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Abstract— Image registration is a very active research area
in computer vision. Image registration methods, aim to find
a transformation between two images taken under different
conditions. Point matching is an image registration approach
based on searching for the right pairing of points between the
two images. From this matching, the registration transformation
can be inferred by means of numerical methods.

In this paper, we tackle the medical image registration prob-
lem adapting a new advanced hybrid metaheuristic composed
by the GRASP and the evolutionary path relinking algorithms,
called G&EvPR. The experiments conducted in this work
have shown the good performance of G&EvPR compared to
similar approaches of the state of the art when dealing with
different medical image modalities. In particular, a good trade-
off between search space diversification and intensification is
achieved.

I. INTRODUCTION

Image registration (IR) is a fundamental task in computer
vision used to finding a correspondence (or transforma-
tion) among two or more images taken under different
conditions: at different times, using different sensors, from
different viewpoints, or a combination of them [4], [29].
Point matching is an IR approach based on searching for
the right pairing of points between two images. From this
matching, the registration transformation can be inferred by
means of numerical methods. The main advantage of using
this IR approach is that it does not require the estimation
of the suitable interval ranges of every parameter defining
the transformation. Thus, the proposal of outstanding point
matching algorithms is important for the IR community.

Evolutionary Computation (EC) [2] uses computational
models of evolutionary processes as key elements in the
design and implementation of computer-aided problem solv-
ing systems. In the last few years, there is an increasing
interest on applying evolutionary approaches to IR [6], [7],
[8], [25], [26], [28]. In this contribution, we extend our
previous work and exploit the benefits of applying the
hybridizaton [22] of the greedy randomized adaptive search
procedure (GRASP) [11] and the evolutionary path relinking
algorithm [23], called G&EvPR. Our contribution is two-
fold. On the one hand, we aim to balance the diversity
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and intensification components of this hybrid method. On
the other hand, we aim to take advantage of heuristic
information extracted from the images to guide the process.
Such information corresponds to the curvature values of
the object under study and it has proved to be useful to
achieve high quality solutions [5], [7], [8]. Furthermore,
curvature information facilitates a feature-based IR approach
characterized by a significant reduction of input data which
are represented by the most relevant points (according to
this heuristic information) of the object, thus allowing a
better matching and speeding up the IR process as well [6],
[25]. The performance of the proposed G&EvPR-based IR
algorithm is compared to our previous work considering six
medical images from two different image datasets.

The structure of the contribution is as follows. In Section
II we describe the IR problem and introduce the heuristic
information derived from the image. Section III is devoted to
briefly describe our previous work on the IR problem based
on point matching. Next, we introduce the new hybridization
of GRASP and Path relinking algorithms to tackle the
IR problem in Section IV. Computational experiments are
detailed in Section V. Finally, Section VI presents concluding
remarks and new possible designs based on GRASP and path
relinking algorithms for tackling point matching in future
works.

II. IMAGE REGISTRATION

In this section the IR problem is formally described.
Besides, we detail the heuristic information exploited to
guide the search process towards the best solutions for the
IR problem.

A. Problem formulation

IR is a difficult optimization problem. It can be stated as
finding a mapping between two images: I1 and I2 (named
scene and model, respectively). The objective is to determine
the geometric transformation f that applied to I1 leads
it to I2. Typically, an image is represented by a huge
amount of pixels. Therefore, many IR methods apply a
preprocessing step to extract the most relevant geometric
primitives (point, lines, etc) in both images. In these feature-
based approaches, the IR problem consists of finding the
transformation between two sets of geometric primitives. In
this contribution, we propose a feature-based method thus
considering a set of primitives in both images, P1 and P2

(P1 ⊆ I1, P2 ⊆ I2). Such geometric primitives are points
defining a crest line [21]. Crest lines are the locus of points
on a surface whose longest curvature (in absolute value) is
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locally maximal in the associated principal direction (see
Section II-B). A crest line can be viewed as a generalization
of an edge for smooth surfaces in 3D.

Although the final solution of the registration problem
consists of the right values for the parameters that determine
f , two different approaches arise, each of them working
in a different solution space: i) to search for the optimal
point matching between the two images and then identify
the appropriate transformation parameters —using numerical
methods such as least square estimation— to superimpose
the scene and the model considering such matching ([3], [5],
[8], [19]); and ii) to search in the parameter space directly
(usually by means of evolutionary algorithms) to get the
estimated transformation ([15], [16], [25], [26], [28]).

Point-matching is the classical approach in feature-based
registration. In mathematical terms, it can be described as
follows. Given two set of points P1 = {x1, x2, ..., xn} and
P2 = {y1, y2, ..., ym}, the problem is to find a transformation
f such that yi = f(xπ(i)) for i = 1, ..., r (r = min(n,m)),
where π is a permutation of size l (with l being the maximum
between n and m). Without loss of generality and to simplify
the notation, we consider that P1 is the larger point set, i.e.,
its dimension n is greater than that of P2, m.

The problem solving is naturally divided in two phases.
In the first one, a permutation of l elements defines the
matching between the points in P1 and P2 in such a way
that the first r elements (r = m in our case) of π are the P1

points associated to each of the m P2 points. In the second
phase, from this matching of points and using a numerical
optimization method (usually least squares estimation), the
parameters defining the transformation f are computed. The
goal is to find the transformation minimizing the distances
between the model points and the corresponding transformed
scene points. Therefore, in optimization terms, the value
associated with permutation π is given by the expression:

g(π) =
∑r

i=1 ‖fπ(xπ(i))− yi‖2

r
, (1)

i.e., g(π) corresponds to the Mean Square Error (MSE).
Therefore, the point matching problem can be simply stated
as minimizing g(π) for any permutation π of l elements and
its corresponding transformation f. In this work, we face the
IR problem from this point matching approach, adopting a
hybrid GRASP & evolutionary path relinking method [22] to
find high quality solutions to this combinatorial optimization
problem.

B. Heuristic information derived from the object 3D shape

This section is devoted to describe the heuristic informa-
tion that can be derived from the curvature of the shapes
included in the images in order to better address the IR
problem. Let us first define the iso-intensity surface of a
3D image, which will be called simply the iso-surface in
the rest of this paper. For any continuous function C(x, y, z)
of IR3, any value I of IR (called the iso-value) defines a
continuous, not self-intersecting surface, without hole, which

is called the iso-intensity surface of C [21]. A non ambiguous
way to define the iso-surface is to consider it as being
the surface which separates the space regions where the
intensity of C is greater or equal to I from these regions
whose intensity is strictly lower than I . Whether such an iso-
surface corresponds to the boundary of the scanned object is
another problem, that will not be considered in the current
contribution. Because of their good topological properties,
iso-surface techniques are the most widely used methods of
segmentation for 3D medical images.
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Fig. 1. Differential characteristics of surfaces

Let us see now some properties of the iso-surfaces (see
Figure 1). At each point p of those surfaces, there is an
infinite number of curvatures but, for each direction ~t in the
tangent plane at p, there is only one associated curvature
k~t. There are two privileged directions of the surface, called
the principal directions (~t1 and ~t2), which correspond to the
two extremal values of the curvature: k1 and k2. There are
many more parameters to determine the characterization of
surfaces, but we have considered the latter two (k1 and k2)
being enough to be considered as heuristic information to
help us the IR problem solving.

III. PREVIOUS WORK

In a previous work [8], we developed an IR method
following a point matching approach based on the scatter
search (SS) algorithm. SS was firstly introduced in [12] as a
heuristic for integer programming, being laterly extended by
Laguna and Martı́ [18]. The key idea of SS is the exploration
of the solution space operating on a set of solutions, the
reference set, by combining these solutions systematically to
create new ones. When the main mechanism for combining
solutions is such that a new solution is created from the
linear combination of two other solutions, the reference set
may evolve. The SS methodology basically consists of five
elements (see Figure 2): Diversification Generation Method,
Improvement Method, Solution Combination Method, Ref-
erence Set Update Method, and Subset Generation Method.
The three former are problem dependent, and should be
designed specifically for the problem at hand (although it is
possible to design “generic” procedures, it is more effective
to base the design on specific characteristics of the problem
setting). The other two are context independent, and usually
have a standard implementation.
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Fig. 2. The SS control diagram

The fact that the mechanisms within SS are not restricted
to a single uniform design allowed us the exploration and
design of strategic possibilities that demonstrated to be
effective tackling the IR problem [8]. One of the main
novelties of the SS-based IR method was that it exploited
problem dependent information. Moreover, new designs for
three of the five SS components – the generator of diverse
solutions, the improvement and the combination methods –
were proposed to develop a method outperforming the state-
of-the-art point matching approaches.

Specifically, the heuristic values of the extracted features
(i.e., the curvature of the crest-line points) were used to guide
the matching. As said, the method exploited the information
relative to local curvature characterizing the set of crest-line
points (see Section II-B) extracted as geometric primitives
of the scene and model images. Thus, the SS-based IR
method extended its capabilities by using an advanced coding
scheme introduced in [5] where a given point matching was
represented as a permutation. In [8] a function merror(·) was
also defined in order to evaluate the quality of the matching
stored in a given solution, π, by using the said curvature
values:

merror(π) = ∆k1 + ∆k2 where
∆kj =

∑r
i=1(k

i
j − kπi

j )2, j = {1, 2}
where ∆k1 and ∆k2 measure the error associated to the
matching of scene and model points with different values
for the first and second principal curvatures, respectively.

Meanwhile, the objective function of the previous IR
method included both information regarding the usual IR
measure g(π) (MSE of the registration transformation result-
ing from the point matching encoded in π) and the previous
criterion as follows:

min F (π) = w1 · g(π) + w2 ·merror(π) (2)

where w1, w2 are weighting coefficients defining the relative

importance of each term.
With such a function we defined a more suitable similarity

measurement to make a better search process in the space of
solutions. Instead of considering a function based on a single
registration error criterion, the use of the previous two terms
working together to solve the IR problem was an important
contribution of those IR methods [8], [5].

IV. GRASP & EVOLUTIONARY PATH RELINKING FOR
THE POINT MATCHING-BASED IR PROBLEM

In this section, we first present some basics on GRASP
and path relinking and their design to tackle the IR problem.
Finally, our GRASP & Evolutionary path relinking proposal
is detailed.

A. Greedy randomized adaptive search procedure: GRASP

The GRASP methodology was developed in the late
1980s [10], [11]. We refer the reader to [24] for a recent
survey of this metaheuristic. Each GRASP iteration consists
of constructing a trial solution and then applying local search
from the constructed solution. The construction phase is
iterative, randomized greedy, and adaptive.

Our adaptation of the GRASP methodology for the point
matching problem is as follows. The information extracted
from the shape of the object (see Section II-B) can be
used to establish a preference order for the assignments
between the scene image points and the model image ones.
Hence, a point xi from the scene image is more likely
to be assigned to those model points yj presenting the
same or similar curvature values k1 and k2. In order to
achieve that suitable point assignment, one possible approach
consists of considering a greedy heuristic. Such approach is
characterized by a strict selection order to assign the closest
model point yi in terms of curvature to every scene point xi,
where yi was not previously assigned to some other scene
point. However, we prefer to follow a different approach by
introducing randomness in both processes thus allowing each
decision to be taken randomly from the points still stored in
the nonempty candidate list. Likewise, the latter procedure
behaves similarly to a GRASP construction phase [24].

In the particular case of IR, the construction of a given
solution π, starts by creating two candidate lists, CL1 and
CL2 related to the scene and model images, respectively.
At the beginning, every list consists of all the points in the
image (i.e., initially CL1 = P1 and CL2 = P2). For each
element xi in CL1, its Euclidean distance to CL2 in terms
of curvature values is:

di = min
p

(k1(xi)− k1(yj))2 + (k2(xi)− k2(yj))2
j=1,...,m (3)

Thus di is the minimum value of the distances from xi to
all the elements in CL2. Then, we construct the restricted
candidate list RCL1 with a percentage α of the elements
in CL1 with the lowest di values. We randomly select one
element (say xk) from RCL1 for the matching assignment.
In order to find an appropriate point in the model to match
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xk, we construct RCL2 with a percentage α of the elements
in CL2 whose curvature values are closer to those of xk, i.e.,
those elements presenting the lowest distance values to xk.
Finally, we randomly select a point (say yk) in RCL2 and
match it to xk. We update CL1 and CL2 (CL1 = CL1 −
{xk}, CL2 = CL2−{yk}) and perform a new iteration. The
construction of the solutions π finishes when r = min(n,m)
points have been matched, i.e., when either CL1 or CL2 is
empty, and the remaining l−r points in the permutation π are
taken randomly from the points still stored in the nonempty
CL.

Regarding to the local search stage of the GRASP ap-
proach, we have used the strategy designed for the Improve-
ment Method of the IR proposal designed in our previous
work. Therein the “best-first” local search procedure with
the swapping neighbor operator is considered. In particular,
swappings are used as the primary mechanism to move from
one solution to another. Moreover, two improvements were
considered in order to speed up the local search procedure.
On the one hand, a primary strategy was applied in the neigh-
borhood generation by only considering promising swapping
moves taking as a base the curvature information. On the
other hand, a selective application of the local optimizer was
also considered.

B. Path relinking

Path relinking (PR) [13], [14] was suggested as an ap-
proach to integrate intensification and diversification strate-
gies in the context of tabu search. This approach generates
new solutions by exploring trajectories that connect high-
quality solutions – by starting from one of these solutions,
called an initiating solution, and generating a path in the
neighborhood space that leads toward the other solutions,
called guiding solutions. This is accomplished by selecting
moves that introduce attributes contained in the guiding
solutions, and incorporating them in an intermediate solution
initially originated in the initiating solution.

Let π1 and π2 be two solutions of the IR problem,
interpreted as the sets of m selected elements Selπ1 and
Selπ2 , respectively (|Selπ1 | = |Selπ2 | = m). PR(π1, π2)
starts with the first (initiating) solution π1, and gradually
transforms it into the second (guiding) one π2, by swapping
out elements selected in π1 with elements selected in π2.
The elements selected in both solutions π1 and π2, Selπ1π2 ,
remain selected in the intermediate solutions generated in
the path between them. Let Selπ1−π2 be the set of elements
selected in π1 and not selected in π2 and symmetrically,
let Selπ2−π1 be the set of elements selected in π2 and not
selected in π1, i.e.

Selπ1π2 = Selπ1 ∩ Selπ2 ,

Selπ1−π2 = Selπ1 \ Selπ1π2 ,

Selπ2−π1 = Selπ2 \ Selπ1π2 .

Let p0(π1, π2) = π1 be the initiating solution in the path
P(π1, π2) from π1 to π2. To obtain the solution p1(π1, π2)
in this path, we unselect a single element i ∈ Selπ1−π2 in

p0(π1, π2), and select a single element j ∈ Selπ2−π1 , thus
obtaining:

Selp1(π1,π2) = Selp0(π1,π2) \ {i} ∪ {j}.
In the greedy PR algorithm, the selection of the elements

i and j is made in a greedy fashion. To obtain pk+1(π1, π2)
from pk(π1, π2), we evaluate all the possibilities for i ∈
Selpk(π1,π2)−π2 to be de-selected and j ∈ Selπ1−pk(π1,π2)

to be selected, and perform the best swap. In this way, we
reach π2 from π1 in r = |Selπ1−π2 | = |Selπ2−π1 | steps, i.e.
pr(π1, π2) = π2. The output of the PR algorithm is the best
solution, different from π1 and π2, found in the P(π1, π2)
path (among p1(π1, π2), p2(π1, π2), . . . , pr−1(π1, π2)).

In our specific design for the IR problem, we adopt a
greedy randomized variant of PR [9] in which the moves are
done in a greedy randomized fashion. This procedure mimics
the selection method employed in a GRASP construction. In-
stead of exploring all the possibilities for i ∈ Selpk(π1,π2)−π2

to be de-selected and j ∈ Selπ2−pk(π1,π2) to be selected to
obtain pk+1(π1, π2) from pk(π1, π2), we perform a truncated
exploration of the 50% of the whole neighborhood in order to
speed up the run time of the IR method. Thus, the candidate
set C contains all these swaps, i.e.

Ck(π1, π2) = {(i, j) | i ∈ Selpk(π1,π2)−π2 ,

j ∈ Selπ2−pk(π1,π2)}.
Let z(i, j) be the value of the move associated with de-select
i and select j in the current solution pk(π1, π2) to obtain
pk+1(π1, π2). Then,

z(i, j) = F (pk+1(π1, π2))− F (pk(π1, π2)).

In step k of the path from π1 to π2, the restricted candidate
list RCLk(π1, π2) of good candidates for swapping is

RCLk(π1, π2) = {(i, j) ∈ Ck(π1, π2) | z(i, j) ≥ δz∗},
where z∗ is the minimum of z(i, j) in Ck(π1, π2) and δ (0 ≤
δ ≤ 1) is a search parameter. A pair (i, j) ∈ RCLk(π1, π2)
is randomly selected and the associated swap is performed.

C. IR proposal based on G&EvPR

Among many of the possible hybridizations of the GRASP
and PR algorithms, we follow the one proposed by Resende
et.al. [23] in which the sinergy between GRASP and Evolu-
tionary Path relinking (EvPR) demostrated to be a promising
approach for combinatorial optimization problems. EvPR
was introduced as a post-processing phase for GRASP with
PR [1]. The GRASP with EvPR algorithm, called G&EvPR
here, is detailed in Figure 3. In each iteration of the G&EvPR
algorithm, the construction and the improvement phase of
GRASP as well as the PR method to obtain the elite set
are applied (see steps 5 to 9 in Figure 3). After a number
of iterations previously established, the GRASP with greedy
path relinking stops. A post-processing phase based on PR
is applied to each pair of solutions in ES (in steps 18 to 27).
The solutions obtained with the latter application of PR are
considered candidates to enter ES, and PR is again applied
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to them as long as new solutions enter ES. Hence, solutions
in ES evolve. Figure 3 shows this process is repeated for
GlobalIter iterations. Instead of using a maximum number of
iterations as the stop criterion, our implementation maintains
the running time stop criterion considered in our previous
works on the IR problem.

Begin G&EvPR

1 GlobalIter ← number of global iterations;
2 Apply GRASP (construction and local search) for

b = |ES | iterations to
populate ES ← {π1, π2, . . . , πb};

3 For iter = 1, . . . ,GlobalIter Do
4 For i = 1, . . . , LocalIter Do
5 π ← GRASP construction phase;
6 π′ ← GRASP local search starting at π;
7 Randomly select πj from ES ;
8 Apply PR(π′, πj ) and PR(πj , π′) and let π′′ be the best

solution found;
9 π′′′ ← GRASP local search starting at π′′;
10 If (F (π′′′) < F (π1) Or F (π′′′) < F (πb)) and

d(π′′′,ES) ≥ dth) Then
11 πk ← closest solution to π′′′ in ES with

F (π′′′) < F (πk);
12 Add π′′′ to ES and remove πk;
13 Sort ES from best π1 to worst πb;
14 End-If;
15 End-For;
16 NewSol ← 1;
17 While NewSol Do
18 NewSol ← 0;
19 Apply PR(π, π′) and PR(π′, π) for every pair (π, π′) in

ES not combined before. Let π′′ be the best solution found;
20 π′′′ ← GRASP local search starting at π′′;
21 If (F (π′′′) < F (π1) Or F (π′′′) < F (πb)) and

d(π′′′,ES) ≥ dth) Then
22 πk ← closest solution to π′′′ in ES with

F (π′′′) < F (πk);
23 Add π′′′ to ES and remove πk;
24 Sort ES from best π1 to worst πb;
25 NewSol ← 1;
26 πbest ← π1;
27 End-If;
28 End-While;
29 End-For;
30 Return π1;

End-G&EvPR

Fig. 3. Pseudo-code of the G&EvPR algorithm.

Finally, the proposed IR method based on G&EvPR uses
some of the components previously designed for the SS-
based method. In particular, it shares the representation
of solutions based on permutations, the objective function
(Eq. 2) and the shape-derived information as well.

V. EXPERIMENTS

This section introduces the datasets and IR problem in-
stances considered in our experimental study. The parameter
settings established in our implementation are also described.
Finally, results achieved are analyzed.

A. Medical image datasets and IR problems considered

Our results correspond to a number of registration prob-
lems for six medical images from two different image

TABLE I
SIMILARITY TRANSFORMATIONS CONSIDERED.

T1 T2 T3 T4

RotAngle◦ 115.0 168.0 235.0 276.9

RotAxisx -0.863868 0.676716 -0.303046 0.872872

RotAxisy 0.259161 -0.290021 -0.808122 0.436436

RotAxisz 0.431934 0.676716 0.505076 -0.218218

∆x -26.0 6.0 16.0 12.0

∆y 15.5 5.5 -5.5 5.5

∆z -4.6 -4.6 -4.6 -24.6

S 1.0 0.8 1.0 1.2

datasets. The firts dataset is composed by four different
magnetic resonance images (MRIs). These images have
been obtained from the BrainWeb database at McGill Uni-
versity [17]. The purpose of this repository is to provide
researchers with ground truth data for image analysis tech-
niques and algorithms. BrainWeb has been widely used by
the IR research community (see, for example, [27]). One
of the most important challenges associated to the current
experimentation is that the goal of the IR process is to register
pairs of different images from the same object. Therefore, we
tackle a more realistic problem in medical IR named intra-
subject registration. The other two images considered belong
to a second dataset kindly provided by the Rhode Island
Hospital [20], and truly correspond to a real medical IR
case study. Both are computerized tomography (CT) images
of two different human wrists. In this case, we want to
highlight the complexity of the problem to be tackled due
to its particular anatomical structure. After preprocessing the
six images (I1 to I6), 583, 393, 348, 284, 575, and 412 crest
line points are obtained, respectively.

First column of Figures 4 and 5 show the original MRIs
and CTs, respectively. Second column of thos figures corre-
sponds to the isosurfaces segmenting the original images to
extract the regions of interest of each image, i.e. the brain
and the wrist. The third column of the figures shows the crest
line points extracted from each 3D object.

In order to be able to evaluate the performance of our
proposal, we applied four similarity transformations1 Ti (see
Table I) to four of the input images. Five different IR problem
instances are considered (see Table II). The behavior of two
IR methods based on G&EvPR and SS tackling those IR
problem instances will be analyzed.

B. Parameter settings

All the runs have been performed on a 2.26GHz Intelr

CoreTM 2 Duo P8400. Both G&EvPR and SS methods are
run ten times in every problem instance using a different
seed of the pseudo-random number generator each time in
order to avoid the bias of randomness. Each run takes 600
seconds. After a preliminary study, we consider α = 0.9 for
the construction phase of GRASP, δ = 0.9 for the greedy

1Notice that a Similarity transformation is determined by a 3D rotation
(given by a rotation axis and angle), a 3D translation, and a uniform scaling.
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TABLE II
DESIGNED IR PROBLEM INSTANCES.

Scene image Model image
IR problem Lesion Noise Lesion Noise

I1 vs T1(I2) No No No 1%

I1 vs T2(I3) No No Yes 1%

I1 vs T3(I4) No No Yes 5%

I2 vs T4(I4) No 1% Yes 5%

I6 vs T1(I5) − − − −

Fig. 4. From left to right, and top to bottom: original MRI images, their
respective isosurfaces, and their crest lines points. Note that the second and
third MRIs include 1% of Gaussian noise and 5% the fourth one. I3 and
I4 (last two rows) also considers a multiple sclerosis lesion (see circle).

Fig. 5. From left to right: original CT images, their respective isosurfaces,
and their crest lines points. First and second rows refers to I5 and I6,
respectively.

randomized PR scheme, a maximum of 80 iterations for the
local search algorithm and six solutions comprise the ES
(b = |ES | = 6). Regarding to the state-of-the-art IR method
based on SS, we maintained the same parameter settings as
used in our previous work.

C. Results

We consider the MSE (Eq. 1) of every solution in order
to compare the performance of both the G&EvPR and the
SS IR methods. Moreover, we have included a pure GRASP
variant with the aim of demonstrate that the sinergy between
GRASP and PR achieves improved results. Such statistical
values are presented in Table III.

TABLE III
STATISTICAL RESULTS COMPUTED FROM TEN RUNS OF EACH OF THE

FIVE IR PROBLEMS CONSIDERED. IT IS SHOWN THE MINIMUM (M),
MAXIMUM (M), MEAN (µ), AND STANDARD DEVIATION (σ) VALUE OF

MSE. BEST RESULTS ACCORDING TO MEAN AND STANDARD DEVIATION

VALUES ARE HIGHLIGHTED.

GRASP G&EvPR SS

I1 vs T1(I2) m 44.09 41.79 39.70
M 58.27 47.26 45.53
µ 50.39 44.43 42.85
σ 4.84 1.86 1.88

I1 vs T2(I3) m 44.16 39.17 40.77
M 91.74 45.05 49.71
µ 60.44 43.22 44.62
σ 13.59 1.76 2.23

I1 vs T3(I4) m 83.25 57.41 57.37
M 141.04 62.73 64.90
µ 108.60 60.88 61.18
σ 18.62 1.57 1.88

I2 vs T4(I4) m 136.10 81.00 78.70
M 228.06 91.89 95.02
µ 156.38 88.51 87.80
σ 26.49 3.59 5.19

I6 vs T1(I5) m 2.26 1.68 1.63
M 3.57 1.95 3.99
µ 2.88 1.80 2.19
σ 0.44 0.10 0.83

On the one hand, it is proven that G&EvPR outperforms
pure GRASP in all the considered IR problem instances. On
the other hand, notice that the IR method based on G&EvPR-
based achieves a competitive performance compared to
the state-of-the-art IR algorithm based on SS. Specifically,
G&EvPR achieves the best mean results for three of the
five IR problems. Moreover, it obtains the lowest standard
deviation values in all the cases. Therefore, G&EvPR pro-
vides a good trade-off between search space diversification
and intensification, thus showing a more robust behavior than
the IR method based on SS.

Regarding to the accuracy of the approaches (i.e. min-
imum MSE), both IR methods behave in a really similar
way obtaining precise results when tackling IR problems
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involving MRIs, being SS the IR method achieving the
overall best solution in four of the five IR problems. Figure 6
shows the said similar behavior. For the sake of visual
interpretation, different colors are used to represent the scene
and model images. First column in Figure 6 corresponds to
the initial configurations of the different problem instances.
The results achieved by G&EvPR and SS are presented
in the second and third columns of Figure 6, respectively.
Notice that the initial configurations considered correspond
to important similarity transformations leading to substantial
changes in the geometry of the images. Hence, the IR
problem instances tackled are really complex. Even dealing
with such complex scenarios, both G&EvPR and SS methods
achieve outstanding best solutions. That is visually shown by
the almost perfect overlapping of the colors of the objects
in the second and third column of Figure 6. The visual
results corresponding to the IR of CTs, i.e. I6 vs. T1(I5)
(see Figure 7) show the high complexity of this real-world
case study, mainly originated by the nature of the anatomical
structure of the human wrist.

Fig. 6. First row refers to the four IR problems using MRIs (I1 vs T1(I2),
I1 vs T2(I3), I1 vs T3(I4), and I2 vs T4(I4)). Second and third rows
show the best IR results achieved by the G&EvPR and the SS IR methods
facing each IR problem, respectively.

VI. CONCLUSIONS AND FUTURE WORKS

We presented a contribution facing the medical IR problem
from the point matching approach. Our evolutionary proposal
is an adaptation of an advanced hybrid method composed by
the GRASP and the evolutionary path relinking algorithms.
Specifically, we studied the performance of the method
in both realistic and real-world medical applications. We
proved how the sinergy between the single and multiple
trajectory approaches and the evolutionary scheme of PR
provided more robust results than the IR method based on
SS considered as one of the state-of-the-art algorithms in
point matching approaches. In particular, a good trade-off

Fig. 7. At the top: the IR problem using CTs (I6 vs T1(I5)). At the
bottom and from left to right: the best IR results achieved by the G&EvPR
and the SS IR methods, respectively.

between search space diversification and intensification have
been achieved by our proposal.

Finally, new possible designs based on GRASP and path
relinking algorithms for tackling IR problem could be con-
sidered in order to go one step further in this challenging
problem. In particular, a global study on the different designs
of the construction phase of GRASP, the combination scheme
with PR, and new shape-derived information are open re-
search directions for future work.

ACKNOWLEDGMENT

This work was partially supported by the Spain’s Min-
isterio de Ciencia e Innovación (Ref. TIN2009-07727 and
TIN2009-07516) and by the Andalusia’s Dpto. de Inno-
vación, Ciencia y Empresa (Ref. TIC1619), both including
EDRF fundings. The authors acknowledge Professor J. J.
Crisco, for providing them with the CT images.

REFERENCES

[1] D. V. Andrade and M. G. C. Resende. Grasp with evolutionary path-
relinking. In in 7th metaheuristics international conference (MIC
2007), 2007.
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