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Abstract

This paper deals with multi-class classification for linguistic fuzzy rule based classification systems. The idea is to decompose the
original data-set into binary classification problems using the pairwise learning approach (confronting all pair of classes), and to
obtain an independent fuzzy system for each one of them. Along the inference process, each fuzzy rule based classification system
generates an association degree for both of its corresponding classes and these values are encoded into a fuzzy preference relation.

Our analysis is focused on the final step that returns the predicted class-label. Specifically, we propose to manage the fuzzy
preference relation using a non-dominance criterion on the different alternatives, contrasting the behaviour of this model with both
the classical weighted voting scheme and a decision rule that combines the fuzzy relations of preference, conflict and ignorance by
means of a voting strategy.

Our experimental study is carried out using two different linguistic fuzzy rule learning methods for which we show that the non-
dominance criterion is a good alternative in comparison with the previously mentioned aggregation mechanisms. This empirical
analysis is supported through the corresponding statistical analysis using non-parametrical tests.
© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy rule based classification systems (FRBCSs) [27] are a popular tool among the computational intelligence
techniques employed to solve classification problems, because of their interpretable models based on linguistic
variables, which are easier to understand for the experts or end-users. They have been used in many real world
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classification problems such as medical applications [1], classification of battlefield ground vehicles [36] or intrusion
detection [30,34]. Some of these problems present a high number of classes, which must be considered in the FRBCS
analysis.

Multiclasses imply an additional difficulty for FRBCSs, since the boundaries among the classes can be overlapped,
which causes a decrease of the performance. In this situation, we can proceed by transforming the original multi-
class problem into binary subsets, which are easier to discriminate, via a class binarization technique [3,8]. In this
paper we study the extension of linguistic FRBCSs to a multi-classifier model considering the use of the pairwise
learning approach [20] (also called pairwise classification, round robin learning, all-pairs or one-vs-one), which
consists in training a classifier for each possible pair of classes ignoring the examples that do not belong to the related
classes.

In order to aggregate the output for all binary classifiers, the simplest and most widely used method in pairwise
learning is applying a weighted voting [25] so that the final class is assigned by taking the maximum vote among the
summation of the scores for the binary classifiers associated to the same class. However, in this work we aim to benefit
from the features of fuzzy classifiers and to make use of the framework of fuzzy preference relations for classification
[23]. In this scheme, the classification problem is translated into a decision making problem for determining the
output among all predictions for the binary classifiers. Specifically, in this paper we propose the use of a maximal
non-dominance criterion [31] for the final decision process.

In our study, we will first determine the goodness of the pairwise learning approach for linguistic fuzzy systems
analysing the differences in performance achieved by a basic FRCBS model and the multi-classification approach.
Furthermore, we will analyse the mentioned non-dominance criterion that we propose in contrast with both the standard
weighted voting and a voting strategy introduced by Hühn and Hüllermeier in [22].

Our aim is to develop a complete empirical study in order to show that the non-dominance approach achieves a
very good synergy with the linguistic fuzzy classifiers selected in this paper, namely the fuzzy hybrid genetics-based
machine learning (FH-GBML) [29] and the structural learning algorithm in vague environment (SLAVE) [18,19]
methods. We have taken 14 multi-class data-sets from UCI repository [4] within the experimental framework. The
measure of performance is based on accuracy rate and the significance of results is supported by the proper statistical
analysis as suggested in the literature [7,15].

To do so, this paper is organised as follows. In Section 2 we present the concept of multi-classification, a brief
introduction to linguistic FRBCS and the description of the fuzzy algorithm selected for our study. In Section 3 we
present with detail the pairwise learning approach using fuzzy preference relations and the proposed methodology
based on a non-dominance criterion to carry out the classification step. Section 4 includes the experimental framework,
that is, the description of the two aggregation schemes used for comparison in the experimental study, the benchmark
data-sets, configuration parameters and the statistical tests for the performance comparison. In Section 5 we present
our empirical analysis. Finally, Section 6 concludes the paper. Additionally, we have included an Appendix with the
complete tables of results for the experimental study.

2. Basic concepts on multi-classification and linguistic fuzzy rule based systems

This section first introduces the concept of multi-class problems and the class binarization technique selected for
this work. Then, we describe the main features of the linguistic FRBCSs. Finally, we describe the fuzzy rule learning
approaches used in this paper for the experimental study, the FH-GBML [29] and SLAVE [18] algorithms.

2.1. Multi-class problems via pairwise learning

There are a high amount of applications which require multi-class categorization. To simplify the classification
process, we can divide the initial problem into multiple two-class sets that can be solved separately. In this way, we
transform the problem boundaries by distinguishing only between two classes.

Specifically, we have considered the pairwise learning approach [20], which consists in training a classifier for
each possible pair of classes ignoring the examples that do not belong to the related classes. At classification time,
a query instance is submitted to all binary models, and the predictions of these models are combined into an overall
classification.
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The advantages of this approach with respect to other techniques, such as confronting one class with the rest (“one-
vs-rest” [3]), are detailed below:

• It was shown to be more accurate for rule learning algorithms [11].
• The computational time required for the learning phase is compensated by the reduction in size for each of the

individual problems.
• The decision boundaries of each binary problem may be considerably simpler than the “one-vs-rest” transformation.
• The selected binarization technique is less biased to obtain imbalanced training-sets [10,33], which may suppose an

added difficulty for the identification and discovery of rules covering the positive, and under-represented, samples.

2.2. Linguistic fuzzy rule based classification systems

Consider m labeled patterns x p = (x p1, . . . , x pn), p = 1, 2, . . . , m where x pi is the ith attribute value (i =
1, 2, . . . , n). We have a set of linguistic values describing each attribute, considering the use of triangular membership
functions, in order to obtain fuzzy rules of the following form:

Rule j : If x1 is A j1 and . . . and xn is A jn then Class = C j with RW j (1)

where Rule j is the label of the jth rule, x = (x1, . . . , xn) is an n-dimensional pattern vector, A ji is an antecedent fuzzy
set representing a linguistic term, C j is a class label, and RW j is the rule weight [26]. Specifically, we compute the
rule weight using the penalized certainty factor (PCF) defined in [28] as

PC Fj =
∑

x p∈ClassC j
�A j

(x p) − ∑
x p /∈ClassC j

�A j
(x p)∑m

p=1 �A j
(x p)

(2)

Considering a new pattern x and being L the number of rules in the rule base (RB) and M the number of classes of
the problem, the steps of the fuzzy reasoning method [5] are the following:

1. Matching degree. To calculate the strength of activation of the if-part for all rules in the RB with the pattern x p,
using a product or minimum T-norm.

�A j
(x p) = T (�A j1

(x p1), . . . , �A jn
(x pn)), j = 1, . . . , L (3)

2. Association degree. To compute the association degree of the pattern x p with the M classes according to each rule
in the RB. When using rules like (1) this association degree only refers to the consequent class of the rule:

bk
j =

{
h(�A j

(x p), RW j ), j = 1, . . . , L if k = Class(Rule j )
0 otherwise

(4)

Function h is usually modeled as a product T-norm.
3. Pattern classification soundness degree for all classes. We use an aggregation function f (for example the max

operator) that combines the positive degrees of association calculated in the previous step:

Yk = f (bk
j , j = 1, . . . , L and bk

j > 0), k = 1, . . . , M (5)

4. Classification. We apply a decision function F over the soundness degree of the system for the pattern classification
for all classes. This function will determine the class label l corresponding to the maximum value:

F(Y1, . . . , YM ) = arg max
k=1,. . .,M

{Yk} (6)

2.3. Linguistic fuzzy rule learning algorithms

Genetic fuzzy systems have been proposed in the specialized literature for designing fuzzy rule-based systems
by means of genetic algorithms (GAs) [6,21]. This type of search mechanisms have the ability to find near optimal
solutions in complex search spaces, which also have the advantage to provide a generic code structure and independent
performance features, making them suitable candidates to incorporate a priori knowledge. In the case of FRBCSs, this
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a priori knowledge may be in the form of linguistic variables, fuzzy membership function parameters, fuzzy rules,
number of rules, etc.

Taken into account the previous fact, we have selected two linguistic fuzzy rule learning based on genetic fuzzy
systems, namely the FH-GBML [29] and the SLAVE [18] algorithms, which are described in the remainder of this
section. Both methods are available within the KEEL software tool [2] (http://www.keel.es).

2.3.1. Fuzzy hybrid genetics-based machine learning rule generation algorithm
The basis of the method described here, the FH-GBML algorithm [29], consists of a Pittsburgh approach where

each rule set is handled as an individual. It also contains a genetic cooperative competitive learning (GCCL) approach
(an individual represents an unique rule), which is used as a kind of heuristic mutation for partially modifying each
rule set, because of its high search ability to efficiently find good fuzzy rules.

The system defines 14 possible linguistic terms for each attribute, as shown in Fig. 1, which correspond to Ruspini’s
strong fuzzy partitions with two, three, four, and five uniformly distributed triangular-shaped membership functions.
Furthermore, the system also uses “don’t care” as an additional linguistic term, which indicates that the variable matches
any input value with maximum matching degree. We must point out that these fuzzy partitions are not modified during
the evolutionary process.

The main steps of this algorithm are described below:
Step 1: Generate Npop rule sets with Nrule fuzzy rules.
Step 2: Calculate the fitness value of each rule set in the current population.
Step 3: Generate (Npop −1) rule sets by selection, crossover and mutation in the same manner as the Pittsburgh-style

algorithm. Apply a single iteration of the GCCL-style algorithm (i.e., the rule generation and the replacement) to each
of the generated rule sets with a pre-specified probability.

Step 4: Add the best rule set in the current population to the newly generated (Npop − 1) rule sets to form the next
population.

Step 5: Return to Step 2 if the pre-specified stopping condition is not satisfied.
Next, we will describe every step of the algorithm:

• Initialization: Nrule training patterns are randomly selected. Then, a fuzzy rule from each of the selected training
patterns is generated by choosing probabilistically (as shown in (7)) an antecedent fuzzy set from the 14 candidates
Bk (k = 1, 2, . . . , 14) (see Fig. 1) for each attribute. Then each antecedent fuzzy set of the generated fuzzy rule is
replaced with don’t care using a pre-specified probability Pdon′t care:

P(Bk) = �Bk
(x pi )∑14

j=1 �B j
(x pi )

(7)
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Fig. 1. Four fuzzy partitions for each attribute membership function.

http://www.keel.es
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• Fitness computation: The fitness value of each rule set Si in the current population is calculated as the number
of correctly classified training patterns by Si . For the GCCL approach the computation follows the same scheme,
counting the number of correct hits for each single rule.

• Selection: It is based on binary tournament in order to guarantee a good convergence of the population.
• Crossover: The substring-wise and bit-wise uniform crossover are applied in the Pittsburgh part. In the case of the

GCCL part only the bit-wise uniform crossover is considered.
• Mutation: Each fuzzy partition of the individuals is randomly replaced with a different fuzzy partition using a

pre-specified mutation probability for both approaches.

2.3.2. Structural learning algorithm in vague environment
SLAVE [18] is an iterative rule learning GA [35] which makes use of the disjunctive normal form for defining the

antecedent of the rules, using the formulation described in [17].
The rule selection process consists in obtaining the best rule in each execution of the GA depending on the examples

of the training set. The concept of the best rule is based on the notions of consistency and completeness. The basic
idea is to use the fuzzy cardinal of fuzzy sets “positive examples” and “negative examples” for a rule, which stands for
the combination of the match degrees of the rule for the examples of its consequent class and for the examples of the
remaining classes.

The iterative approach of SLAVE fixes a class and the GA selects a rule that simultaneously verifies the completeness
and the soft consistency condition to a high degree. The rule selection in SLAVE can therefore be solved by the following
optimization problem:

max
A∈D

{�(RB(A)) × �k1,k2 (RB(A))} (8)

where D = P(D1) × P(D2) × · · · × P(Dn) with Di being the fuzzy domain of Xi variable, and RB(A) represents
a rule with antecedent value A = (A1, . . . , An) ∈ D and consequent value B, with B being fixed in the optimization
problem. �(RB(A)) and �k1,k2 (RB(A) represent the degree of completeness and the soft consistency degree of rule
RB(A), respectively (details can be found at [18]). The iterative approach will change this consequent value to obtain
the different values. Details of the GA used in this optimization process can be found in [16].

The implementation of the SLAVE considered in this paper considers the integration of a feature selection mech-
anism, which was proposed in [19]. The most important change with respect to the original version of SLAVE is the
representation of the population, which simply includes a new binary value associated to each antecedent variable in
order to discover if the variable will be considered as part of the antecedent of the rule or not.

3. Decision process for linguistic fuzzy rule based classification systems using preference relations for
multi-class problems

In this section we will first describe in detail the learning scheme for a linguistic fuzzy system based on pairwise
learning. Then, we will introduce our proposal to carry out the final classification using a non-dominance criterion.

3.1. Pairwise learning approach for a linguistic fuzzy rule based classification system

Following the pairwise learning approach, we start dividing the original training set into m(m − 1)/2 subsets, where
m stands for the number of classes of the problem, in order to obtain m(m − 1)/2 different fuzzy classifiers. Every
subset contains the examples for a different pair of classes and thus, the trained classifiers are devoted to discriminate
between two specific classes of the initial data-set.

The knowledge base (KB) of each one of these fuzzy classifiers will be composed of a shared data base (DB) and a
specific RB. We decided to obtain such an interpretable model rather than just contextualizing the fuzzy partitions for
each sub-problem separately, with the aim of being able to analyse the different rule sets learnt by means of the binary
classifiers in a uniform manner.

The RB for each classifier is learnt using a fuzzy learning method, which can be selected among the different
approaches of the specialized literature. Once all KBs have been learnt, we proceed to the final inference step. When
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a new input pattern is presented to the system, each FRBCS is fired in order to define the output degree for its pair of
associated classes.

3.2. On the use of fuzzy preference relations for classification

In this subsection we describe how we compute the fuzzy preference relation with the use of the output degrees of
the different FRBCSs that compose the system. Then, we detail the classification step using a maximal non-dominance
criterion.

3.2.1. Computation of the fuzzy preference relation
We will consider the classification problem as a decision making problem, and we will define a fuzzy preference

relation Rb [31] with the corresponding outputs of the FRBCSs. In this manner, the computation of each degree of
preference is based on the aggregation function that combines the positive degrees of association between the fuzzy
rules and the input pattern. This is known as fuzzy reasoning method:

Rb =

⎡
⎢⎢⎢⎣

− r1,2 . . . r1,m

r2,1 − . . . r2,m
...

. . .
. . .

...

rm,1 rm,1 . . . −

⎤
⎥⎥⎥⎦ (9)

We consider the maximum matching, where every new pattern x p is classified as the consequent class of a single
winner rule (Class(x p) = Cw) which is determined as

�Aw
(x p) · RWw = max{�Aq

(x p) · RWq , Ruleq ∈ RB} (10)

where �Aq
(x p) is the membership degree of the pattern example x p = (x p1, . . . , x pn) with the antecedent of the rule

Rq and RWq is the rule weight [26].
Therefore, Rb(i, j) (the fuzzy degree of preference between classes i and j) is the maximum association degree for

all rules in RB that concludes class i. Rb(i, j) will be normalized to [0, 1] by expression (11), having the relation
R(i, j) = 1 − R( j, i):

R(i, j) = Rb(i, j)

Rb(i, j) + Rb( j, i)
(11)

In the possible case that Rb(i, j) and Rb( j, i) are equal to 0, because no rule for the binary classifier matches the
example, we set R(i, j) and R( j, i) a 0.5 value so that the fuzzy preference relation remains reciprocal.

3.2.2. Classification process via a decision rule based on a non-dominance criterion
From the fuzzy preference relation we must extract a set of non-dominated alternatives (classes) as the solution

of the fuzzy decision making problem and thus, our classification output. Specifically, the maximal non-dominated
elements of R are calculated by means of the following operations, according to the non-dominance criterion proposed
by Orlovsky [31]:

• First, we compute the fuzzy strict preference relation R′ which is equal to

R′(i, j) =
{

R(i, j) − R( j, i) when R(i, j) > R( j, i)
0 otherwise

(12)

• Then, we compute the non-dominance degree of each class N Di , which is simply obtained as

N Di = 1 − sup
j∈C

[R′( j, i)] (13)
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This value represents the degree to which the class i is dominated by no one of the remaining classes. C stands for the
set of total classes in the data-set. The output class is computed as the index of the maximal non-dominance value:

Class(x p) = arg max
i=1,. . .,m

{N Di } (14)

The complete process is summarized in Algorithm 1

Algorithm 1. Procedure for the multi-classifier learning proposal with the non-dominance criterion

1. Divide the training set into m(m − 1)/2 subsets for all pair of classes.
2. For each training subset i:

2.1. Build a fuzzy classifier composed by a local DB and an RB generated with any rule learning procedure
3. For each input test pattern:

3.1. Build a fuzzy preference relation R as:
• For each class i, i = 1, . . . , m
• For each class j, j = 1, . . . , m, j � i
• The preference degree for R(i, j) is the normalized association degree for the classifier associated to classes i and j. R( j, i) = 1 − R(i, j)

3.2 Transform R to the fuzzy strict preference relation R′.
3.3 Compute the degree of non-dominance for all classes.
3.4 The input pattern is assigned to the class with maximum non-dominance value.

In order to clarify this procedure, we use a pattern from the iris data-set (Table 1) to show an example which is
depicted in Table 2. We also show, for the sake of determining the global interpretability of the output model, the whole
RB obtained by the FH-GBML algorithm for this current example in Table 3.

Table 1
Iris data-set pattern.

Sepal length=7.0,
Sepal width=3.2,
Petal length=4.7,
Petal width=1.4,

Class=Versicolor
{Setosa, Versicolor, Virginica}

Table 2
Example of the classification process by means of the use of the fuzzy preference relation with the non-dominance criterion.

Step 1. Obtain Rb:

Rb =

⎡
⎢⎣ − 0.134 0.221

0.881 − 0.117
0.625 0.021 −

⎤
⎥⎦

Step 2. Normalize Rb → R:

R =

⎡
⎢⎣ − 0.132 0.261

0.868 − 0.848
0.738 0.152 −

⎤
⎥⎦

Step 3. Transform R to R′:

R′ =

⎡
⎢⎣

− 0.0 0.0
0.736 − 0.696
0.477 0.0 −

⎤
⎥⎦

Step 4. Compute ND:
ND = {0.264, 1.0, 0.304}

Step 5. Get class index:
Class = arg max

i=1,. . .,3
{N Di } = 2 (V ersicolor )
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Table 3
Example: rule base obtained by FH-GBML for the Iris data-set.

Rule base for Setosa vs. Versicolor (20 rules):

1: IF SL IS L0(2) AND SW IS L0(3) AND PL IS L1(2) AND PW IS L1(2): Versicolor with RW: 0.99374
2: IF SW IS L1(3): Setosa with RW: 0.04848
3: IF SW IS L0(2) AND PW IS L0(2): Setosa with RW: 0.08015
4: IF PL IS L2(4): Versicolor with RW: 1.0
5: IF SW IS L1(2) AND PL IS L0(2) AND PW IS L0(2): Setosa with RW: 0.76967
6: IF PL IS L0(2): Setosa with RW: 0.35933
7: IF PL IS L2(4) AND PW IS L2(4): Versicolor with RW: 1.0
8: IF SL IS L1(3) AND PW IS L2(4): Versicolor with RW: 1.0
9: IF SL IS L2(4) AND PL IS L2(4): Versicolor with RW: 1.0
10: IF SW IS L0(2): Versicolor with RW: 0.23791
11: IF SL IS L0(2) AND SW IS L1(3) AND PW IS L0(4): Setosa with RW: 1.0
12: IF SL IS L2(5) AND PW IS L2(4): Versicolor with RW: 1.0
13: IF SL IS L1(3): Versicolor with RW: 0.32779
14: IF SL IS L1(3) AND SW IS L0(2) AND PL IS L0(2): Versicolor with RW: 0.27949
15: IF SL IS L0(2) AND PL IS L1(4) AND PW IS L1(3): Versicolor with RW: 0.73807
16: IF SL IS L1(5) AND PL IS L1(3): Versicolor with RW: 0.32608
17: IF SL IS L1(3) AND PW IS L0(2): Versicolor with RW: 0.00806
18: IF SL IS L1(4) AND SW IS L1(2): Setosa with RW: 0.39224
19: IF SL IS L0(4) AND SW IS L2(4) AND PL IS L0(3): Setosa with RW: 1.0
20: IF SW IS L1(3) AND PW IS L0(3): Setosa with RW: 0.93428

Rule base for Setosa vs. Virginica (19 rules):

1: IF SL IS L1(5) AND PL IS L0(3) AND PW IS L1(3): Setosa with RW: 1.0
2: IF SL IS L1(5): Setosa with RW: 0.83333
3: IF SL IS L1(4): Setosa with RW: 0.39642
4: IF PW IS L2(4): Virginica with RW: 1.0
5: IF SL IS L0(3) AND SW IS L1(3) AND PW IS L0(4): Setosa with RW: 1.0
6: IF SL IS L1(5) AND PW IS L0(5): Setosa with RW: 1.0
7: IF SL IS L1(4) AND SW IS L2(4): Setosa with RW: 0.79288
8: IF PW IS L0(3): Setosa with RW: 1.0
9: IF SL IS L2(4) AND SW IS L2(5) AND PW IS L1(2): Virginica with RW: 1.0
10: IF SL IS L0(4) AND SW IS L2(4) AND PW IS L0(5): Setosa with RW: 1.0
11: IF SL IS L0(2) AND PL IS L4(5): Virginica with RW: 1.0
12: IF SL IS L0(2) AND SW IS L1(4) AND PL IS L2(4): Virginica with RW: 1.0
13: IF PL IS L1(5) AND PW IS L0(2): Setosa with RW: 1.0
14: IF SW IS L1(3): Virginica with RW: 0.02945
15: IF PL IS L0(2): Setosa with RW: 0.59342
16: IF SW IS L1(3): Virginica with RW: 0.02945
17: IF SL IS L1(5) AND SW IS L2(5) AND PL IS L0(2) AND PW IS L0(2): Setosa with RW: 0.99290
18: IF PL IS L0(3): Setosa with RW: 1.0
19: IF SW IS L1(4) AND PL IS L1(3): Virginica with RW: 0.75813

Rule base for Versicolor vs. Virginica (14 rules):

1: IF SW IS L2(5) AND PL IS L0(2) AND PW IS L3(5): Virginica with RW: 0.28547
2: IF SL IS L2(5) AND PL IS L3(4) AND PW IS L2(4): Virginica with RW: 0.90616
3: IF SL IS L2(5) AND SW IS L1(3) AND PL IS L2(3): Virginica with RW: 0.43896
4: IF SW IS L2(4) AND PL IS L2(4) AND PW IS L3(5): Virginica with RW: 0.28434
5: IF SL IS L0(2) AND PL IS L1(3) AND PW IS L2(3): Virginica with RW: 0.59015
6: IF SL IS L3(5) AND SW IS L0(3) AND PL IS L3(4) AND PW IS L3(5): Virginica with RW: 0.99083
7: IF SL IS L2(4) AND SW IS L0(3) AND PL IS L0(2): Versicolor with RW: 0.26959
8: IF SL IS L3(5) AND PL IS L2(4) AND PW IS L0(2): Versicolor with RW: 0.28869
9: IF SL IS L0(3) AND SW IS L2(4) AND PL IS L3(5) AND PW IS L0(3): Versicolor with RW: 1.0
10: IF SL IS L3(5) AND SW IS L2(3) AND PL IS L3(5) AND PW IS L1(4): Versicolor with RW: 1.0
11: IF SL IS L1(2) AND SW IS L1(3) AND PL IS L1(4) AND PW IS L2(4): Versicolor with RW: 0.90929
12: IF SL IS L0(2) AND SW IS L1(3) AND PL IS L2(4) AND PW IS L1(3): Versicolor with RW: 0.38662
13: IF SL IS L3(4) AND SW IS L0(4) AND PL IS L1(3) AND PW IS L1(3): Versicolor with RW: 0.39577
14: IF SL IS L2(3) AND SW IS L2(3) AND PL IS L1(3) AND PW IS L1(2): Virginica with RW: 0.86992
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4. Experimental framework

In this section, we will first introduce the two aggregation schemes used for comparison with our non-dominance
criterion (Section 4.1). Then, we will provide details of the real-world multi-class problems chosen for the experimen-
tation and the configuration parameters of the FRBCSs (Sections 4.2 and 4.3, respectively). Finally, we will introduce
the statistical tests applied to compare the results obtained along the experimental study (Section 4.4).

4.1. Mechanisms for combining predictions in pairwise classification used for comparison

In this part of the section we introduce two classification process for combining the predictions in the pairwise
learning scheme that we have selected for contrasting the behaviour of the non-dominance criterion, namely a weighted
voting scheme and a decision rule based on a voting strategy.

4.1.1. Classification process via a weighted voting scheme
The first technique is one of the simplest and most widely used aggregation method in pairwise learning [25]. The

final class is assigned by computing the maximum vote by rows from the values of the fuzzy preference relation R:

Class(x p) = arg max
i=1,. . .,m

{∑m
j=1; j�i R(i, j)

m − 1

}
(15)

We must point out that in this case R is a normalised reciprocal matrix which means that whenever a binary classifier
is not able to determine the association degree for a given instance, it outputs a 0.5 value for both classes. In spite of
its simplicity, it has been determined to obtain a very good precision for pairwise classification [24,25].

4.1.2. Classification process via a decision rule based on a voting strategy
This voting strategy was proposed in [22] and starts from the obtention of Rb(i, j) and Rb( j, i) as the maximum

association output degrees for the rule set for classes i and j and compute R as the normalised version of Rb. We
must point out that in spite of in the original proposal of this voting strategy the values of R(i, j) and R( j, i) are
non-normalised, in this paper we have taken a normalised reciprocal matrix (as in the weighted voting scheme) since
it provides better results in practice with the fuzzy algorithms selected in our experimental framework. From here, the
following values are derived:

P(i, j) = R(i, j) − min{R(i, j), R( j, i)}
P( j, i) = R( j, i) − min{R(i, j), R( j, i)}
C(i, j) = min{R(i, j), R( j, i)}
I (i, j) = 1 − max{R(i, j), R( j, i)} (16)

C(i, j) is defined as the degree of conflict, namely the degree to which both classes are supported. Likewise, I (i, j)
is the degree of ignorance, namely the degree to which none of the classes is supported. Finally, P(i, j) and P( j, i)
denote the strict preference for i and j, respectively. Note that at least one of these two degrees is zero, and that
P(i, j) + P( j, i) + C(i, j) + I (i, j) = 1.

From these three relations, the following classification rule could be used:

Class(x p) = arg max
i=1,. . .,m

∑
1≤ j � i≤m

P(i, j) + 1

2
· C(i, j) + Ni

Ni + N j
· I (i, j) (17)

where Ni is the number of examples from class i in the training data (and hence, an unbiased estimate of the class
probability).

4.2. Data-sets

Table 4 summarizes the properties of the selected data-sets. It shows, for each data-set, the number of examples
(#Ex.), the number of attributes (#Atts.), the number of numerical (#Num.) and nominal (#Nom.) features, and the
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Table 4
Summary description of the data-sets.

id Data-set #Ex. #Atts. #Num. #Nom. #Cl.

bal balance scale 625 4 4 0 3
cle cleveland 297 13 6 7 5
eco ecoli 336 7 7 0 8
gla glass identification 214 9 9 0 6
iri iris 150 4 4 0 3
let letter 2000 16 16 0 26
new new-thyroid 215 5 5 0 3
pag page-blocks 548 10 10 0 5
pen pen-based 1099 16 16 0 10

recognition
seg segment 2310 19 19 0 7
shu shuttle 2175 9 9 0 5
veh vehicle 846 18 18 0 4
win wine 178 13 13 0 3
yea yeast 1484 8 8 0 10

number of classes (#Cl.). The letter, penbased and page-blocks data-sets have been stratified sampled at 10% in order
to reduce their size for training. In the case of missing values (cleveland) we have removed those instances from the
data-set.

Estimates of accuracy rate were obtained by means of a fivefold cross-validation. That is, we split the data set into
five folds, each one containing the 20% of the patterns of the data-set. For each fold, the algorithm was trained with
the examples contained in the remaining folds and then, tested with the current fold. Furthermore, we have run the
algorithms three times in order to obtain a sample of 15 results, which have been averaged, for each data-set.

4.3. Parameters

The selected configuration for the FH-GBML and SLAVE approaches has been set up according to the recommen-
dations of the authors in the corresponding papers. Regarding the specific parameters for the genetic process, we have
chosen the following values:

• FH-GBML:
◦ Number of fuzzy rules: 5 · d rules.
◦ Number of rule sets: 200 rule sets.
◦ Crossover probability: 0.9.
◦ Mutation probability: 1/d .
◦ Number of replaced rules: All rules except the best-one (Pittsburgh-part, elitist approach), number of rules/5

(GCCL-part).
◦ Total number of generations: 1000 generations.
◦ Don’t care probability: 0.5.
◦ Probability of the application of the GCCL iteration: 0.5.

• SLAVE:
◦ Population size: 100 individuals.
◦ Number of iterations allowed without change=500 iterations.
◦ Mutation probability=0.01.
◦ Crossover probability=1.0 (it is always applied)

where d stands for the dimensionality of the problem (number of variables). Whereas the mutation probability is
originally taken from the recommendations given in Ishibuchi and Yamamoto’s paper [29], the number of rules has
been chosen heuristically after some preliminary experiments in order to obtain a good behaviour for all data-sets, also
following the same scheme than in some of our previous works using this algorithm [9].
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4.4. Statistical tests for performance comparison

In this paper, we use the hypothesis testing techniques to provide statistical support to the analysis of the results
[13,32]. Specifically, we will use non-parametric tests, due to the fact that the initial conditions that guarantee the
reliability of the parametric tests may not be satisfied, making the statistical analysis to lose credibility with these type
of tests [7].

We apply the Wilcoxon signed-rank test [32] as non-parametric statistical procedure for performing pairwise com-
parisons between two algorithms. We will also compute the p-value associated to each comparison, which represents
the lowest level of significance of a hypothesis that results in a rejection. In this manner, we can know whether two
algorithms are significantly different and how different they are.

Furthermore, we consider the average ranking of the algorithms in order to show graphically how good a method
is with respect to its partners. This ranking is obtained by assigning a position to each algorithm depending on its
performance for each data-set. The algorithm which achieves the best accuracy on a specific data-set will have the first
ranking (value 1); then, the algorithm with the second best accuracy is assigned rank 2, and so forth. This task is carried
out for all data-sets and finally an average ranking is computed as the mean value of all rankings.

These tests are suggested in the studies presented in [7,13–15], where its use in the field of machine learning is
highly recommended. Any interested reader can find additional information on the Website http://sci2s.ugr.es/sicidm/,
together with the software for applying the statistical tests.

5. Experimental analysis

The results of the experiments in the test partitions for the FH-GBML and SLAVE algorithms are shown in Tables 5
and 6 where, by columns, we can observe the accuracy performance for the basic algorithm and the pairwise-learning
approaches, namely the non-dominance classification criterion (noted with suffix ND), the weighted voting scheme
(noted with suffix WV) and the decision rule based on a voting strategy (noted with suffix VS). The complete tables of
results with the training and test partitions are shown in the appendix of this paper.

We divide our experimental analysis into two parts:

• First, we want to determine whether the multi-classifier proposal enhances the performance of the linguistic FRBCS
that manages all classes independently.

• Next, our aim is to analyse the behaviour of our proposal for the output decision process based on a non-dominance
criterion versus the weighted voting and the voting strategy.

Table 5
Average accuracy results for the FH-GBML algorithm with the basic approach and the multi-classifier schemes.

Data-set #Cl. FH-GBML FH-GBML-ND FH-GBML-WV FH-GBML-VS

Bal 3 82.24 ± 2.85 84.80 ± 2.83 84.32 ± 2.86 84.96 ± 2.55
Iri 3 93.33 ± 4.08 94.67 ± 2.98 94.00 ± 2.79 94.00 ± 2.79
New 3 91.16 ± 3.03 95.35 ± 2.33 94.42 ± 2.65 94.42 ± 1.27
Win 3 92.70 ± 4.21 96.08 ± 3.75 94.38 ± 3.96 93.83 ± 4.58
Veh 4 58.15 ± 3.47 66.67 ± 4.37 66.20 ± 3.81 66.08 ± 4.57
Cle 5 50.84 ± 6.14 57.24 ± 2.45 57.58 ± 2.33 57.92 ± 1.96
Pag 5 94.53 ± 0.91 95.62 ± 1.20 95.62 ± 1.77 95.62 ± 1.77
Shu 5 95.22 ± 1.43 97.70 ± 0.83 97.79 ± 1.33 95.40 ± 2.16
Gla 6 60.29 ± 6.30 62.19 ± 7.58 64.04 ± 8.84 63.59 ± 6.90
Seg 7 78.70 ± 2.27 93.29 ± 1.73 89.26 ± 2.41 89.26 ± 2.41
Eco 8 76.19 ± 5.04 81.55 ± 4.63 79.77 ± 3.04 76.80 ± 6.48
Pen 10 69.82 ± 1.84 91.09 ± 1.14 92.18 ± 1.97 92.18 ± 1.97
Yea 10 51.22 ± 4.54 58.96 ± 1.53 58.42 ± 2.41 57.21 ± 2.00
Let 26 16.35 ± 1.58 71.20 ± 2.35 72.75 ± 1.88 72.55 ± 2.02

Mean X 72.20 ± 3.41 81.89 ± 2.84 81.48 ± 3.00 80.99 ± 3.10

http://sci2s.ugr.es/sicidm/
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Table 6
Average accuracy results for the SLAVE algorithm with the basic approach and the multi-classifier schemes.

Data-set #Cl. SLAVE SLAVE-ND SLAVE-WV SLAVE-VS

Bal 3 77.76 ± 2.07 75.20 ± 4.12 75.36 ± 3.85 75.36 ± 3.85
Iri 3 96.00 ± 3.65 96.67 ± 2.36 97.33 ± 2.79 97.33 ± 2.79
New 3 90.70 ± 2.85 91.16 ± 6.02 90.23 ± 6.02 80.93 ± 3.03
Win 3 93.78 ± 3.77 96.05 ± 3.24 88.71 ± 9.52 87.05 ± 7.33
Veh 64.07 ± 2.17 60.87 ± 5.59 58.03 ± 3.89 58.03 ± 3.34
Cle 5 52.84 ± 6.25 54.92 ± 5.40 55.24 ± 3.67 56.59 ± 4.30
Pag 5 93.61 ± 1.74 93.61 ± 1.96 93.42 ± 1.53 93.24 ± 1.42
Shu 5 85.70 ± 0.50 94.76 ± 2.91 91.77 ± 1.24 90.76 ± 1.02
Gla 6 61.20 ± 3.78 56.07 ± 3.88 54.65 ± 5.07 52.79 ± 6.76
Seg 7 89.26 ± 1.27 90.04 ± 1.32 75.24 ± 3.53 75.24 ± 3.53
Eco 8 85.41 ± 6.29 79.46 ± 6.04 77.09 ± 4.89 77.38 ± 2.88
Pen 10 88.73 ± 2.44 89.18 ± 2.17 59.36 ± 4.33 59.73 ± 3.86
Yea 10 50.74 ± 4.28 56.13 ± 1.56 50.41 ± 2.29 49.40 ± 1.96
Let 26 41.85 ± 2.11 68.80 ± 2.39 51.00 ± 1.96 51.05 ± 2.15

Mean X 76.55 ± 3.08 78.78 ± 3.50 72.70 ± 3.90 71.78 ± 3.44
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Fig. 2. Ranking in accuracy for the different FH-GBML approaches: basic scheme, multi-classifier with non-dominance criterion and multi-classifier
with voting strategy.

5.1. Analysis on the usefulness of the pairwise learning approach for linguistic fuzzy rule based classification systems

In order to carry out the first study, we show the ranking of the FH-GBML and SLAVE approaches by means of the
procedure described in Section 4.4. Figs. 2 and 3 show the average ranking computed for the four different alternatives:
basic approach and the three multi-classification techniques. We can observe that for the FH-GBML algorithm all the
multi-classification schemes obtain a higher average result and ranking than the basic methodology, whereas in the
case of the SLAVE algorithm only the non-dominance criterion is competitive with the basic approach.

In order to determine with a statistical support that the non-dominance criterion outperforms the basic linguistic
FRBCS approach, we will carry out a Wilcoxon test for both algorithms (FH-GBML and SLAVE), which is shown in
Table 7. The result of this test is in concordance with our previous hypothesis for which the multiclassifier version of
the FRBCSs derives in a benefit in performance.

5.2. Analysis of the decision process methodology

The next objective of this empirical analysis is to study the three alternatives selected for the decision process among
all predictions for the fuzzy classifiers. With this aim, we have carried out a Wilcoxon test, shown in Table 8, in which
we compare the non-dominance criterion versus the weighted voting and the voting strategy.
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Fig. 3. Ranking in accuracy for the different SLAVE approaches: basic scheme, multi-classifier with non-dominance criterion and multi-classifier
with voting strategy.

Table 7
Wilcoxon test to compare the multiclassifier FBRCS (non-dominance approach) versus the basic approach for the FH-GBML and SLAVE algorithms.

Comparison R+ R− p-value Hypothesis (� = 0.05)

FH-GBML-ND vs. FH-GBML 105.0 0.0 0.001 Rejected for FH-GBML-ND
SLAVE-ND vs. SLAVE 65.5 39.5 0.463 Not rejected

R+ corresponds to the sum of the ranks for the multiclassifier approach and R− to the basic approach.

Table 8
Wilcoxon test to compare the non-dominance approach versus the weighted voting and the decision rule with a voting strategy for the FH-GBML
and SLAVE algorithms.

Comparison R+ R− p-Value Hypothesis (� = 0.05)

FH-GBML-ND vs. FH-GBML-WV 67.5 37.5 0.345 Not rejected
FH-GBML-ND vs. FH-GBML-VS 73.5 31.5 0.173 Not rejected

SLAVE-ND vs. SLAVE-WV 97.0 8.0 0.005 Rejected for SLAVE-ND
SLAVE-ND vs. SLAVE-VS 97.0 8.0 0.005 Rejected for SLAVE-ND

R+ corresponds to the sum of the ranks for the non-dominance criterion and R− to the weighted voting (first and third row) and the voting strategy
(second and fourth row).

We can conclude from the results of this table that the non-dominance criterion always obtains a higher rank than
the weighted voting approach and decision rule alternative based on a voting strategy, and also the highest average
performance (Tables 5 and 6) which supposes a clear advantage of the proposed approach for the decision process in
linguistic fuzzy multi-classification systems. We must also highlight the good behaviour of the non-dominance criterion
is stressed in the case of the SLAVE algorithm which statistically outperforms the decision methodologies used for
comparison. Furthermore, we must emphasize another advantage of this aggregation model based on non-dominance
is that a class will be always chosen as the winner when it is the best in all pairwise comparison, which for example
may not be fulfilled for the weighted voting scheme. An example of this behaviour is shown in Table 9.

To sum up, we included a star plot representation in Fig. 4 for the three approaches studied in the case of the SLAVE,
which includes more representative differences among them. This plot represents the performance as the distance from
the center; hence a higher area determines the best average performance; furthermore, since the data-sets are ordered
by the number of classes, we can also visualise the behaviour according to the “neighbours” problems. Specifically,
from this figure we can observe that all methodologies (“non-dominance criterion”, “weighted voting” and “voting
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Table 9
Example of the behaviour of the non-dominance criterion versus the weighted voting approach.

R =
⎡
⎣ − 0.6 0.6

0.4 − 0.0
0.4 1.0 −

⎤
⎦

R′ =
⎡
⎣ − 0.2 0.2

0.0 − 0.0
0.0 1.0 −

⎤
⎦

Non-dominance approach Weighted voting approach

ND = {1.0, 0.0, 0.8} WV = {0.6, 0.2, 0.7}
Class = arg max

i=1,. . .,3
{N Di } = 1 Class = arg max

i=1,. . .,3
{W Vi } = 3

Bal

Iri

New

Win

Veh

Cle

Pag

Shu

Gla

Seg

Eco

Pen

Yea

Let

ND WV VS

Fig. 4. Star plot representation for the two models of the decision process, “Non-dominance criterion” (ND) and “Voting strategy” (VS). The data-sets
are ordered clockwise according to their number of classes.

strategy”) are very similar in performance for data-sets with a low number of classes (up to 6), but then the quality of
the results for the weighted voting and voting strategy decrease in contrast to the non-dominance criterion. In any case,
in order to find more consistent conclusions, it would be necessary to compare them with more data-sets and learning
methods.

Finally, the results of this paper allow us the possibility of developing several further studies on the topic:

1. First, to make use of a specific DB in the binary classifiers that could be able to avoid the pressure of the non-competent
examples [12], which are those instances that belong to a class for which the binary learner is not prepared.

2. Second, to analyse the specific features of the classification algorithms and/or data-sets in order to being able to
select before-hand which aggregation mechanism is best suited for the multi-classification task.
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3. Related to the previous issue, we are interested in proposing a kind of theoretical argument or explanation for why
the “non-dominance criterion” is better than “weighted voting” and in which cases.

4. Finally, to study a way to unify the potential of the aggregation schemes compared in this paper so that, regarding
the previous items, we could obtain an approach that shows a good synergy for different frameworks.

6. Concluding remarks

In this paper, we have applied a pairwise learning methodology for building a linguistic fuzzy multi-classifier system
oriented to discriminate between pairs of classes and to obtain a better decision boundary in multiclass problems.

In order to aggregate the output for every single classifier, we have made use of a fuzzy preference relation translating
the classification problem into a decision making problem. For obtaining the final output class, we have proposed the
use of a decision rule based on a maximal non-dominance criterion, and we have contrasted the behaviour of this
model with the classical weighted voting method and a new voting strategy based on the fuzzy relations of preference,
ignorance and conflict.

The experimental study showed two main conclusions: First, the application of a pairwise learning approach using
the non-dominance criterion improves the performance of the linguistic FRBCS methods. Second, we have found
empirical evidences in favour of the non-dominance criterion for the final classification, being the best alternative in
this context, especially when the number of classes of the problem is high.

Finally, we have pointed out some interesting issues as future work so that this paper can be taken as a starting point
for carrying out several new studies on the topic.
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Appendix: Complete tables of results

The complete tables of results for the experimental study are shown in Tables 10 and 11.

Table 10
Average accuracy results in training and test for the FH-GBML algorithm with the basic approach and the multi-classifier schemes.

Data-set #Cl. FH-GBML FH-GBML-ND FH-GBML-WV FH-GBML-VS

AccTr AccTst AccTr AccTst AccTr AccTst AccTr AccTst

Bal 3 85.64 ± 2.49 82.24 ± 2.85 87.04 ± 1.97 84.80 ± 2.83 87.16 ± 1.91 84.32 ± 2.86 86.96 ± 1.95 84.96 ± 2.55
Iri 3 99.33 ± 0.70 93.33 ± 4.08 99.50 ± 0.46 94.67 ± 2.98 98.17 ± 1.09 94.00 ± 2.79 98.17 ± 1.09 94.00 ± 2.79
New 3 96.74 ± 0.66 91.16 ± 3.03 99.53 ± 0.49 95.35 ± 2.33 96.05 ± 1.26 94.42 ± 2.65 93.72 ± 1.26 94.42 ± 1.27
Win 3 97.61 ± 0.63 92.70 ± 4.21 100.00 ± 0.00 96.08 ± 3.75 98.74 ± 0.92 94.38 ± 3.96 98.31 ± 1.46 93.83 ± 4.58
Veh 4 62.44 ± 1.07 58.15 ± 3.47 74.50 ± 1.11 66.67 ± 4.37 73.82 ± 0.91 66.20 ± 3.81 73.79 ± 0.78 66.08 ± 4.57
Cle 5 63.05 ± 0.73 50.84 ± 6.14 75.59 ± 0.82 57.24 ± 2.45 75.93 ± 1.06 57.58 ± 2.33 74.07 ± 0.62 57.92 ± 1.96
Pag 5 95.67 ± 0.51 94.53 ± 0.91 98.17 ± 0.49 95.62 ± 1.20 97.08 ± 0.93 95.62 ± 1.77 96.49 ± 0.94 95.62 ± 1.77
Shu 5 95.52 ± 0.67 95.22 ± 1.43 98.45 ± 0.60 97.70 ± 0.83 98.34 ± 0.43 97.79 ± 1.33 95.54 ± 1.44 95.40 ± 2.16
Gla 6 70.44 ± 0.37 60.29 ± 6.30 82.48 ± 0.72 62.19 ± 7.58 74.88 ± 1.13 64.04 ± 8.84 73.83 ± 1.48 63.59 ± 6.90
Seg 7 79.82 ± 1.19 78.70 ± 2.27 94.96 ± 0.35 93.29 ± 1.73 90.78 ± 2.17 89.26 ± 2.41 90.78 ± 2.17 89.26 ± 2.41
Eco 8 79.76 ± 1.44 76.19 ± 5.04 92.34 ± 1.27 81.55 ± 4.63 88.39 ± 1.62 79.77 ± 3.04 84.75 ± 1.02 76.80 ± 6.48
Pen 10 71.93 ± 1.19 69.82 ± 1.84 96.41 ± 0.63 91.09 ± 1.14 96.84 ± 0.33 92.18 ± 1.97 96.82 ± 0.35 92.18 ± 1.97
Yea 10 53.84 ± 1.26 51.22 ± 4.54 65.47 ± 0.70 58.96 ± 1.53 62.35 ± 0.38 58.42 ± 2.41 61.19 ± 0.51 57.21 ± 2.00
Let 26 18.19 ± 1.64 16.35 ± 1.58 86.30 ± 0.31 71.20 ± 2.35 84.65 ± 0.93 72.75 ± 1.88 84.58 ± 1.02 72.55 ± 2.02

Mean X 76.43 ± 1.04 72.20 ± 3.41 89.34 ± 0.71 81.89 ± 2.84 87.37 ± 1.08 81.48 ± 3.00 86.36 ± 1.15 80.99 ± 3.10
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Table 11
Average accuracy results in training and test for the SLAVE algorithm with the basic approach and the multi-classifier schemes.

Data-set #Cl. SLAVE SLAVE-ND SLAVE-WV SLAVE-VS

AccTr AccTst AccTr AccTst AccTr AccTst AccTr AccTst

Bal 3 84.48 ± 0.59 77.76 ± 2.07 82.44 ± 2.36 75.20 ± 4.12 82.40 ± 2.37 75.36 ± 3.85 82.40 ± 2.37 75.36 ± 3.85
Iri 3 97.67 ± 0.70 96.00 ± 3.65 97.83 ± 0.75 96.67 ± 2.36 97.83 ± 0.75 97.33 ± 2.79 97.83 ± 0.75 97.33 ± 2.79
New 3 93.49 ± 0.49 90.70 ± 2.85 95.35 ± 1.88 91.16 ± 6.02 94.19 ± 1.30 90.23 ± 6.02 84.19 ± 5.57 80.93 ± 3.03
Win 3 97.05 ± 1.36 93.78 ± 3.77 98.59 ± 0.50 96.05 ± 3.24 91.45 ± 6.32 88.71 ± 9.52 90.75 ± 6.68 87.05 ± 7.33
Veh 4 77.16 ± 3.66 64.07 ± 2.17 72.19 ± 5.24 60.87 ± 5.59 64.72 ± 3.94 58.03 ± 3.89 63.89 ± 3.51 58.03 ± 3.34
Cle 5 87.37 ± 3.25 52.84 ± 6.25 81.73 ± 1.86 54.92 ± 5.40 77.44 ± 1.86 55.24 ± 3.67 75.25 ± 2.64 56.59 ± 4.30
Pag 5 95.89 ± 0.73 93.61 ± 1.74 96.21 ± 0.70 93.61 ± 1.96 96.17 ± 0.71 93.42 ± 1.53 95.98 ± 1.01 93.24 ± 1.42
Shu 5 85.70 ± 0.12 85.70 ± 0.50 95.05 ± 1.19 94.76 ± 2.91 91.89 ± 0.49 91.77 ± 1.24 90.84 ± 0.14 90.76 ± 1.02
Gla 6 76.17 ± 2.50 61.20 ± 3.78 77.92 ± 1.30 56.07 ± 3.88 65.66 ± 7.66 54.65 ± 5.07 65.08 ± 8.38 52.79 ± 6.76
Seg 7 90.79 ± 0.69 89.26 ± 1.27 92.91 ± 1.25 90.04 ± 1.32 77.41 ± 1.79 75.24 ± 3.53 77.41 ± 1.79 75.24 ± 3.53
Eco 8 89.88 ± 0.54 85.41 ± 6.29 88.24 ± 1.65 79.46 ± 6.04 83.33 ± 1.59 77.09 ± 4.89 83.26 ± 0.92 77.38 ± 2.88
Pen 10 94.77 ± 0.64 88.73 ± 2.44 96.18 ± 0.48 89.18 ± 2.17 64.09 ± 4.17 59.36 ± 4.33 64.50 ± 4.07 59.73 ± 3.86
Yea 10 53.76 ± 3.46 50.74 ± 4.28 60.92 ± 0.88 56.13 ± 1.56 54.83 ± 1.34 50.41 ± 2.29 53.57 ± 1.76 49.40 ± 1.96
Let 26 49.76 ± 2.04 41.85 ± 2.11 87.79 ± 1.39 68.80 ± 2.39 61.29 ± 2.77 51.00 ± 1.96 61.18 ± 2.77 51.05 ± 2.15

Mean X 83.85 ± 1.48 76.55 ± 3.08 87.38 ± 1.53 78.78 ± 3.50 78.76 ± 2.65 72.70 ± 3.90 77.58 ± 3.03 71.78 ± 3.44
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