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Abstract. This contribution proposes a Genetic Algorithm for jointly
performing a feature selection and granularity learning for Fuzzy Rule-
Based Classification Systems in the scenario of data-sets with a high
imbalance degree. We refer to imbalanced data-sets when the class dis-
tribution is not uniform, a situation that it is present in many real ap-
plication areas. The aim of this work is to get more compact and precise
models by selecting the adequate variables and adapting the number of
fuzzy labels for each problem.
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1 Introduction

The problem of imbalanced data-sets [1] for binary classification occurs when
the number of instances for each class are very different between them, and
usually the less representative class is the one which has more interest from
the point of view of the learning task. We develop an experimental analysis
in the context of imbalance classification for binary data-sets when the class
imbalance ratio is high. In this study, we will make use of linguistic Fuzzy Rule
Based Classification Systems (FRBCSs), a very useful tool in the framework
of computational intelligence, since they provide a very interpretable model for
the end user [2]. The good behavior of FRBCS when dealing with imbalanced
data-sets has been recently analysed in [3].

An FRBCS presents two main components: the Inference System and the
Knowledge Base (KB). The KB is composed of the Rule Base (RB) constituted
by the collection of fuzzy rules, and of the Data Base (DB), containing the mem-
bership functions of the fuzzy partitions associated to the linguistic variables.
The composition of the KB of an FRBCS directly depends on the problem being
solved. If there is no expert information about the problem under solving, an
automatic learning process must be used to derive the KB from examples.
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In many classification problems, a large number of features can originate RBs
with a high number of rules, thus presenting a low degree of interpretability and
a possible overfitting (the error over the training data set is very low but the
FRBCS present a significative decrease on the prediction ability). This problem
can be tackled from a double perspective: a reduction of the rule set, minimising
the number of fuzzy rules included in the RB or a feature selection process that
reduces the number of features used by the FRBCS. Notice that, for high di-
mensional problems and problems where a high number of instances is available,
it is difficult for rule reduction approaches to get small rule sets, and therefore
the system comprehensibility and interpretability may not be as good as desired.
For high dimensionality classification problems, a feature selection process, that
determines the most relevant variables before or during the FRBCS inductive
learning process, must be considered. It increases the efficiency and accuracy of
the learning and classification stages.

The number of labels per linguistic variable (granularity) is an information
that has not been considered to be relevant for the majority of FRBCS learning
methods. However, the fuzzy partition granularity of a linguistic variable can
be viewed as a sort of context information with a significative influence in the
FRBCS behavior. Considering a specific label set for a variable, some labels can
result irrelevant, that is, they can contribute nothing and even can cause con-
fusion. In other cases, it would be necessary to add new labels to appropriately
differentiate the values of the variable. In a previous work [4], we analyse the
influence of granularity learning in the performance of FRBCSs for imbalanced
data sets, and the results obtained show that is possible an significant improve-
ment in the classification ability only by learning an adequate number of labels
per variable although the complexity of the model was lightly increased.

Our objective is to propose a genetic learning process to improve the predic-
tion ability of the FRBCSs for imbalanced data-sets joint with a significative
reduction of the model complexity in order to increase the FRBCS interpretabi-
lity. Our proposal uses a Genetic Algorithm (GA) for jointly perform a feature
selection and a granularity learning, and considers a classical FRBCS learning
method to derive the rule base, the Chi et al.’s approach [5]. In order to show the
influence of choosing a good set of features and an adequate granularity level,
we compare the results obtained with the ones obtained by Chi et al.’s method
with all the variables selected with and without an adequate granularity level.
We also want to check the performance of our method compared with a non-
FRBCS classification model, C4.5 [6], a decision tree algorithm that has been
used as a reference in the imbalanced data-sets field [7].

We have selected a large collection of data-sets with high imbalance from UCI
repository [8] for developing our experimental analysis. In order to deal with the
problem of imbalanced data-sets we will make use of a preprocessing technique,
the “Synthetic Minority Over-sampling Technique” (SMOTE) [9], to balance the
distribution of training examples in both classes. Furthermore, we will perform
a statistical study using non-parametric tests [10] to find significant differences
among the obtained results.
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This contribution is organized as follows. First, Section 2 introduces the prob-
lem of imbalanced data-sets, describing its features, how to deal with this prob-
lem and the metric we have employed in this context. Next, in Section 3 we will
expose the characteristics of our proposal, a GA for feature selection and granu-
larity learning. Section 4 contains the experimental study. Finally, in Section 5,
some conclusions will be pointed out.

2 Imbalanced Data-Sets in Classification

Learning from imbalanced data is an important topic that has recently appeared
in the Data Mining community [1]. This problem is very representative since it
appears in a variety of real-world applications including, but not limited to,
medical applications, finance, telecommunications, biology and so on. We refer
to imbalanced data when the class distribution is not uniform. In this situation,
the number of examples that represents one of the classes of the data-set (usually
the concept of interest) is much lower than that of the other classes. We will use
the imbalance ratio (IR) [11] as a threshold to categorize the different imbalanced
scenarios, which is defined as the ratio of the number of instances of the majority
class and the minority class. We consider that a data-set presents a high degree
of imbalance when its IR is higher than 9 (less than 10% of positive instances).

Standard classifier algorithms have a bias towards the majority class, since
the rules that predicts the higher number of examples are positively weighted
during the learning process in favour of the accuracy metric. Consequently, the
instances that belongs to the minority class are misclassified more often than
those belonging to the majority class [12].

In a previous work on this topic [3], we analysed the cooperation of some pre-
processing methods with FRBCSs, showing a good behaviour for the oversam-
pling methods, specially in the case of the SMOTE methodology [9]. According
to this, we will employ in this contribution the SMOTE algorithm in order to
deal with imbalanced data-sets. In short, its main idea is to form new minority
class examples by interpolating between several minority class examples that lie
together.

Most of proposals for automatic learning of classifiers use some kind of accu-
racy measure like the classification percentage over the example set. However,
these measures can lead to erroneous conclusions working with imbalanced data-
sets since it doesn’t take into account the proportion of examples for each class.
Therefore, in this work we use the Area Under the Curve (AUC) metric [13],
which can be defined as (1+TPrate−FPrate)/2, where TPrate is the percentage
of positive cases correctly classified as belonging to the positive class and FPrate

is the percentage of negative cases misclassified as belonging to the positive class.

3 Genetic Algorithm for the Data Base Learning

In this section, we propose an standard generational GA for the DB that allows
us to select a set of variables (feature selection) and learn an adequate number
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of labels for each selected variable (granularity learning). Once the granularity
for each selected feature are determined, the DB is built. Uniform partitions
with triangular membership functions are considered due to its simplicity. Next,
we use a quick method that derives the fuzzy classification rules and then the
chromosome can be evaluated. The RB derivation algorithm used in this work
is the method proposed in [5], that we have called the Chi et al.’s method.

We denote our proposal as GA-FS-GL (Genetic Algorithm for Feature Selec-
tion and Granularity Learning). The main purpose of GA-FS-GL is to obtain
FRBCSs with good accuracy and reduced complexity taking the feature selection
and granularity learning as a base. Unfortunately, FRBCSs with good perfor-
mance have a high number of rules, thus presenting a low degree of readability.
On the other hand, as mentioned before, the KB design methods sometimes lead
to a certain overfitting to the training data-set used for the learning process. In
order to avoid that problem, our genetic process try to design a compact and
interpretable KB by penalizing FRBCSs with high number of selected variables
and/or high granularity average as it will be explained in this Section. Next, we
describe the main components of GA-FS-GL.

Encoding the DB. For a classification problem with N variables, each chro-
mosome will be composed of two parts to encode the relevant variables and the
number of linguistic terms for variable (i.e. the granularity):

– Relevant variables (C1): the selected features are stored in a binary coded ar-
ray of length N . In this array, an 1 indicates that the correspondent variable
is selected for the FRBCS.

– Granularity level (C2): the number of labels per variable is stored in an
integer array of length N. In this contribution, the possible values considered
are taken from the set {2, . . . , 7}.

If vi is the bit that represents whether the variable i is selected and gi is the
granularity of variable i, a representation of the chromosome is shown next:

C1 = (v1, v2, . . . , vN ) C2 = (g1, g2, . . . , gN) C = C1C2

Initial Gene Pool. The initial population is composed of six groups with a
different number of selected variables. Next, we describe its generation:

– In the first group all the chromosomes have all the features selected. It
is composed of two parts. In the first part all the chromosomes have the
same granularity in all its variables and it is composed of g chromosomes,
with g being the cardinality of the significant term set, in our case g = 6,
corresponding to the six possibilities for the number of labels, 2 . . . 7. For each
granularity level, one individual is created. The second part is composed of
10 chromosomes and the granularity level is randomly selected.

– The next four groups have the same structure than the first group but each
one of them with a different percentage of randomly selected variables (75%,
50%, 25% and 10%). So, each group has g+10 chromosomes (16 in our case).
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– The last group is composed for the remaining chromosomes, and all of their
components are randomly selected.

The minimum number of individuals is the sum of the chromosomes of the five
first groups: (g + 10) × 5.

Evaluating the Chromosome. There are three steps that must be done to
evaluate each chromosome:

– Generate the DB using the information contained in the chromosome. For
all the selected variables (vi = 1), a uniform fuzzy partition with triangu-
lar membership functions is built considering the number of labels of that
variable (gi).

– Generate the RB by running the the Chi et al.’s method.
– Calculate the value of the evaluation function: The usual way to proceed in

this type of genetic learning is to choose a kind of accuracy measure over the
training data-set, like the AUC metric. However, as mentioned before, we will
lightly penalize FRBCSs with high number of selected variables and/or high
granularity levels in order to avoid the possible overfitting, thus improving
the generalization capability of the final FRBCS. To do that, once the RB
has been generated and its AUC over the training set has been calculated,
the fitness function to be minimized is:

FC = ω1 · (1 − AUC) + ω2 · (Ng/N)

being Ng the sum of the granularity levels of all the selected variables. In
order to normalize these two values, we calculate ω2 taking two values as
a base: the AUC of the FRBCS obtained with the RB generation method
considering the DB with all the variables selected, the maximum number of
labels (max g) per variable and uniform fuzzy partitions:

ω2 = αω2 ·
AUCmax g

max g

with αω2 being a weighting percentage.

Genetic Operators

– Selection: we will employ the tournament selection with k = 2, in which
two chromosomes are selected at random from the population, and the one
with highest fitness is taken to be included in the next population, after the
application of the genetic operators.

– Crossover: the crossover works in the two parts of the chromosome at the
same time. Therefore, an standard crossover operator is applied over C1

and C2. This operator performs as follows: a crossover point p is randomly
generated in C1 and the two parents are crossed at the p-th variable in C1

(the possible values for p are {2, . . . , N}). The crossover is developed this way
in the two chromosome parts, C1 and C2, thereby producing two meaningful
descendants.
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– Mutation: two different operators are used, each one of them acting on
different chromosome parts. A brief description of them is given below:
• Mutation on C1: As this part of the chromosome is binary coded, a simple

binary mutation is developed, flipping the value of the gene.
• Mutation on C2: The mutation operator selected for C2 performs a slight

change in the selected variable. Once a granularity level is randomly
selected to be muted, a local modification is developed by changing the
number of labels of the variable to the immediately upper or lower value
(the decision is made at random). When the value to be changed is the
lowest (2) or highest one (7), the only possible change is developed.

4 Experimental Study

We will study the performance of GA-FS-GL employing a large collection of
imbalanced data-sets with a high imbalance ratio (IR > 9). Specifically, we
have considered twenty-two data-sets from UCI repository [8] with different IR,
as shown in Table 1, where we denote the number of examples (#Ex.), number
of attributes (#Atts.), class name of each class (minority and majority), class
attribute distribution and IR. This table is in ascendant order according to the
IR. Multi-class data-sets are modified to obtain two-class imbalanced problems,
defining the joint of one or more classes as positive and the joint of one or more
classes as negative. In order to reduce the effect of imbalance, we will employ
the SMOTE preprocessing method [9] for all our experiments, considering only
the 1-nearest neighbour to generate the synthetic samples, and balancing both
classes to the 50% distribution.

We will analyse the influence of feature selection and granularity learning by
means of a comparison between the performance of GA-FS-GL and two FRBCS
models obtained by Chi et al.’s method with all the variables selected:

– The original Chi et al.’s method, that needs of the existence of a previous
definition for the DB, normally uniform fuzzy partitions with the same num-
ber of labels in all the variables. So, it is necessary to choose a number of
labels. The usual values employed for Chi et al.’s approach in the specialized
literature are 3 and 5 labels per variable. Previous experiments [4] showed
that the FRBCSs with three labels for variable obtain better results in pre-
diction ability (less value in AUC for the test data set) and interpretability
(less number of rules) so we choose this granularity level for the comparison.
In the latter, we will refer that method as G3-Chi.

– The method proposed in [4] (denoted GA-GL), that uses a GA for granularity
learning and the Chi et al.’s method to derive the RB.

As mentioned before, we also compare the results of GA-FS-GL with C4.5 [6],
a method of reference in the field of classification with imbalanced data-sets
[7]. The configuration for the FRBCSs approaches, GA-FS-GL, GA-GL and
Chi et al.’s, is presented below. This parameter selection has been carried out
according to the results achieved by the Chi et al.’s method in our former studies
on imbalanced data-sets [3]:
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Table 1. Summary Description for Imbalanced Data-Sets

Data-set #Ex. #Atts. Class (min.; maj.) %Class(min., maj.) IR
Yeast2vs4 514 8 (cyt; me2) (9.92, 90.08) 9.08
Yeast05679vs4 528 8 (me2; mit,me3,exc,vac,erl) (9.66, 90.34) 9.35
Vowel0 988 13 (hid; remainder) (9.01, 90.99) 10.10
Glass016vs2 192 9 (ve-win-float-proc; build-win-float-proc, (8.89, 91.11) 10.29

build-win-non float-proc,headlamps)
Glass2 214 9 (Ve-win-float-proc; remainder) (8.78, 91.22) 10.39
Ecoli4 336 7 (om; remainder) (6.74, 93.26) 13.84
Yeast1vs7 459 8 (vac; nuc) (6.72, 93.28) 13.87
Shuttle0vs4 1829 9 (Rad Flow; Bypass) (6.72, 93.28) 13.87
Glass4 214 9 (containers; remainder) (6.07, 93.93) 15.47
Page-blocks13vs2 472 10 (graphic; horiz.line,picture) (5.93, 94.07) 15.85
Abalone9vs18 731 8 (18; 9) (5.65, 94.25) 16.68
Glass016vs5 184 9 (tableware; build-win-float-proc, (4.89, 95.11) 19.44

build-win-non float-proc,headlamps)
Shuttle2vs4 129 9 (Fpv Open; Bypass) (4.65, 95.35) 20.5
Yeast1458vs7 693 8 (vac; nuc,me2,me3,pox) (4.33, 95.67) 22.10
Glass5 214 9 (tableware; remainder) (4.20, 95.80) 22.81
Yeast2vs8 482 8 (pox; cyt) (4.15, 95.85) 23.10
Yeast4 1484 8 (me2; remainder) (3.43, 96.57) 28.41
Yeast1289vs7 947 8 (vac; nuc,cyt,pox,erl) (3.17, 96.83) 30.56
Yeast5 1484 8 (me1; remainder) (2.96, 97.04) 32.78
Ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49, 97.51) 39.15
Yeast6 1484 8 (exc; remainder) (2.49, 97.51) 39.15
Abalone19 4174 8 (19; remainder) (0.77, 99.23) 128.87

– Conjunction operator to compute the compatibility degree of the example
with the antecedent of the rule: Product T-norm.

– Rule Weight: Penalized Certainty Factor [14].
– Conjunction operator between the compatibility degree and the rule weight:

Product T-norm.
– Fuzzy Reasoning Method: Winning Rule.

To develop the different experiments we consider a 5-folder cross-validation
model, i.e., 5 random partitions of data with a 20%, and the combination of 4 of
them (80%) as training and the remaining one as test. Since a GA is a probabilis-
tic method, three runs with different seeds for the pseudo-random sequence are
made for each data partition. For each data-set we consider the average results of
the five partitions per three executions. Furthermore, Wilcoxon’s Signed-Ranks
Test [15] is used for statistical comparison of our experimental results. The spe-
cific parameters setting for the GA of GA-FS-GL is listed below, being N the
number of variables:

-Number of evaluations: 500 · N -Population Size: 100 individuals
-Crossover Probability Pc : 0.6 -Mutation Probability Pm : 0.2
-Parameters of the evaluation function (Section 3): (ω1 : 0.7 , αω2 : 0.3)

Table 2 shows the results in performance (using the AUC metric) for GA-FS-GL
and the algorithms employed for comparison, that is, G3-Chi, GA-GL and C4.5,
being AUCTr the AUC over the training data-set and AUCTst the AUC over
the test data-set. The final line of the table shows the mean of the number of
rules (NR) of the classifiers.
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Table 2. Detailed results table for the problems considered

Data-set G3-Chi GA-GL GA-FS-GL C4.5
AUCT r AUCT st AUCT r AUCT st AUCT r AUCT st AUCT r AUCT st

Yeast2vs4 89.68 87.36 93.79 90.84 94.38 94.52 98.14 85.88
Yeast05679vs4 82.65 79.17 86.11 81.78 83.37 78.97 95.26 76.02
Vowel0 98.57 98.39 99.59 99.07 96.58 96.49 99.67 94.94
Glass016vs2 62.71 54.17 85.96 60.54 78.23 56.07 97.16 60.62
Glass2 66.54 55.30 83.71 57.42 79.42 56.88 95.71 54.24
Ecoli4 94.06 91.51 98.14 90.90 93.20 92.31 97.69 83.10
Yeast1vs7 82.00 80.63 82.43 75.79 77.37 70.75 93.51 70.03
Shuttle0vs4 100.00 99.12 100.00 99.42 100.00 99.97 99.99 99.97
Glass4 95.27 85.70 98.71 87.92 95.02 85.20 98.44 85.08
Page-Blocks13vs4 93.68 92.05 99.59 99.10 98.25 96.99 99.75 99.55
Abalone9vs18 70.23 64.70 82.38 73.68 78.63 68.18 95.31 62.15
Glass016vs5 90.57 79.71 98.21 85.43 95.50 84.57 99.21 81.29
Shuttle2vs4 95.00 90.78 99.73 94.25 99.09 98.78 99.90 99.17
Yeast1458vs7 71.25 64.65 85.69 65.47 76.00 74.67 91.58 53.67
Glass5 94.33 83.17 98.03 79.92 94.57 79.15 99.76 88.29
Yeast2vs8 78.61 77.28 84.57 79.32 81.69 79.46 91.25 80.66
Yeast4 83.58 83.15 86.90 80.66 84.47 80.31 91.01 70.04
Yeast1289vs7 74.70 77.12 80.27 70.98 76.00 74.67 94.65 68.32
Yeast5 94.68 93.58 96.48 94.73 95.58 93.54 97.77 92.33
Ecoli0137vs26 93.96 81.90 97.69 81.36 97.22 80.99 96.78 81.36
Yeast6 88.48 88.09 91.09 86.06 89.37 87.01 92.42 82.80
Abalone19 71.44 63.94 80.28 69.03 77.40 73.16 85.44 52.02
Mean 85.09 80.52 91.33 81.98 88.39 81.42 95.93 78.25
NR mean 68.67 82.36 37.31 22.45

As it can be observed, the performance obtained by GA-FS-GL is higher than
the one for G3-Chi, both in AUCTr and AUCTst, showing the significative in-
fluence of the feature selection and granularity level in the behaviour of the
classifier. GA-FS-GL obtain results very similar to GA-GL in AUC (Table 3
shows no significative differences between them in AUCTst) but the number of
rules is very much lower in GA-FS-GL by the feature selection process, reduc-
ing the complexity of the model. Therefore, the interpretability of the FRBCSs
generated by GA-FS-GL is greater than the other methods. Furthermore, GA-
FS-GL present better results than C4.5 in AUCTst. This situation is represented
statistically by means of a Wilcoxon test (Table 3, with R+ corresponds to GA-
FS-GL and R− to the other method).

Table 3. Wilcoxon test to compare the methods according to their performance

Comparison R+ R− p-value
GA-FS-GL vs. G3-Chi 150.5 102.5 0.436
GA-FS-GL vs. GA-GL 95.0 158.0 0.306
GA-FS-GL vs. C4.5 198.5 54.5 0.019

GA-FS-GL obtain precise and interpretable models by selecting a reduced set
of features and finding an appropriate granularity level in each selected variable.
Thus, we show in Table 4 the mean of selected variables (SV) in the first column.
The remaining columns show two values for each feature of the problem, the first
is the selection ratio of the variable, that is, the relation between the number of
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Table 4. Mean of number of selected variables and labels learned by GA-FS-GL

Variables
Data-set SV 1 2 3 4 5 6 7 8 9 10
Yeast2vs4 2.0 1.0/3.0 .00/0.0 1.0/4.0 .00/0.0 .00/0.0 .00/0.0 .00/0.0 .00/0.0 - -
Yeast05679vs4 2.8 1.0/2.4 .40/2.5 .60/2.0 .00/0.0 .80/2.0 .00/0.0 .00/0.0 .00/0.0 - -
Glass016vs2 2.6 .40/4.5 .20/3.0 .00/0.0 .60/5.0 .60/5.7 .40/4.0 .20/7.0 .00/0.0 .20/3.0 -
Glass2 2.6 .40/5.0 .00/0.0 .40/2.0 .40/4.5 1.0/4.6 .00/0.0 .00/0.0 .00/0.0 .40/6.5 -
Ecoli4 2.0 .00/0.0 .60/2.0 .00/0.0 .00/0.0 1.0/3.0 .20/3.0 .20/2.0 - - -
Shuttle0vs4 2.0 .20/3.0 .20/4.0 .20/3.0 .00/0.0 .00/0.0 .20/3.0 .80/3.8 .40/4.5 .00/0.0 -
Yeast1vs7 2.2 .60/2.7 .00/0.0 1.0/2.6 .00/0.0 .00/0.0 .00/0.0 .20/2.0 .40/3.5 - -
Glass4 2.4 .00/0.0 .00/0.0 .40/4.0 .60/3.7 .20/2.0 .00/0.0 .60/3.0 .60/3.3 .00/0.0 -
Pageblocks13vs4 2.0 1.0/4.4 .00/0.0 .00/0.0 .00/0.0 1.0/4.4 .00/0.0 .00/0.0 .00/0.0 .00/0.0 .00/0.0
Abalone9vs18 2.2 .40/2.0 .00/0.0 .00/0.0 .20/2.0 .00/0.0 .60/6.7 .00/0.0 1.0/5.8 - -
Glass016vs5 2.8 .20/6.0 .40/3.0 1.0/3.6 .20/2.0 .00/0.0 .00/0.0 .20/3.0 .60/3.3 .20/3.0 -
Shuttle2vs4 2.8 .60/3.0 .00/0.0 1.0/3.0 .00/0.0 .00/0.0 .00/0.0 1.0/2.2 .00/0.0 .20/3.0 -
Yeast1458vs7 4.0 .60/5.3 .80/5.0 1.0/4.6 .60/5.3 .00/0.0 .00/0.0 .00/0.0 1.0/3.2 - -
Glass6 2.4 .00/0.0 .40/3.5 1.0/3.2 .00/0.0 .00/0.0 .00/0.0 .20/3.0 .60/3.0 .20/4.0 -
Yeast2vs8 2.2 .80/4.0 .40/2.0 .00/0.0 .00/0.0 .00/0.0 1.0/2.0 .00/0.0 .00/0.0 - -
Yeast4 2.6 1.0/3.0 .40/2.0 .80/3.0 .00/0.0 .40/2.0 .00/0.0 .00/0.0 .00/0.0 - -
Yeast1289vs7 3.2 1.0/2.2 .00/0.0 1.0/3.2 .00/0.0 .00/0.0 .00/0.0 .20/5.0 1.0/2.2 - -
Yeast5 2.8 1.0/3.2 .80/2.3 .60/2.0 .20/2.0 .20/2.0 .00/0.0 .00/0.0 .00/0.0 - -
Yeast6 2.8 .80/3.0 .80/2.3 .00/0.0 .00/0.0 .40/2.0 .00/0.0 .20/2.0 .60/2.7 - -
Ecoli0137vs26 3.2 1.0/3.6 .40/3.5 1.0/2.8 .00/0.0 .00/0.0 .40/4.5 .40/5.0 - - -
Abalone19 2.0 .00/0.0 .00/0.0 .20/3.0 .00/0.0 .00/0.0 .60/6.7 .20/3.0 1.0/5.8 - -

.00/0.0 .00/0.0 .00/0.0 .80/4.0 1.0/7.0 .20/3.0 .00/0.0 .20/2.0 .00/0.0 .00/0.0
Vowel0 2.2 11 12 13

.00/0.0 .00/0.0 .00/0.0

occasions in that the variable was selected and the number of total executions
for each problem. The second value is the average of the number of labels for
the cases in which that variable was selected.

As it can be observed in Table 4, the number of selected variables is very low.
In all the problems the number of selected features is reduced, at least, to the
half of the original. Moreover, in nineteen problems, less than three variables are
selected in the average of the 15 executions. Regarding to the granularity level
mean, there are significant differences among the variables of each data-set. This
situation is caused by the advantage of increasing or decreasing the granularity
for a good data representation in the fuzzy partition. Therefore, GA-FS-GL
obtain FRBCSs with high prediction ability and very reduced complexity, that
was the main purpose of this contribution.

5 Conclusions

This contribution has proposed a method to design FRBCS with good accuracy
and interpretability for imbalanced data-sets with a high imbalance ratio. A GA
is used for feature selection and granularity learning, which is combined with an
efficient fuzzy classification rule generation method to obtain the complete KB
of the FRBCS. We must remark one advantage of our proposal, the GA can be
combined with any rule generation method. We have used a simple algorithm
for efficiency but another more accurate one can be used. Our future work will
be focused on applying a multi-objective genetic algorithm in order to obtain
a set of solutions with different trade-off between accuracy (high AUC) and
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interpretability (low number of rules), eliminating the problem of the choice of
weights in the fitness function.
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3. Fernández, A., Garćıa, S., Del Jesus, M.J., Herrera, F.: A study of the behaviour
of linguistic fuzzy rule based classification systems in the framework of imbalanced
data-sets. Fuzzy Sets and Systems 159(18), 2378–2398 (2008)

4. Villar, P., Fernández, A., Herrera, F.: A Genetic Learning of the Fuzzy Rule-Based
Classification System Granularity for highly Imbalanced Data-Sets. In: 2009 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE 2009), pp. 1689–1694
(2009)

5. Chi, Z., Yan, H., Pham, T.: Fuzzy algorithms with applications to image processing
and pattern recognition. World Scientific, Singapore (1996)

6. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers, San Mateo (1993)

7. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A Study of the Behaviour of
Several Methods for Balancing Machine Learning Training Data. SIGKDD Explo-
rations 6(1), 20–29 (2004)

8. Asuncion, A., Newman, D.J.: UCI machine learning repository. Univer-
sity of California, Irvine, School of Information and Computer Sciences,
http://www.ics.uci.edu/~mlearn/MLRepository.html

9. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic
minority over-sampling technique. Journal of Artificial Intelligent Research 16,
321–357 (2002)
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