 1. Results of the F version of the test at the 0.05 signif-

icance level for remaining autocorrelation of the residuals using
the synthetic series generated by equation (14) with (16).

ρ r accept H0 reject H0 % correct average p-value

0.0 1 192 8 96 0.5313
2 191 9 95.5 0.5032
3 190 10 95 0.4806
4 188 12 94 0.4879
5 189 11 94.5 0.4849
6 193 7 96.5 0.4945
7 193 7 96.5 0.5056

0.2 1 7 193 96.5 0.0083
2 12 188 94 0.0135
3 17 183 91.5 0.0205
4 22 178 89 0.0265
5 30 170 85 0.0332
6 40 160 80 0.0413
7 39 161 80.5 0.0483

Now, we can define the residuals of this model as a first order autoregressive

process:

εt = ρεt−1 + ut, (16)

where ρ is a parameter defining the autoregression and ut ∼ NID(0, σ2). Through-

out this experiment σ = 0.2, and in order to ensure that εt is stationary, we will

take |ρ| < 1.

By using model (14) with (16) as a data generating process, we can simulate 200

artificial time series with no autocorrelation in the residuals (ρ = 0) and 200 series

with some autocorrelation in the residuals (ρ = 0.2). Figure 1 shows an example of

one of the latter. The complexity of these synthetic series is known beforehand, so

we can use them to check the properties of the test. In order to do so, we build and

train a fuzzy rule-based model for each of those series. The results of the application

of the F version of the test at a significance level of 0.05 to the residuals of each

model are shown in Table 1.

In this Table we can see how the test is very powerful against type I errors

(rejecting the null hypothesis when it is actually true). The first seven rows of the

table show the results of the test over the 200 series generated without autocorrela-

tion in the residuals (ρ = 0), for the first seven autocorrelation orders (r = 1, . . . , 7).

We can see that the null hypothesis was properly accepted in over 94% of the cases

for a significance value of 0.05, which states the robustness of the test.

The second part of the Table (rows 8 to 14) show the results of the test when

the series did contain some autocorrelation in the residuals (ρ = 0.2). As we can

see, the test shows also good power against type II errors (not rejecting the null

hypothesis when it is actually false). For the different values of the autocorrelation

order r, the test properly rejects the null hypothesis in over 80% of the cases.
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It is important to note that the power of the test is lower for higher values of

r, and this is coherent with the fact that the simulated series were obtained using

a first order residual autocorrelation. As expected, the influence of the first order

autocorrelation is weaker for higher values of r. In general, the power of the test

decreases with r because for first order models the autocorrelation of lag r is |ρ|r,
i.e., exponentially decreasing for |ρ| < 1.

As usual in hypothesis testing, when the models are closer to the null hypothesis,

the discrimination power of the test is reduced. In our case, when the absolute values

of ρ approach 0, there is less autocorrelation in the residuals and we can expect a

reduction on the power of the test. In order to study this phenomenon, we might

be interested in seeing how the test behaves for values of |ρ| close to zero.

In Fig. 2, we can see the effect of |ρ| on the power of the test. We repeated

the simulations using four different values of ρ, and the graphs show the power

(in percentage of proper rejections of the null hypothesis) for different values of

the significance and for different autocorrelation orders. When ρ = 0.06 (top left

graph), the test does not show a big power, with a maximum of 40% of rejections

of the null hypothesis for a significance of 0.2. However, we can see that for a value

of ρ = 0.4, the test has full power, as it already rejects the null hypothesis for all

values of r at a level of significance as high as 0.2.

5. Application Examples

After the Monte Carlo experiments, the good properties of the test are clear and we

turn our attention to some real world applications. In order to show the usefulness

of the test, we chose some widely studied series for which the autoregressive order is

known either by experience or by definition. In each case, we proceeded by building

a model and applying the test to its residual series.

5.1. Annual sunspot numbers

One of the most common benchmarking series is the annual sunspot numbers for

the period 1700-1998.36 To remain coherent with previous studies,14,18,30 we used

the transformed data yt = 2
(√

1 +Nt − 1
)

where Nt is the registered number of

sunspots at year t.

We used an FRBM to model this series, and we first chose to use 4 vari-

ables in the consequent, corresponding to the first four lags of the series, xt =

(yt−1, yt−2, yt−3, yt−4), and only one antecedent variable, zt = yt−1, noting this

model as M1. When applying the linearity test3 we rejected the hypothesis of lin-

earity against a fuzzy rule-based model, so we proceeded to build our model using

the statistical identification and estimation procedure suggested for neural networks

by Medeiros et al., 2006,26 which resulted in a very simple model with two rules
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Fig. 2. Power of the test for different values of ρ with respect to the significance level. On each
graph, the different lines correspond to different values of r (as shown in the legend of the fourth
graph).

and a single linguistic label A:

If yt−1 is A Then yt = −0.1125 + 0.1182yt−1 − 0.4028yt−2

+0.7967yt−3 − 0.2057yt−4

In any case yt = 0.2034− 0.1166yt−1 + 1.4805yt−2

− 0.8619yt−3 − 0.2058yt−4 . (17)

The parameters of the logistic firing strength function were determined to be ψ =

(γ, ω, c) = (20.9, 1, 0.0839).

Once model M1 was trained, we studied the residuals by using the test for

remaining autocorrelation. The null hypothesis was rejected for r = 1, . . . , 8, which

indicates that the residuals are still autocorrelated and hence that this model is

failing to capture all the information available in the series. The first column of

Table 2 shows the p-values obtained by the test for M1. As we can see, the rejections

are very strong in the sense that they were associated to small p-values.

In an attempt to reduce the remaining autocorrelation of the residuals, we de-

cided to include more lagged variables in the consequent of the rules. After testing
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Table 2. For the annual sunspot numbers, p-values of the test for remaining autocorrelation of

the residuals and root mean squared error for models with different orders of lagged variables.
Bold faces indicate acceptation of the null hypothesis at a 0.05 significance level. Last row shows
the root mean squared error for each model.

p-value

model M1 model M2 model M3 model M4

r = 1 0.0084 0.0025 3.0628e-05 0.2060

r = 2 0.0055 0.0014 0.0001 0.4168

r = 3 0.0309 0.0021 0.0004 0.5768

r = 4 0.0001 5.4906e-06 0.0008 0.7373

r = 5 1.7193e-05 1.0024e-06 0.0028 0.6727

r = 6 4.0849e-05 6.5735e-06 0.0079 0.3452

r = 7 1.1870e-05 2.6182e-07 0.0007 0.0129

r = 8 3.0858e-06 1.4268e-07 0.0001 0.0028

RMSE 4.7421 4.6966 4.3890 4.0703

for linearity, we trained new models which used time lags up to yt−5 (model M2)

and yt−6 (model M3) in xt, but the test kept indicating that remaining autocor-

relation was present. See columns 3 and 4 of Table 2 for the p-values, which were

even smaller.

However, when including the lagged variables up to the seventh lag in the con-

sequent of the rules (model M4), the results of the test changed significatively. The

null hypothesis was then accepted for r ≤ 7, which indicated that the model, when

using 7 lagged variables, succeeds in capturing all the autocorrelation information

present in the data. The p-values are shown in the fifth column of Table 2, where

we can see that they are clearly different from the previous ones. The findings of

the test are also in agreement with the Root Mean Squared Errors (RMSE) showed

in the last row of Table 2.

This is coherent with the findings of Medeiros and Veiga, 2005,30 who through

the use of information criteria proposed to select the first seven lags as input vari-

ables for this series. This is a further validation of the performance of our method.

5.2. Canadian lynx series

The second series that we used is also known as a standard benchmarking problem,

corresponding to the 10-based logarithm of the number of lynx trapped in a par-

ticular zone of Northwest Canada from 1821 to 1934. It has been widely studied in

the past.

A first time series model of the Canadian lynx data was fitted by P.A. P.

Moran in 1953.31 He proposed an AR(2) model considering the sample correlogram.

Second order autoregression was also chosen by Campbell, 19777 in a harmonic-

autoregressive combined model and by Medeiros and Veiga, 200530 for the NC-

STAR model. Here we fix the order of the linear consequents of our model also to

2, i.e., we will use two lagged variables for input.
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Table 3. For the Canadian lynx series, p-values of the test for remaining autocorrelation of the

residuals and root mean squared error for different orders of lagged variables. Bold faces indicate
acceptation of the null hypothesis at a 0.05 significance level and the last row shows the root mean
squared error of each model.

p-value

2nd order 3rd order

r = 1 0.0162 0.3312

r = 2 0.0221 0.1227

r = 3 0.0427 0.0756

r = 4 0.0309 0.1226

r = 5 0.0625 0.0838

r = 6 0.1240 0.0799

r = 7 0.1516 0.0663

r = 8 0.1586 0.0780

RMSE 4.7421 4.6966

With xt = zt = (yt−1, yt−2) as inputs, the linearity test3 recommended the use

of an FRBM, rejecting the hypothesis of linearity. We built and trained the model,

and applied the remaining autocorrelation test to its residuals.

Through the observation of Table 3, the null hypothesis of absence of remaining

autocorrelation in the residuals was rejected for 2nd order models of r = 1, 2, 3, 4, 5.

This indicates that the model was failing to capture the autoregressive structure of

the series.

In the spirit of the preceding example, we added yt−3 to the model. In this case

we added the new variable both to zt (the antecedent) and to xt (the consequent),

resulting in the following rule base:

If yt−1 is A1 and yt−2 is A2 and yt−3 is A3

Then yt = −0.1125 + 0.1182yt−1 − 0.4028yt−2 + 0.7967yt−3

In any case yt = 0.2034− 0.1166yt−1 + 1.4805yt−2 − 0.8619yt−3

with ψ = [γ,ω, c] = [98.13, (0.6070,−0.1805, 0.7738), 3.73].

For such an FRBM, the test does not reject the null hypothesis for all the values

of r, as we can see in the second column of Table 3. Hence we assume that by

including yt−4 the model is capable of capturing all the autoregressive information

contained in the series.

5.3. Mackey-Glass chaotic series

The Mackey-Glass series, based on the Mackey-Glass differential equation25 is

widely regarded as a benchmark for comparing the generalization ability of dif-

ferent methods.1,9,19,20,24 This series is a chaotic time series generated from the

following time-delay ordinary differential equation:

dyt
dt

= −byt + a
yt−τ

1 + y10t−τ

. (18)
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Following the majority of studies, the series has been generated using a fixed

set of values for the parameters: a = 0.2, b = 0.1 and τ = 17. Usually, the task

is to predict the value of the time series at point yt+P from the lagged values

xt = (yt, yt−6, yt−12, yt−18).

Now, we assumed that we could model this series taking into account just one

variable in the antecedent of the rules, and we took it to be zt = yt. The linearity

test indicates that indeed we need an FRBM to model this series, and the afore-

mentioned identification and estimation algorithm proposed a model with, again, 2

fuzzy rules:

If yt is Aψ Then yt = b′

1xt

In any case yt = b′

2xt

(19)

where

b1 = (−0.2365, 0.3444,−0.2238, 0.9367, 0.8276)

b2 = (0.1265, 0.6533, 0.3387,−0.6337, 0.4476) .

For this model, the test for remaining autocorrelation in the residuals produced

the p-values shown in Table 4. As we can see, the test indicates that there is no first

order autocorrelation in the residuals, but this is not the case for higher orders, as

for 2 ≤ r ≤ 8 the small p-values indicate strong rejections of the null. This model

is clearly insufficiently complex as to be used for this series.

As the lagged input structure of the consequents is fixed by the definition of the

model, in order to build a model which could capture the autoregressive information

of the series, we added some more elements to the antecedents of the rules, making

zt = (yt, yt−6, yt−12, yt−18). The new model obtained used the following rules:

If yt is Aψ1
and yt−6 is Aψ1

and yt−12 is Aψ1
and yt−18 is Aψ1

Then yt = b′

1xt

If yt is Aψ2
and yt−6 is Aψ2

and yt−12 is Aψ2
and yt−18 is Aψ2

Then yt = b′

2xt

In any case yt = b′

3xt (20)

with the consequent parameters

b1 = (0.7134,−0.7593, 0.2231,−1.6839, 0.9724)

b2 = (−0.3172,−0.2163, 0.3228,−0.1707,−1.2815)

b3 = (0.2809,−0.3744, 0.2153,−1.1782,−2.0252464)

and the antecedent parameters ψ1 = (25.02, (0.55,−0.46,−0.68,−0.09),−1.95) and

ψ2 = (7.34, (0.07, 0.79,−0.59,−0.12), 0.09).

Column 2 of Table 4 show the p-values of the remaining autocorrelation test

applied to the residuals of this FRBM. As we can see, the null hypothesis is accepted

in all the cases, so, again, we conclude that this model succeeds in properly capturing

the autoregressive component of this series.
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Table 4. For the Mackey-Glass series, p-values of the test for remaining autocorrelation of the

residuals and root mean squared error for the two considered models. Bold faces indicate accep-
tation of the null hypothesis at a 0.05 significance level and the last row shows the root mean
squared error of each model.

p-value

model (19) model (20)

r = 1 0.9835 0.3923

r = 2 0.0039 0.5132

r = 3 0.0001 0.6683

r = 4 0.0001 0.6052

r = 5 0.0003 0.5830

r = 6 3.2395e-05 0.6305

r = 7 5.2512e-06 0.7870

r = 8 0.0 0.8791

RMSE 0.1750 0.0498

These examples show how the test can be effectively used in the common appli-

cation of FRBMs to time series forecasting. When facing a real world series using

an FRBM, investigators should apply the test immediately after finishing the train-

ing process, to verify that the basic assumption of their model is effectively being

observed. In case that the test rejected the null hypothesis, they should restart the

modelling process.

These experiments were carried out using the publicly available open

source implementation of this test contained in the R package tsDyn32

http://cran.r-project.org/web/packages/tsDyn/index.html.

6. Conclusions

In this paper we have shown how to apply hypothesis testing against linear inde-

pendence of the residuals of an FRBM, when used in the framework of time series

modelling and analysis.

The application of the proposed test allows the practitioner to gain a deeper

insight about the goodness of his/her model, and to discard it if it fails to capture the

underlying autoregressive information of the data. The use of the test complements

the use of other common error measures as it gives a different type of information

about the performance of a given model.

Whereas time series prediction can be considered as a special case of regression,

the extension of the results presented in this paper to any regression problem must

first solve some open issues as the meaning of the autocorrelation of the residuals

if the data is not chronologically ordered. The same holds for the extension to

the classification problem, which is nonetheless very different to the regression or

autoregression problem.

With respect to the applicability of the test to other computational intelligence

methodologies, as long as the asymptotic distribution of the model is known, and

http://cran.r-project.org/web/packages/tsDyn/index.html
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as long as the model is properly specified, it should be possible. In fact, the works

by Medeiros et al.26–29 have proved that Neural Networks can be dealt with in the

LM testing framework.

This test is an important result which is framed in an on-going effort to provide

the fuzzy rule-based modelling of time series with a statistically sound background

and with useful statistical methods and procedures.
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