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Abstract. Time and space assembly line balancing considers realistic multiob-
jective versions of the classical assembly line balancing industrial problems, in-
volving the joint optimisation of conflicting criteria such as the cycle time, the
number of stations, and/or the area of these stations. The aim of this contribu-
tion is to present a new algorithm, based on the GRASP methodology, for the
1/3 variant of this family of industrial problems. This variant involves the joint
minimisation of the number and the area of the stations, given a fixed cycle time
limit. The good behaviour of our proposal is demonstrated by means of perfor-
mance indicators in four problem instances and a real one from a Nissan factory.

1 Introduction

An assembly line is made up of a number of workstations, arranged either in series
or in parallel. Since the manufacturing of a production item is divided into a set of
tasks, a usual and difficult problem is to determine how these tasks can be assigned
to the stations fulfilling certain restrictions. Consequently, the aim is to get an optimal
assignment of subsets of tasks to the stations of the plant. Moreover, each task requires
an operation time for its execution.

A family of academic problems –referred to as simple assembly line balancing
problems (SALBP)– was proposed to model this situation [1]. Taking this family as
a base and adding spatial information to enrich it, Bautista and Pereira recently pro-
posed a more realistic framework: the time and space assembly line balancing problem
(TSALBP) [2]. This framework considers an additional space constraint to become a
simplified version of real-world problems. The new space constraint emerged due to the
study of the specific characteristics of the Nissan plant in Barcelona (Spain).

As many real-world problems, TSALBP formulations have a multicriteria nature
because they contain three conflicting objectives to be minimised: the cycle time of
the assembly line, the number of the stations, and the area of these stations. In this
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paper we deal with the TSALBP-1/3 variant which tries to minimise the number of
stations and their area for a given product cycle time. TSALBP-1/3 has an important
set of hard constraints like precedences or cycle time limits for each station. Thus,
the use of constructive approaches is more convenient than others like local or global
search procedures [3]. In [4,5], we successfully tackled the TSALBP-1/3 by means of
a specific procedure based on the Multiple Ant Colony System (MACS) algorithm [6],
that approach is the state-of-the-art of TSALBP-1/3.

In addition, we proposed a multiobjective randomised greedy algorithm [4]. Al-
though the performance of the MACS algorithm was better, the randomised greedy
algorithm showed a good behaviour in some problems instances.

In this paper, we propose a multiobjective greedy randomised adaptive search pro-
cedure (GRASP) [7]. Its first stage corresponds to the randomised greedy construc-
tion presented in [4]. The second stage is based on a multiobjective local search with
two improvement methods, one per objective. We consider two different GRASP ap-
proaches: the typical GRASP scheme and an alternative one, characterised by a random
plus greedy construction. An experimentation is carried out in five problem instances,
including a real-world one from the Nissan industry plant of Barcelona, Spain. Multi-
objective performance indicators are used to analyse the behaviour of the algorithms.

The paper is structured as follows. In Section 2, the problem formulation is ex-
plained. Then, our new GRASP proposal to solve the problem is described in Section 3.
The experimentation setup as well as the analysis of results are presented in Section 4.
Finally, some concluding remarks and future research are discussed in Section 5.

2 The Time and Space Assembly Line Balancing Problem

The manufacturing of a production item is divided into a set V of n tasks. Each task j
requires an operation time for its execution tj > 0 that is determined as a function of
the manufacturing technologies and the employed resources. Each station k is assigned
to a subset of tasks Sk (Sk ⊆ V ), called workload. A task j is assigned to a station k.

Each task j has a set of direct predecessors, Pj , which must be accomplished before
starting it. These constraints are normally represented by means of an acyclic prece-
dence graph, whose vertices stand for the tasks and where a directed arc (i, j) indicates
that task i must be finished before starting task j on the production line. Thus, if i ∈ Sh

and j ∈ Sk, then h ≤ k must be fulfilled. Each station k presents a station workload
time t(Sk) that is equal to the sum of the tasks’ lengths assigned to the station k. SALBP
[1] focuses on grouping tasks in workstations by an efficient and coherent way.

The need of introducing space constraints in the assembly lines’ design is based
on two main reasons: (a) the length of the workstation is limited in the majority of
the situations, and (b) the required tools and components to be assembled should be
distributed along the sides of the line. Hence, an area constraint may be considered by
associating a required area aj to each task j and an available area Ak to each station
k that, for the sake of simplicity, we shall assume it to be identical for every station
and equal to A : A = max∀k∈{1..n}{Ak}. Thus, each station k requires a station area
a(Sk) that is equal to the sum of areas required by the tasks assigned to station k.
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This leads us to a new family of problems called TSALBP in [2]. It may be stated as:
given a set of n tasks with their temporal tj and spatial aj attributes (1 ≤ j ≤ n) and
a precedence graph, each task must be assigned to a single station such that: (i) every
precedence constraint is satisfied, (ii) no station workload time (t(Sk)) is greater than
the cycle time (c), and (iii) no area required by any station (a(Sk)) is greater than the
available area per station (A).

TSALBP presents eight variants depending on three optimisation criteria: m (the
number of stations), c (the cycle time) and A (the area of the stations). Within these
variants there are four multiobjective problems and we will tackle one of them, the
TSALBP-1/3. It consists of minimising the number of stations m and the station area
A, given a fixed value of the cycle time c, mathematically formulated as follows:

f0(x) = m =
UBm∑

k=1

max
j=1,2,...,n

xjk f1(x) = A = max
k=1,2,...,UBm

n∑

j=1

ajxjk (1)

where UBm is the upper bound for the number of stations m, aj is the area information
for task j, xjk is a decision variable taking value 1 if task j is assigned to station k, and
n is the number of tasks.

We chose this variant because it is realistic in the automotive industry since the an-
nual production of an industrial plant (and therefore, the cycle time c) is usually set by
some market objectives. For more information we refer the interested reader to [4].

The specialised literature includes a large variety of exact and heuristic problem-
solving procedures as well as metaheuristics for solving the SALBP [8]. However,
there are not many proposals for solving the multiobjective 1/3 variant of the TSALBP.
The MACS algorithm is the state-of-the-art for TSALBP-1/3 and was presented in [4],
where its performance was compared against a multiobjective extension of the SALBP
genetic algorithm and a multiobjective randomised greedy algorithm.

3 Our Multiobjective GRASP Proposal

In this section, our multiobjective proposal, based on the GRASP methodology, is de-
scribed. Following a GRASP approach, a solution is generated at each iteration. As our
problem is multiobjective, the solution will be included in a multiobjective archive if it
is not dominated. The algorithm finishes with a set of non-dominated solutions gener-
ated during all the iterations. Section 3.1 explains the generation of the greedy solutions.
The multiobjective local search applied to those solutions is detailed in Section 3.2.

3.1 First Stage: Generation of Randomised Greedy Solutions

In the creation of greedy solutions during GRASP we introduce randomness in two
processes. On the one hand, we allow the random selection of the next task among the
best candidates. It will be assigned to the current station. This process starts by creating
a candidate list of unassigned tasks. For each candidate task j, we compute its heuristic
value ηj . It measures the preference of assigning it to the current opened station. ηj

is proportional to the processing time and area ratio of that task (normalised with the
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upper bounds given by the time cycle, c, and the sum of all tasks’ areas, respectively).
In addition, ηj is also proportional to the ratio between the number of successors of task
j and the maximum number of successors of any eligible task.

Then, we sort all the candidate tasks according to their heuristic values and we set
a quality threshold for them given by q = maxηj − γ · (maxηj − minηj). All the
candidate tasks with a heuristic value ηj greater or equal than q are selected to be in
the restricted candidate list (RCL). In the former expression, γ is the diversification-
intensification trade-off control parameter. When γ = 1 we find a completely random
choice inducing the maximum possible diversification. In contrast, if γ = 0 the choice
is close to a pure greedy decision, with a low diversification. Proceeding in this way, the
RCL size is adaptive and variable, thus achieving a good diversification-intensification
trade-off. Finally at the current construction step, we randomly select a task among the
elements of the RCL. The construction procedure finishes when all the tasks have been
allocated in the needed stations.

We have also considered an alternative construction procedure, introduced in [9]
as random plus greedy construction. We will call it GRASP RCL2. It first chooses
candidates randomly. Then it evaluates each candidate according to a greedy function
to make the greedy choice. GRASP RCL2 first constructs the restricted candidate list
(RCL2) with a fraction β (0 ≤ β ≤ 1) of the elements, selected at random. Then, it
evaluates all the elements in RCL2, computing the heuristic value ηj . The iteration of
the algorithm finishes selecting the best one, i.e. the element j having the highest ηj

value. After a preliminary study, we found that β = 0.5 was the best value for this
parameter.

On the other hand, we also introduce randomness in the decision of closing the cur-
rent station according to a probability distribution given by the filling rate of the station:

p (closing k) =
∑

i∈Sk
ti

c .
The filling thresholds approach is also used to achieve a diverse enough Pareto front.

A different threshold is selected in isolation at each iteration of the multiobjective ran-
domised greedy algorithm, i.e., the construction procedure of each solution considers a
different threshold.

The algorithm is run a number of iterations to generate different solutions. The final
output consists of a Pareto set approximation composed of the non-dominated solutions.

3.2 Second Stage: Multiobjective Local Search

The second phase of the GRASP methodology consists of the improvement of each con-
structed solution considering a local search procedure. Mainly there are two stochastic
local search approaches to multiobjective combinatorial optimisation problems [10].
The first one uses an acceptance criterion based on the weak component-wise ordering
of the objective value vectors of neighbouring solutions. In addition, it maintains an un-
bounded archive of non-dominated solutions found during the search process [11]. The
second class is based on different scalarizations of the objective function vector [12].
We will use the second approach for our GRASP proposal. A weighted sum scalariza-
tion of the two objectives of our problem, A and m, are calculated by the following
formula: Min (λ1A + λ2m).
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This will be the function to be optimised by the local search. The weight vector
λ = (λ1, λ2) is created at random for each greedy solution constructed in the first
phase of the GRASP.

In addition, we will consider two different local search methods, one per objective.
The algorithm will apply them to the greedy solution depending on the weight vector
λ. If λ1 > λ2, the local search method for minimising the A objective will be followed.
Otherwise, the local search method for m will be considered. If the selected local search
method does not succeed minimising the weighted sum scalarization, the other method
is then applied.

The local improvement procedures for balancing problems are based on moves [11].
Our local search methods are based on such moves of the tasks. To explain this proce-
dure, it is necessary to define for each task j the first, ESj , and last, LPj , station where
a task may be assigned according to the assignment of its immediate predecessors and
successors. In general, a move (j, k1, k2) describes the movement of the task j from
station k1 to station k2, where k1 �= k2 and k2 ∈ [ESj , LPj]. The description of the
two local search methods for objectives A and m follows:

– Local search method for objective A. The pseudo-code of the method is de-
scribed in Algorithm 1. In this method, the neighbourhood of the solution is
built by means of the explained task moves. The goal is to reduce the area oc-
cupied by the station with the highest area by moving tasks to other stations.
This process of selecting the station with the highest area and removing tasks
from it is repeated MAX ITERATIONS times. After a preliminary study,
MAX ITERATIONS = 20 was considered.

– Local search method for objective m. In this case, the objective is reducing the
number of stations m. From the initial greedy solution, a neighbour is created by
moving all the tasks from the station with the lowest number of tasks to other sta-
tions, keeping a feasible solution. The loop of the method is shown in Algorithm
2. Given a station to be removed, the algorithm uses a branch & bound function
(BB function in the pseudo-code) to search for a feasible solution having the tasks
reallocated in other stations.
The local search is also run MAX ITERATIONS = 20 times. In addition, we
have to specify a maximum number of stations (MAX STATIONS) to limit the
computational time of the local search.

4 Experiments

We explain the instances, parameters and performance indicators used for the experi-
mentation. Then, we analyse the results of the different algorithms.

4.1 Problem Instances and Parameter Values

Five problem instances with different features have been selected for the experimenta-
tion: arc111 with cycle time limits of c = 5755 and c = 7520 (P1 and P2), lutz2
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Algorithm 1. The pseudo-code of the local search method for the A objective.

while Iterations ≤ MAX ITERATIONS do1

Target Station← Find the station with the highest area;2

Tasks← Descending Sort(tasks of Target Station);3

while no scalarization improvement AND Tasks �= ∅ do4

Task← First element of Set Of Tasks ;5

Find First Station and Last Station of Task;6

while no scalarization improvement do7

Possible Station← station with the lowest area8

∈ [First Station,Last Station];
Move Task from Target Station to Possible Station;9

if scalarization improvement then10

Make the movement permanent;11

end12

end13

Remove Task from Set Of Tasks;14

end15

if Target Station = ∅ then16

Remove Target Station;17

end18

Iterations← Iterations +1;19

end20

return true if scalarization is improved;21

Algorithm 2. The pseudo-code of the local search method for the m objective.

while Iterations ≤ MAX ITERATIONS do1

Stations← Ascending sort with respect no. of tasks;2

i← 1;3

while i ≤MAX STATIONS AND no scalarization improvement do4

Target Station← i-th element of Set Of Stations;5

Set Of Tasks← Descending Sort(tasks of Target Station);6

for all elements of Set Of Tasks do7

Find First Station and Last Station;8

end9

BB(First element of Set Of Tasks, Set Of Tasks);10

if no scalarization improvement then11

i← i + 1;12

end13

end14

Iterations← Iterations +1;15

end16

return true if scalarization is improved;17
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(P3), mukherje (P4), and nissan (P5). Originally, these instances but nissanwere
SALBP-1 instances1 only having time information. However, we have created their area
information by reverting the task graph to make them bi-objective (as done in [2]). In
addition, we have considered a real-world problem instance (P5) corresponding to the
assembly process of the Nissan Pathfinder engine, assembled at the Nissan industrial
plant in Barcelona (Spain) [2]. The five TSALBP-1/3 instances considered are publicly
available at http://www.nissanchair.com/TSALBP.

We run each algorithm 10 times with different random seeds, setting the time
as stopping criteria (900 seconds). All the algorithms were launched in the same
computer: Intel PentiumTM D with two CPUs at 2.80GHz, and CentOS Linux 4.0.
GRASP and GRASP RCL2 were launched with α = 0.3 and β = 0.5 respec-
tively. For the multiobjective local search, 20 as the maximum number of iterations
and MAX STATIONS = 20. On the other hand, for the MACS algorithm, we
consider 10 different ants, β = 2, an evaporation rate ρ = 0.2, and a value of 0.2
for the transition rule parameter q0. The MACS algorithm also uses two ants for each
of the five ants’ thresholds considered {0.2, 0.4, 0.6, 0.7, 0.9} to make the algorithm
multicolony.

4.2 Multiobjective Performance Indicators

We will consider two different multiobjective performance indicators [13] to evaluate
the quality of the new GRASP proposal with respect to the TSALBP-1/3 state-of-the-
art, the MACS algorithm.

On the one hand, we selected one unary performance indicator: the hypervolume ra-
tio (HV R). On the other hand, we have also considered a binary performance indicator,
the set coverage indicator C. We have used boxplots based on the C indicator that cal-
culates the dominance degree of the approximate Pareto sets of every pair of algorithms
(see Figure 1). Each rectangle contains five boxplots representing the distribution of the
C values for a certain ordered pair of algorithms in the five problem instances (P1 to
P5). Each box refers to algorithm A in the corresponding row and algorithm B in the
corresponding column and gives the fraction of B covered by A (C(A, B)).

In addition, in Figure 2 we show an example of the aggregated Pareto front approxi-
mation for instance P1 to allow a visual analysis of the results.

4.3 Analysis of Results

The experimental results obtained by the two multiobjective GRASP variants, i.e.
GRASP and GRASP RCL2, and the MACS algorithm can be seen in the C perfor-
mance indicator boxplots of Figure 1, the HV R values in Table 1, and the attainment
surfaces of Figure 2.

Considering the C boxplots and only the first four problem instances, from P1 to P4,
we can draw the following conclusions:

1 Available at http://www.assembly-line-balancing.de
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– If we compare MACS with GRASP, our new multiobjective proposal outperforms
the state-of-the-art algorithm. Boxplots are clear and GRASP obtains better2 Pareto
sets than MACS in all the instances but P5 (nissan). As the last problem instance is
different from the rest, it will be discussed later.

– The behaviour of GRASP RCL2 with respect to MACS is not as clear as the pre-
vious comparison. GRASP RCL2 dominates MACS in two instances, P1 and P4.
However, the Pareto sets obtained by the MACS algorithm are better in the P2 and
P3 instances. Therefore, both algorithms behave similarly and we cannot say which
one is better just taking in mind the C performance indicator.

– Comparing both versions of GRASP in the C boxplots (Figure 1), it can be ob-
served that the original one is significantly “better” than GRASP RCL2. This be-
haviour is common in all the problem instances.

Fig. 1. C metric values represented by boxplots comparing MACS vs. the new GRASP proposals

Hence, according to the binary performance indicator C, the approach followed up
by GRASP is useful to tackle the TSALBP-1/3. Nevertheless, the greedy construction
phase is important for the problem solving since the difference between GRASP and
GRASP RCL2 is high. Thus, selecting one task at random after restricting the candidate
list is better than selecting the best task according to the greedy value after the random
selection of the candidate tasks.

We can draw similar conclusions analysing the HV R values (see Table 1). The
HV R values of GRASP are always the highest in all the problem instances but P5
(nissan). In contrast, if we compare the values of GRASP RCL2 and MACS, we can
see how GRASP RCL2 is always better or equal than MACS. This means that generally

2 When we refer to the best or better performance comparing the C performance indicator val-
ues of two algorithms we mean that the Pareto set derived from one algorithm significantly
dominates that one achieved by the other. Likewise, the latter algorithm does not dominate the
former one to a high degree.
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Table 1. Mean and standard deviation values (in brackets) of the HV R metric

P1 P2 P3 P4 P5

MACS 0.925 (0.006) 0.914 (0.012) 0.877 (0.024) 0.886 (0.012) 0.939 (0.009)
GRASP 0.969 (0.005) 0.935 (0.008) 0.889 (0.034) 0.944 (0.013) 0.925 (0.027)
GRASP RCL2 0.948 (0.007) 0.919 (0.007) 0.827 (0.037) 0.909 (0.008) 0.896 (0.008)

Fig. 2. Aggregated Pareto front approximation for the P1 problem instance

GRASP RCL2 converges better than MACS but its Pareto fronts are not as diverse as
in MACS (the HV R values favour GRASP RCL2 against MACS).

As said, we have also considered the application of the algorithms to a real-world
problem corresponding to the assembly process of the Nissan Pathfinder engine at the
plant of Barcelona (Spain). The assembly of these engines is divided into 378 operation
tasks, although we have grouped these operations into 140 different tasks. The Nissan
instance data is also available at http://www.nissanchair.com/TSALBP.

With this instance, P5, results are different. If we analyse the C performance indi-
cator (fifth column of the boxplots in Figure 1), MACS is better than both versions of
GRASP. The corresponding values for the HV R performance indicator, Table 1, show
the same behaviour, i.e. the MACS algorithm obtains Pareto sets of better quality.

Figure 2 graphically shows the aggregated Pareto fronts corresponding to P1 and P5.
The same conclusions arise. GRASP is the best algorithm considering all instances but
P5 (second Pareto front of the figure). However, MACS is more suitable for the Nissan
problem instance, P5.

The P5 instance has some features making it different from the rest of the instances.
As explained, it is the real case of the Nissan industry plant placed in Barcelona. The
main difference of this problem instance with respect to the remainder is the area of
the tasks to be allocated. Almost all the tasks have a very low area (less than one unit
of area). Even more than 25 tasks have no area assigned. This particular characteristic
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makes the MACS algorithm more competitive to solve this instance, making the Pareto
set approximations spread out in a better way.

5 Concluding Remarks and Future Works

In this contribution, we have successfully applied a new algorithm based on the GRASP
methodology to solve the TSALBP-1/3. The new algorithm is multiobjective to tackle
the industrial problem and makes use of a multiobjective local search procedure with
two problem-specific local improvement methods, one per objective.

Good results were achieved in the majority of the problem instances, obtaining even
better results than the state-of-the-art algorithm, MACS. Nevertheless, the MACS al-
gorithm still outperforms our multiobjective GRASP in the real-world Nissan instance.
Therefore, we aim to explore in future works the application of the local search to the
MACS algorithm as well as multiobjective memetic algorithms to increase the quality
of the Pareto fronts.
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