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Abstract—Many different fuzzy aggregation operators have
been successfully used to combine the outputs provided by the
individual classifiers in a multiclassification system. However,
up to our knowledge, the use of fuzzy combination methods
composed of a fuzzy system is less extended. By using a
fuzzy linguistic rule-based classification system as a combination
method, the resulting classifier ensemble would show a hierarchi-
cal structure and the operation of the latter component would
be transparent to the user. Moreover, for the specific case of
fuzzy multiclassification systems, the new approach could also
become a smart way to allow fuzzy classifiers to deal with high
dimensional problems avoiding the curse of dimensionality. The
present contribution establishes the first basis in this direction
by introducing a genetic fuzzy system-based framework to build
the fuzzy linguistic combination method for a bagging fuzzy
multiclassification system.

I. INTRODUCTION

Multiclassification systems (MCSs), also called classifier

ensembles, are machine learning tools capable to obtain better

performance than a single classifier when dealing with com-

plex classification problems, especially when the number of

dimensions or the size of the data are really large [1]. The

most common base classifiers are decision trees [2], neural

networks [3], and more recently fuzzy classifiers [4], [5], [6].

MCS design is mainly based on two stages [7]: the learning

of the component classifiers and the combination mechanism

for the individual decisions provided by them into the global

MCS output. The overall accuracy of the MCS relies on the

performance and the proper integration of these two tasks.

The research area of combination methods is very active. It

considers both the direct combination of the results provided

by all the initial set of component classifiers to compute the fi-

nal output (fusion-based methods) and the selection of the best

single classifier or classifier subset which will be taken into

account to provide a decision for each specific input pattern
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(static/dynamic classifier selection [8] and overproduce-and-

choose strategies [9]). Besides, hybrid strategies between the

two groups have also been introduced [1].

While the weighted majority vote could be considered as

the most extended fusion-based combination method [10],

many other proposals have been developed in the specialized

literature, including several successful procedures based on the

use of fuzzy set theory and, specifically, of fuzzy aggregation

operators [11], [12]. Up to our knowledge, there is only one

previous proposal of a MCS combination method considering

the use of a fuzzy system to accomplish this task [13]. It is

based on a first-order TSK fuzzy system. However, the use

of a fuzzy linguistic system can constitute a very interesting

alternative due to its higher interpretability.

In this contribution we introduce a framework to derive a

fuzzy rule-based classification system (FRBCS) playing the

role of the MCS combination method. This fuzzy linguistic

combination method presents an interpretable structure as it is

based on the use of a single disjunctive fuzzy classification

rule per problem class as well as on the classical single-

winner fuzzy reasoning method [14], [15]. The antecedent

variables correspond to the component FRBCSs (and thus its

number is bounded by the existing number) and each of them

has a weight associated representing the certainty degree of

each ensemble member in the classification of each class.

A specific genetic algorithm (GA) to design such FRBCS-

based combination method (FRBCS-CM) will be proposed

with the ability of selecting features and linguistic terms in

the antecedent parts of the rules. In such way, it will perform

both classifier fusion and classifier selection at class level. The

resulting system is thus a genetic fuzzy system (GFS) [16],

[17] (in particular, a genetic fuzzy rule-based classification

system (GFRBCS)) dealing with the interpretability-accuracy

trade-off in a proper way [18].

In particular, in the current work the novel FRBCS-CM

will be applied on fuzzy rule-based multiclassification systems

(FRBMCSs) generated from the bagging and feature selection

methodology we proposed in [4], [5], [6]. Therefore, the
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resulting FRBMCS will show a clear hierarchical structure

composed of two levels of FRBCSs allowing it to deal

with high dimensional problems. A preliminary study will

be conducted on nine datasets of different sizes from the

UCI machine learning repository to test the accuracy and

complexity of the derived FRBMCSs in comparison to the

original FRBMCS.

This paper is set up as follows. In the next section, the

preliminaries required for a good understanding of our work

(MCS combination methods, fuzzy MCS combination meth-

ods, and our approach for designing FRBMCSs considering

bagging and feature selection) are reviewed. Section III de-

scribes the proposed FRBCS-CM framework, structure, and

the GA considered to design it. The experiments developed

and their analysis are shown in Sec. IV. Finally, Sec. V collects

some concluding remarks and future research lines.

II. PRELIMINARIES

This section explores the current literature related to classi-

fier ensemble combination methods and reviews our generation

method for FRBMCSs.

A. Multiclassification System Combination Methods

Two main approaches arise in the literature for the combi-

nation of the outputs provided by a previously generated set of

individual classifiers into a single MCS output [19]: classifier

fusion and classifier selection.

Classifier fusion relies on the assumption that all ensem-

ble members make independent errors. Thus, combining the

decisions of the ensemble members may lead to increasing

the overall performance of the system. Majority voting, sum,

product, maximum and minimum are examples of functions

used to combine their decisions [20]. The most extended one

is the weighted majority voting, which allows to weight the

contribution of each individual classifier to the final decision

according to its “classification competence” using coefficients

of importance [10].

Alternatively, classifier selection is based on the fact that

not all the individual classifiers but only a subset of them will

influence on the final decision for each input pattern. Two

categories of classifier selection techniques exist: static and

dynamic [8], [19]. In the first case, regions of competence are

defined during the training phase, while in the second case,

they are defined during the classification phase taking into

account the characteristics of the sample to be classified. There

is also another family of static classifier selection methods

based on the assumption that the candidate classifiers in the

ensemble could be redundant. These methods are grouped

under the name of overproduce-and-choose strategy (OCS) [9]

and they are based on the fact that a large set of candidate

classifiers is generated and then selected to extract the best

performing subset (removing duplicates and poor-performing

candidate classifiers), which composes the final MCS used

to classify the whole test set. In addition, hybrid methods

between the latter families have been proposed, such as the

GA-based dynamic OCS procedure introduced in [21].

The FRBCS-CM proposed in the current contribution will

belong to the static OCS group and it will be able to either

completely remove a whole candidate classifier or to reduce

its contribution to only some specific classes with a specific

weight measuring our confidence in the individual classifier for

that specific class (as done in other existing classifier selection

methods such as [22], [23]). All the latter will be performed

using a human-interpretable structure generated by means of

a GFRBCS.

B. Multiclassification System Fuzzy Combination Methods

Fuzzy set theory has been extensively and successfuly

considered for classifier fusion. The use of fuzzy connectives

to combine the outputs of the component classifiers of an

ensemble was first proposed in [24]. Since then, many dif-

ferent fuzzy aggregation operators have been considered in

the specialized literature [11], [12], [25]. In [12] the accuracy

of some of them was compared to that of seven of the usual

crisp (i.e., non-fuzzy) aggregation operators when considered

as combination operators for Boosting classifier ensembles.

The conclusions drawn from that experimentation were that

fuzzy combination methods clearly outperformed non-fuzzy

ones.

Besides, some other works have extended the classifier

fusion scope and have proposed some techniques which show

some similarities with our new proposal. On the one hand, Co-

coccioni et al. [13] introduced probably the first and the only

proposal where a fuzzy system, specifically a first-order TSK

fuzzy system, is considered to combine the outputs of a MCS.

In addition, Bulacio et al. [26] proposed a hybrid classifier

selection-fusion strategy considering Sugeno’s fuzzy integral

as combination method and a greedy heuristic for the ensemble

member selection. On the other hand, Lu and Yamaoka [27]

introduced a fuzzy combination method specifically designed

for a hybrid ensemble of three classifiers which shows the

novel characteristic of allowing the user to incorporate human

expert knowledge on the bias of the component classifiers.

This is done by means of an additional refinement module

based on a FRBS comprised by Mamdani-type fuzzy rules.

In this way, contrary to the FRBCS-CM proposed in the

current contribution, Lu and Yamaoka’s fuzzy combination

method does not make use of fuzzy rules but of a complex

fuzzy reasoning process where the following components are

considered: a linguistic partition for the ensemble members’

outputs, a fuzzy aggregation of their membership degrees

and a defuzzification method to modify them, and a new

(crisp) aggregation for each class in order to take the final

MCS decision corresponding to the largest aggregated class

membership value.

As said, the latter procedure can be complemented by

expert-defined fuzzy rules to adjust the importance of the

decisions taken for each class according to the nature of the

component classifiers. Hence, a FRBS is used as a refinement

module for the fuzzy combination method decisions. Neverthe-

less, this strategy shows several problems such as its specificity

to the consideration of a simple three-classifier ensemble, its
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highly complex structure composed of two different nature

fuzzy reasoning modules, the need of manually defining the

fuzzy rules in the refinement module (which could be feasible

when using a very small number of component classifiers –

only three– but not with dealing with a more usual larger

number. In fact, the FRBSs considered in their experimentation

are only composed of a single rule with three inputs as well as

the authors mention they were not able to incorporate expert

knowledge to the Bayesian component classifier), and the

impossibility to perform classifier selection (which of course

is not required in the simple ensemble structure considered).

The proposal made in the current contribution is aimed to

solve all the latter drawbacks by designing a single fuzzy

linguistic combination method in the form of a fully under-

standable FRBCS, automatically derived by a GFRBCS, which

shows the capability of performing both classifier fusion and

selection.

C. Bagging Fuzzy Multiclassification Systems

In previous studies [4], [5], we described a methodology

based on classical MCS design approaches such as bagging

[28], random subspace [2], and mutual information-based

feature selection [29] to generate FRBMCSs. The approach

uses the basic heuristic fuzzy classification rule generation

method proposed by Ishibuchi [15] as well as a GA-based

classifier selection technique driven by a multicriteria fitness

function either composed of only an error measure [6] or of

its combination with a diversity measure [30].

In order to build these FRBMCSs, a normalized dataset is

split into two parts, a training set and a test set. The training

set is submitted to an instance and feature selection procedure

in order to provide the K individual training sets (the so-

called bags) to train the K simple FRBCSs desired through

Ishibuchi’s method. In every case, the bags are generated with

the same size as the original training set, as commonly done. In

this contribution, we consider the use of the random subspace

[2], where the feature set of each bag (and thus of each

component classifier) is randomly selected from the original

dataset.

The component FRBCSs are based on fuzzy classification

rules Rk
j with a class Ck

j and a certainty degree CF k
j in

the consequent: If xk
1 is Ak

j1 and . . . and xk
n is Ak

jn then

Class Ck
j with CF k

j , j = 1, 2, . . . , N , k = 1, 2, . . . ,K. They
take their decisions by means of the single-winner method

[14], [15]. To derive the fuzzy knowledge bases, one of the

heuristic methods proposed by Ishibuchi et al. in [15] is

considered and applied on each of the previous bags. The

consequent class Ck
j and certainty degree CF k

j are statisti-

cally computed from all the examples located in a specific

fuzzy subspace D(Aj)
k. Ck

j is computed as the class h with
maximum confidence according to the rule compatible training

examples D(Aj)
k = {ek

1 , . . . , ek
m}: c(Ak

j ⇒ Class h) =
|D(Ak

j )
⋂

D(Class h)|/|D(Ak
j )|. CF k

j is obtained as the

difference between the confidence of the consequent class and

the sum of the confidences of the remainder (called CF IV
j in

[15]).

After performing the training stage on all the bags, we get an

initial whole FRBMCS, which is validated using the training

and the test errors as well as a measure of complexity based

on the total number of rules in the FRBCSs. The pure voting

approach is applied as combination method: the ensemble

class prediction will directly be the most voted class in the

component classifiers output set. The lowest-order class is

taken in the case of a tie.

This ensemble is finally selected using a multicriteria GA

in order to look for the best cooperating subset of individual

classifiers, following a OCS. The final FRBMCS is validated

using different accuracy (training error, test error) and com-

plexity (number of classifiers, total number of rules) measures.

For a more detailed description on the methodology, the

interested reader is referred to the provided references.

III. A GENETIC FUZZY CLASSIFIER SYSTEM TO

DESIGN A FUZZY LINGUISTIC COMBINATION

METHOD FOR BAGGING FRBMCS

The next subsections will respectively provide a detailed de-

scription of the FRBCS-CM structure and of the composition

of the GFS designed to derive its fuzzy knowledge base.

A. Fuzzy linguistic combination

As said in Sec. II-C, the FRBCSs considered in the ensem-

ble will be based on fuzzy classification rules with a class and

a certainty degree in the consequent. Let Rk
j be the j-th rule

of the k-th member of an ensemble of K components,

if x is Ak
j then Class Ck

j with CF k
j ,

where Ck
j ∈ {1, . . . , nc} and nc is the number of classes.

We will use the expression Gk = {Rk
1 , . . . , Rk

Nk
} to denote

the list of fuzzy rules comprising the k-th ensemble member.
Let us partition each one of these lists into so many sublists

Gk
c as classes. G

k
c contains the rules of G

k whose consequent

is the class c.
Let us also define Rk(x) to be the intermediate output of

the k-th member of the ensemble, which is the fuzzy subset
of the set of class labels computed as follows:

Rk(x)(c) =
∨

{j|Ck
j
=c} CF k

j · Ak
j (x). (1)

Each component FRBCS maps an input value x to so

many degrees of membership as the number of classes in

the problem. The highest of these memberships determines

the classification of the pattern. That is to say, the k-th
FRBCS classifies an object x as being of class FRBCSk(x) =
arg maxc∈{1,...,nc} Rk(x)(c). Observe also that Rk(x)(c) is
the result of applying the fuzzy reasoning mechanism to the

knowledge base defined by the sublist Gk
c .

The simplest linguistic combination of the component FR-

BCSs consists in stacking a selection of some of the rules Rk
j

into a single large rule base. Let us define a binary matrix

[bck] ∈ {0, 1}nc×K , and let us agree that, if bck is zero, then

Gk
c is removed from the ensemble and Rk(x)(c) = 0. This
selection is equivalent to the hierarchical FRBCS comprising

nc expressions of the form:
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Fig. 1. The fitness of an ensemble has three components: (a) a quantile of
the bootstrap estimation of the training error, (b) the largest distance between
a misclassified example and the decision surface, and (c) the smallest distance
between a correctly classified example and the decision surface.

if (member1 says that class is c) or . . . or (memberK says

that class is c) then class is c,

where the asserts “(memberk says that class is c)” have a

degree of certainty bck determined by the rules in the sublist

Gk
c , and those asserts for which bck is zero are omitted. The

fuzzy output of this selected ensemble is

RI(x)(c) =
∨

{(j,k)|Ck
j
=c} bck · CF k

j · Ak
j (x). (2)

We can define more powerful linguistic selections which

extend this basic fuzzy reasoning schema. In this paper we

will use a sparse matrix of weights [wck] ∈ [0, 1]nc×K and

operate as follows:

RII(x)(c) =
∨

{(j,k)|Ck
j
=c} wck · CF k

j · Ak
j (x). (3)

Thus, the selected ensemble can be seen as a hierarchical

knowledge base with nc fuzzy classification rules with weights

in the antecedent part

if (member1(wc1) says that class is c) or . . .
(memberK(wcK) says that class is c) then class is c,

where the asserts “memberk(wck) says that class is c” have
a certainty determined by the rules in the sublist Gk

c , after

multiplying their confidence degrees by the same factor wck:

if x is Ak
j then Class Ck

j with wCk
j

k · CF k
j .

Again, those rules where wCk
j

k = 0 are omitted.

In this case, any of these hierarchical rule bases we have

introduced is univocally determined by a matrix [wck]. There-
fore, the genetic search of the best selection involves finding

the best matrix [wck], according to certain criteria that will be
defined next. Notice that, this search is a selection, because

[wck] is a sparse matrix. As we will detail later, in this
contribution the number of terms wck different than zero is

a design parameter.

B. Fitness function

We propose that the quality of a selected and combined

fuzzy ensemble is defined by three components (e,m1,m2)

(1,2) (1,3) (4,2) (10,2)

0.836 0.114 0.533 0.654

(4,1) (5,3) (6,1) (9,2)

0.128 0.225 0.432 0.991

(1,2) (1,3) (4,2) (10,2)

0.765 0.125 0.523 0.688

(4,1) (5,3) (6,1) (9,2)

0.199 0.214 0.442 0.957

0.836 0.114 0.533 0.654

Fig. 2. Coding scheme and crossover operation: an individual is a sparse
matrix, which is represented by a list of indices and a list of values.

(see Figure 1), thus the fitness of a possible FRBCS-CM

design is a triplet comprising three real numbers:

1) Training error e: we compute the error of each ensemble
for a large number of bootstrapped resamples of the

training set, and use a quantile of the distribution of these

errors as the first term of the fitness. This is intended to

avoid overfitting when there are outliers in the training

set, and also to detect the most robust selections, which

are expected to generalize better.

2) Error margin m1 : the second component of the fitness

function depends on the distance between the misclassi-

fied examples and their nearest decision surface. Given

an example x, we have approximated this value by the
difference between the highest and the second highest

term of RII(x)(c), and defined that the error margin of
an ensemble is the worst (i.e. the highest) value of this

difference for any example x in the training set.
3) Classification margin m2: the third component depends

on the distance between the correctly classified instances

and their nearest decision surface, which is approxi-

mated as before, by the difference between the highest

and the second highest terms in RII(x)(c). In this case,
however, the margin of an ensemble is the lowest value

of this difference for all the examples of the training set;

we seek a decision surface with the highest margin.

A lexicographical ordering is defined between two triplets:

(e,m1,m2) ≺ (e′,m′

1,m
′

2) ⇐⇒

8

>

<

>

:

(e < e
′)

(e = e
′) and m1 < m

′

1

(e = e
′) and (m1 = m

′

1) and (m2 > m
′

2)

(4)

C. Coding scheme, genetic operators and evolutionary scheme

An individual is an sparse matrix [wck], which will be
stored as two fixed-length ordered lists of indexes (c, k) and
their corresponding values wck, as displayed in Figure 2. The

chromosome length is defined according to the maximum

percentage of non-zero values in the matrix, which a param-

eter whose value is set by the user in advance. The initial

population is randomly generated. We have decided to apply

an arithmetic crossover [31] between the lists of values of

both individuals, leaving the lists of indices unchanged. The

mutation operator randomly alternates a nonuniform mutation

of an element of the list of values [32] and the random

generation of a completely new individual.

Lastly, since the fitness function is not scalar, we have

decided to implement a tournament-based steady state GA
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[33], where at each generation the two last elements in

each tournament are replaced by the offspring of the two

winners. This offspring is the result of the application of the

crossover operator mentioned before, followed by a mutation

with certain probability.

IV. EXPERIMENTS AND ANALYSIS OF RESULTS

This section is devoted to validate our new fuzzy linguis-

tic combination method proposal. While the first subsection

introduces the experimental setup considered, the second one

shows the results obtained in the experiments developed and

their analysis.

A. Experimental setup

To evaluate the performance of the FRBCS-CM in the

ensembles generated, nine popular data sets from the UCI

machine learning repository have been selected (see Table I).

The number of features ranges from a small value (5) to a

large one (60), while the number of examples does so from

208 to 5,477.

TABLE I
DATA SETS CONSIDERED

Data set #attr. #examples #classes

Sonar 60 208 2
Vehicle 18 846 4
P-Blocks 10 5,477 5
Pima 8 768 2
Glass 9 214 7
Breast 9 699 2
Yeast 8 1484 10
Heart 13 270 2

Phoneme 5 5,404 2

In order to compare the accuracy of the considered clas-

sifiers, we used Dietterichs 5×2-fold cross-validation (5×2-

cv) [34]. The bagging FRBMCS generated are initially com-

prised by 50 classifiers. The granularity and the number of

features used to derive them are both equal to 5. The GA for

the FRBCS-CM derivation works with a population of 100

individuals and runs for 2,000 generations (the equivalent to

40 generations in a usual GA with generational replacement

and crossover probability equal to 1). The tournament size is

5 and the mutation probability considered is 0.1. Five different

values have been considered for the chromosome size: 10, 25,

50, 75, and 90% of the terms of [wck] matrix were allowed
to be non-zero, reporting the best choice in each case. All

the experiments have been run in a HP Z600 workstation

(Intel eight-core Pentium 2.46 GHz computer with 6 GBytes

of memory), under the Mac OS X operating system.

B. Experiments developed

The mean values and standard deviations of the test error are

shown in Table II. Observe that the fuzzy ensembles using new

fuzzy linguistic combination method have improved the initial

ensembles (composed of 50 individual classifiers generated as

explained in Sec. II-C without applying any classifier selection

SON VEH PBL PIM GLA BRE YEA HEA PHO

-0
.1
0

-0
.0
5

0
.0
0

Fig. 3. Results obtained by the fuzzy linguistic combination method.

mechanism) considering the classical voting combination in

both accuracy and complexity in all cases but one. The new

FRBCS-CM method outperforms the voting one in Sonar,

Vehicle, P-Blocks, Pima, Glass, Yeast, Heart and Phoneme, but

it was unable to obtain a linguistically meaningful aggregation

in Breast.

TABLE II
COMPARED TEST ERROR

Original Linguistically
Data set FRBMCS selected FRBMCS %reduction

Sonar 0.2048 ± 0.030 0.1932 ± 0.028 75%
Vehicle 0.3570 ± 0.022 0.3530 ± 0.020 75%
P-Blocks 0.0896 ± 0.005 0.0583 ± 0.006 90%
Pima 0.2628 ± 0.021 0.2500 ± 0.019 90%
Glass 0.3879 ± 0.082 0.3486 ± 0.049 75%
Breast 0.0323 ± 0.005 0.0349 ± 0.006 10%
Yeast 0.4341 ± 0.022 0.4334 ± 0.021 75%
Heart 0.1719 ± 0.034 0.1607 ± 0.031 50%

Phoneme 0.2137 ± 0.006 0.2042 ± 0.008 90%

The statistical relevance of the differences is graphically

shown in Figure 3, where we have displayed the 9 boxplots

of the paired differences between the results the linguistic

selection we have introduced in this paper and those of the

bagging-based ensemble. Negative values signal an advantage

to our method. The median of the difference has always been

negative, but in Breast, where there is a tie between both

methods.

The highest statistical significances are in Phoneme (p-

value of 0.01 with a Wilcoxon test) and P-Blocks (p-value

< 10−5). Coincidentally, these are the hardest problems of

our benchmark. This may indicate that our FRBCS-CM will

be able to improve the accuracy of the original fuzzy ensemble

in those problems where bagging a random selection of fuzzy

classifiers does not produce optimal results. Our bootstrap-

based estimation of the training error has prevented an exces-

sive overfitting and has also proven effective detecting those

individual FRBCSs that should be removed, in those cases
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there is actually room for an improvement. Not being able

to improve the results of Breast points in the same direction:

in this dataset, the GFRBCS converged to ensembles with a

null training error, thus all the resamples of the training sets

will also have null error and the quantile of the bootstrap

distribution does not give more information than a central

moment of the training data. The error margin is null, either,

so further improvements in the learning are guided by the

third term of our fitness function, the classification margin.

In this case, the decreased performance attributable to the

linguistic interpretability of our ensemble (i.e., the use of a

t-norm instead of a sum for combining the classifiers) cannot

be compensated by removing the worst ensemble members.

V. CONCLUDING REMARKS AND FUTURE WORKS

We have proposed a novel MCS fuzzy combination method

based on the use of a FRBCS automatically derived by means

of a GA. The new fuzzy linguistic combination method shows

very interesting characteristics, especially its transparency and

its capability to jointly perform classifier fusion and selection.

In addition, when considered with a fuzzy classifier ensemble,

the overall system shows a hierarchical structure, thus making

FRBCSs able to deal with high dimensional problems avoiding

the curse of dimensionality.

Although the preliminary experiments developed clearly

showed the new proposal is very promising, our next steps

will be headed to perform a wider experimentation comparing

the introduced fuzzy linguistic combination method with some

other crisp and fuzzy combination methods, with other OCS

classifier selection methods, and with hybrid methods con-

sidering both classifier selection and fuzzy classifier fusion

(such as [26]). Those results will allow us to validate the

actual performance of this novel ensemble fuzzy combination

framework.

REFERENCES

[1] L. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms.
Wiley, 2004.

[2] T. Ho, “The random subspace method for constructing decision forests,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 8, pp. 832–844, 1998.

[3] D. Optiz and R. Maclin, “Popular ensemble methods: An empirical
study,” Journal of Artificial Intelligence Research, vol. 11, pp. 169–198,
1999.

[4] O. Cordón, A. Quirin, and L. Sánchez, “A first study on bagging fuzzy
rule-based classification systems with multicriteria genetic selection
of the component classifiers,” in Third IEEE International Workshop

on Genetic and Evolving Fuzzy Systems (GEFS), Witten-Bommerholz,
2008, pp. 11–16.

[5] ——, “On the use of bagging, mutual information-based feature se-
lection and multicriteria genetic algorithms to design fuzzy rule-based
classification ensembles,” in Eighth International Conference on Hybrid
Intelligent Systems (HIS), Barcelona, 2008, pp. 549–554.

[6] O. Cordón and A. Quirin, “Comparing two genetic overproduce-and-
choose strategies for fuzzy rule-based multiclassification systems gen-
erated by bagging and mutual information-based feature selection,”
International Journal of Hybrid Intelligent Systems, 2010, in press.

[7] B. Dasarathy and B. Sheela, “A composite classifier system design:
Concepts and methodology,” Proceedings of IEEE, vol. 67, no. 5, pp.
708–713, 1979.

[8] G. Giacinto and F. Roli, “Dynamic classifier selection based on multiple
classifier behaviour,” Pattern Recognition, vol. 34, no. 9, pp. 1879–1881,
2001.

[9] D. Partridge and W. Yates, “Engineering multiversion neural-net sys-
tems,” Neural Computation, vol. 8, no. 4, pp. 869–893, 1996.

[10] L. Lam and C. Suen, “Application of majority voting to pattern recogni-
tion: An analysis of its behavior and performance,” IEEE Transactions

on Systems, Man, and Cybernetics, vol. 27, pp. 553–568, 1997.
[11] A. Verikas, A. Lipnickas, K. Malmqvist, M. Bacauskiene, and A. Gelzi-

nis, “Soft combination of neural classifiers: A comparative study,”
Pattern Recognition Letters, vol. 20, no. 4, pp. 429–444, 1999.

[12] L. Kuncheva, ““Fuzzy” versus “nonfuzzy” in combining classifiers
designed by boosting,” IEEE Transactions on Fuzzy Systems, vol. 11,
no. 6, pp. 729–741, 2003.

[13] M. Cococcioni, B. Lazzerini, and F. Marcelloni, “A TSK fuzzy model for
combining outputs of multiple classifiers,” in 2004 Annual Meeting of
the North American Fuzzy Information Processing Society (NAFIPS’04),
Banff, 2004, pp. 871–875.

[14] O. Cordón, M. del Jesus, and F. Herrera, “A proposal on reasoning meth-
ods in fuzzy rule-based classification systems,” International Journal of
Approximate Reasoning, vol. 20, pp. 21–45, 1999.

[15] H. Ishibuchi, T. Nakashima, and M. Nii, Classification and Modeling

With Linguistic Information Granules. Springer, 2005.
[16] O. Cordón, F. Herrera, F. Hoffmann, and L. Magdalena, Genetic Fuzzy

Systems. Evolutionary Tuning and Learning of Fuzzy Knowledge Bases.
World Scientific, 2001.

[17] O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena, “Ten
years of genetic fuzzy systems: Current framework and new trends,”
Fuzzy Sets and Systems, vol. 141, no. 1, pp. 5–31, 2004.
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