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Ant Colony Optimization (ACO) is a bioinspired metaheuristic based on ants foraging used to solve differ-
ent classes of problems. In this paper, we show how, using a Two-Stage approach the quality of the solu-
tions of ACO is improved. The Two-Stage approach can be applied to different ACO. The performance of
this new approach is studied in the Traveling Salesman Problem and Quadratic Assignment Problem. The
experimental results show that the obtained solutions are improved both problems using the Two-Stage
approach. Several statistical procedures are applied to show the effect of this new approach.
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1. Introduction

Ant Colony Optimization (ACO) is a metaheuristic (Dorigo, Caro,
& Gambardella, 1999; Dorigo & Stützle, 2004) inspired by the
shortest path searching behavior of various ant species. Since the
initial work of Dorigo, Maniezzo and Colorni on the first ACO algo-
rithm, the ant system (Dorigo, Colorni, & Maniezzo, 1996), several
researchers have developed different ACO algorithms that per-
formed properly when solving combinatorial problems such as
the traveling salesman problem (TSP), the quadratic assignment
problem (QAP), the sequential ordering problem, production
scheduling, timetabling, project scheduling, vehicle routing, tele-
communication routing, investment planning and staff scheduling,
among others (Cordón, Herrera, & Stützle, 2002b; Dorigo & Stützle,
2003).

The ACO metaheuristics is a completely constructive model, the
final solution is the resultant of a set of components, which are
incorporated in every movement of the ants. This characteristic
makes it necessary to evaluate the quality of every component be-
fore incorporating it to the solution, so that for big-size problems
the model is rather inefficient regarding the run time. To suppress
this drawback, a new approach of ACO was studied in Puris, Bello,
Martinez, and Nowe (2007a); Puris, Bello, Trujillo, Nowe, and Mar-
tinez (2007b), named Two-Stage Ant Colony Optimization (TS-
ACO). The underlying idea is to split the heuristic search performed
by ants into two stages. In the first stage, preliminary results are
found, these results are used by ants to improve the searching in
the second stage.
Elsevier Ltd.
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In this paper the performance of an alternative of TS-ACO is dis-
cussed, in which the second stage only used the pheromone trail
obtained in the first stage, called Pheromone Two-Stage ACO
(PTS-ACO). The performance of this alternative is tested using as
benchmark two well known problems, TSP (Gutin & Abraham,
2002) and QAP (Cela, 1998), where the run time is fixed to measure
the quality solution for the both models (ACO and PTS-ACO). The
Two-Stage approach is applied to different ACO algorithms, such
as Ant System (AS), Ant Colony Optimization (ACS), and Max–
Min Ant System (MMAS). The experimental results are shown
and validated using statistical procedures.

In order to do that, the paper is organized as follows. In the next
Section the ACO metaheuristic is described. Then, the two-stage
ACO approach is presented in Section 3. In Section 4, the experi-
mental framework is introduced, presenting the benchmarks and
the statistical methodology. The study of experiments is showed
in Section 5; first, the best classic ACO algorithm for each problem
is chosen, later, the two-stage alternative is applied to each ACO
algorithm selected and last a comparison between both models is
presented. Concluding remarks are pointed out in Section 6. Final-
ly, three appendix are included; statistical procedures used in or-
der to compare the obtained results in this paper are explained
in Appendix A, the results of the ACO algorithms for the bench-
marks are presented in Appendix B and the results of the two-stage
alternative applied to the best ACO algorithms for the benchmarks
are presented in Appendix B.
2. Ant colony optimization

ACO (Dorigo & Stützle, 2004) algorithms are inspired from the
foraging of real ant colonies to solve combinatorial optimization
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problems. The algorithms are based on a colony of artificial ants,
that is, simple computational agents that work cooperatively and
that are communicated through artificial pheromone trails.

ACO algorithms are essentially constructive algorithms: in each
algorithm iteration, every ant builds a solution to the problem by
traveling on a construction graph. Each edge of the graph, repre-
senting the possible steps the ant can make, has associated two
kinds of information that guide the ant movement:

� Heuristic information, which measures the heuristic preference
of moving from node i to node j, of traveling the edge aij. It is
denoted by gij. This information is not modified by the ants dur-
ing the algorithm running.

� (Artificial) pheromone trail information, which measures the
‘‘learned desirability” of the movement and mimics the real
pheromone that natural ants deposit. This information is modi-
fied during the algorithm’s execution depending on the solu-
tions found by the ants. It is denoted by sij.

Finally, a local search could be applied (optional) to the solu-
tions found by the ants. The effect of the local search is positive
due to we find a positive synergy between ants, based exploration
and local search exploration (Dorigo et al., 1996; Dorigo & Gam-
bardella, 1997b).

Several ACO algorithms have been proposed which are included
within the ACO metaheuristic, such as the Ant System (Dorigo
et al., 1996), the Ant Colony System (Dorigo & Gambardella,
1997b), the Max–Min Ant System (Stützle & Hoos, 2000), the
Rank-Based Ant System (Bullnheimer, Hartl, & Strauss, 1999), the
Best–Worst Ant System (Cordón, de Viana, & Herrera, 2002a) and
multi-objective ACO model (García-Martínez, Cordón, & Herrera,
2007), among others.

The next subsections will be briefly introduce the Ant System,
Ant Colony System and Max–Min Ant System.
2.1. Ant system

The AS (Dorigo et al., 1996) was the first ACO algorithm. AS is
characterized by the fact that the pheromone update is triggered
once all ants have completed their solutions and it is done as fol-
lows. First, all pheromone trails are reduced by a constant factor,
implementing in this way the pheromone evaporation. Second,
every ant of the colony deposits an amount of pheromone in its
path which is a function of the quality of its solution. Solutions
in AS are built as follows. At each construction step, an ant k in
AS chooses to go to a next node with a probability that is computed
as:

pk
ij ¼

ðsijÞa � ðgijÞ
bP

l2Nk
i
ðsijÞa � ðgijÞ

b ð1Þ

where gij is a priori available heuristic information for the transition
from state i to j, a and b are two parameters which determine the
relative influence of pheromone trail and heuristic information,
and Nk

i is the feasible neighborhood of ant k, that is, the set of states
which ant k has not yet visited. Parameters a and b have the follow-
ing influence on the algorithm behavior. If a ¼ 0, the selection prob-
abilities are proportional to ðgijÞ

b and the closest states will more
likely be selected, in this case AS corresponds to a classical stochas-
tic greedy algorithm (with multiple starting points since ants are
initially randomly distributed on the states). If b ¼ 0, only phero-
mone amplification is at work; this will lead to the rapid emergence
of a stagnation situation with the corresponding generation of tours
which, in general, are strongly suboptimal (Dorigo et al., 1999).
Search stagnation is defined in Dorigo, Bonabeau, and Theraulaz
(2000) as the situation where all the ants follow the same path
and construct the same solution.

The solution construction ends after each ant has completed a
tour, that is, after each ant has constructed a sequence of length
n. Next, the pheromone trails are updated. In AS this is done by first
reducing the pheromone trails by a constant factor (this is phero-
mone evaporation) and then allowing each ant to deposit phero-
mone on the arcs that belong to its tour:

sijðt þ 1Þ ¼ ð1� qÞ � sijðtÞ þ
Xm

k¼1

Dsk
ij 8ði; jÞ ð2Þ

where 0 < q 6 1 is the pheromone trail evaporation rate and m is
the number of ants. The parameter q is used to avoid unlimited
accumulation of the pheromone trails and enables the algorithm
to ‘‘forge” previously done bad decisions. On arcs which are not cho-
sen by the ants, the associated pheromone strength will decrease
exponentially with the number of iterations. Dsk

ij is the amount of
pheromone ant k deposits on the arcs; it is defined as:

Dsk
ij ¼

1=LkðtÞ if arcði; jÞ is used by ant k

0 otherwise

(
ð3Þ

where LkðtÞ is the length of the kth ant’s tour. By Eq. (3), the shorter
the ant’s tour is, the more pheromone is received by arcs belonging
to the tour. In general, arcs which are used by many ants and which
are contained in shorter tours will receive more pheromone and
therefore are also more likely to be chosen in future iterations of
the algorithm.

2.2. Ant colony system

Other algorithm in ACO metaheuristic is the ACS (Dorigo &
Gambardella, 1997b), it improves over AS by increasing the impor-
tance of exploitation of information collected by previous ants
with respect to exploration of the search space. This is achieved
via three mechanisms:

1. A strong elitist strategy is used to update pheromone trails:

sijðt þ 1Þ ¼ ð1� qÞ � sijðtÞ þ q � sbest
ij ð4Þ

the best ant is the global-best ant, that is, the ant that made the
best tour from the start of the trial.

2. The ants choose the next node to move to using a so-called
pseudo-random proportional rule: with probability q0 they move
to the node j for which the product between pheromone trail
and heuristic information is maximum, that is:

j ¼ arg max
l2Nk

i

fðsijÞa � ðgijÞ
bg if q 6 q0 ð5Þ

while with probability 1� q0 they operate a biased exploration in
which the probability is the same as in AS (see Eq. 1). The value
q0 is a parameter: when it is set to a value close to 1, as it is the case
in most ACS applications, exploitation is favored over exploration.
Obviously, when q0 the probabilistic decision rule becomes the
same as in AS.
3. Differs form previous ACO algorithms also because ants update

the pheromone trails while building solutions (like it was done
in ant-quantity and in ant-density). In practice ACS ants ‘‘eat”
some of the pheromone trail on the edges they visit.

sijðt þ 1Þ ¼ ð1� qÞ � sijðtÞ þ q � sijð0Þ ð6Þ

This has the effect of decreasing the probability that a same path is
used by all the ants (i.e., it favors exploration, counterbalancing this
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way the other two above-mentioned modifications that strongly fa-
vor exploitation of the collected knowledge about the problem).
2.3. Min–min ant system

The MMAS (Pitakaso, Almeder, Doerner, & Hartl, 2007; Stützle &
Hoos, 2000), has been specifically developed to obtain a stronger
exploitation of the solutions and to improve of premature stagna-
tion of the search. To achieve this, the MMAS presents the three
key aspects:

(i) To exploit the best solutions found during the execution of
the algorithm after each iteration only one single ant adds
pheromone. This ant may be the one which found the best
solution in the current iteration (iteration-best ant) or the
one which found the best solution from the beginning of
the trial (global-best ant).

(ii) To avoid stagnation of the search, the range of possible pher-
omone trails on each solution component is limited to an
interval ½smin; smax�.

(iii) Additionally, is initialized the pheromone trails to smax,
achieving in this way a higher exploration of solutions at
the beginning of the algorithm.

In the MMAS the ants move from the state i to j, by using the
same probabilistic rule that the AS algorithm.

After all ants have completed the tour construction, the phero-
mone trails are updated, in MMAS only a single ant is used to up-
date the pheromone trails after each iteration. Consequently, also
like in ACS, MMAS uses Eq. (4), where only the best ant (the glo-
bal-best or the iteration-best) is allowed to add pheromone after
each algorithm iteration. Computational results have shown that
best results are obtained when pheromone updates are performed
using the iteration-best solution with increasing frequency during
the algorithm execution.

Independently of the choice between the iteration-best and the
global-best ant for the pheromone trail update, search stagnation
may occur. This can happen if at each choice point, the pheromone
trail is significantly higher for one choice than for all the others. In
this situation, due to the probabilistic choice governed by Eq. (1),
the ant will prefer this solution component over all alternatives
and further reinforcement will be given to the solution component
in the pheromone trail update. In such situation the ants construct
the same solution over and over again and the exploration of the
search space stops.

For this reason, MMAS imposes explicit limits smin and smax on
the minimum and maximum pheromone trails such that for all
pheromone trails sijðtÞ. smin 6 sijðtÞ 6 smax. After each iteration
must be ensured that the pheromone trail respects the limits. If
we have sijðtÞ > smax, we set sijðtÞ ¼ smax; analogously, if sijðtÞ <
smin, we set sijðtÞ ¼ smin. Also, note that by enforcing smin > 0 and
if sij < for all solution components, the probability of choosing a
specific solution component is never 0.

But still appropriate values for the pheromone trail limits must
be chosen. In Stützle and Hoos (2000) different forms of determin-
ing these values are proposed, as well as other important elements
for a better behavior of the algorithm; for instance, forms to deter-
mine the initial values of pheromone, also an additional mecha-
nism, called pheromone trail smoothing, may be useful to increase
MMAS performance.
3. Two-stage ant colony optimization

The behavior of ants in an ACO algorithm can be informally
summarized as follows. A colony of ants concurrently and asyn-
chronously are moved through adjacent states of the problem by
building paths on a graph (Dorigo & Stützle, 2004). They walk fol-
lowing pheromone trails and heuristic information from a stochas-
tic local decision policy. The ants incrementally build solutions that
solve an optimization problem. Once the ant has built a solution, or
while the solution is being built, the ant evaluates the (partial)
solution and deposits pheromone trails on the components or con-
nections it used. This pheromone information will lead the search
of the next ants. This exploration strategy causes that the ACO
algorithms develop an expensive exploration of the space search
defined for a discrete problem.

TS-ACO is a proposal in order to obtain good exploration of the
search space. The first studies about TS-ACO were presented in
Puris et al. (2007a); Puris et al. (2007b). This strategy is bases in
”Divide and Conquer” methodology . The exploration carried out
by the ants is divided into two stages. The first stage is responsible
to obtain partial results, which are used to exploration in the sec-
ond stage. The split process affects to the number of ants (m) per
stage, number units for solution (n) and stop condition per stage.

A ratio r is introduced in order to calculate the portion of the
overall search to be performed in each stage. For instance, if
r = 0.3, it means that the first stage will comprise 30% of the overall
search and during the second stage, the 70% shall be carried out.
The components are divided the following way:

1. (Ants) The total number of ants (m) defined by ACO algorithms
is splits into two sets ðm1 and m2Þ. The m1 set of ants develops
the exploration in the first stage and m2 for the second stage.
These sets are calculated as:

m1 ¼ r �m ð7Þ
m2 ¼ m�m1 ð8Þ

2. (Solutions) The number of total components of the graph (n) is
splits into two parts ðn1 and n2Þ, n1 represents the size of the
partial solution found to ants in the first stage and n2 represents
the size of the solution found in the second stage. These values
are calculated as:

n1 ¼ r � n ð9Þ
n2 ¼ n� n1 ð10Þ
n2 ¼ n ð11Þ

In the second stage, the solutions can be built the two way:
(a) Adding to each one of the bests partial solution found the

first stage, n2 components Eq. (10).
(b) Explorer all graph starting form one initial node and add-

ing n2 components Eq. (11)

3. (Stop condition) The stop condition defined for ACO algorithms
(usually run time, called sc) is splits into two values
ðsc1 and sc2Þ, the first ðsc1Þ represents the stop condition of
the ACO algorithm for the first stage and the another ðsc2Þ is
the stop condition for the second. These values are calculated
as:

sc1 ¼ r � sc ð12Þ
sc2 ¼ sc � sc1 ð13Þ

As output of the first stage, the bests partial solutions and the
pheromone trails are obtained (partial results). Depending on the
input of the second stage, different alternatives are presented. In
previous works (Puris et al., 2007a; Puris et al., 2007b) both partial
results are used for the ants to guide the search in second stage.

Now, the two-stage alternative presented in this paper, PTS-
ACO, is describe. The partial results obtained as output of the first
stage, only the pheromone trails are used in the second stage in or-



Fig. 1. PTS-ACO algorithm.

Fig. 2. TSP instance for 9 cities.
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der to perform a good search process in this stage. This process is
described below:

[First stage:] The number of ants assigned for the first stage (m1)
starts the search for a component of the graph (same ACO algo-
rithms). Then, a partial solution of size (n1) is found by each ant.
In this process, the pheromone trails are updated depending of
the ACO algorithm used. The search process stops when the run
time for this stage (sc1) is over.
[Second stage:] Each ant assigned for this stage (m2) starts in the
same way than the previous stage (in a component of the
graph). In this stage, each ant finds a solution with n2 compo-
nents (Eq. 11) The pheromone trails used to initialize the search
in this stage have been obtained obtained in the previous stage.
Also, pheromone trails are updated in this stage depending of
the ACO algorithm used. The search stops when the run time
for this stage (sc2) is over.

In the ACO algorithms, the cooperation among ants is the basis
of its good behavior. This cooperation is obtained by modified
pheromone trails; high pheromone values are associated with good
path. In PTS-ACO the cooperation occurs into each stage; because
at both stage, an ACO algorithm is used. Furthermore, another
cooperation between stages is introduced, because the pheromone
trails obtained in the first stage are used in the second stage. This
pheromone trails contain the information of the search in the first
stage, where high values are associated with the best partial solu-
tions found. Algorithm Fig. 1 shows the associated algorithm.
1 Accessible at http://www.iwr.uniheidelberg.de/iwr/comopt/software/TSPLIB95
2 Accessible at http://serv1.imm.dtu.dk/sk/qaplib/
4. Experimental framework

In order to develop the comparative study between ACO and
PTS-ACO strategies, in this Section we present two combinatorial
problems, as experimental frame. Next, we present the statistical
methodology used to validate the obtained results.

4.1. Traveling salesman problem

The TSP (Gutin & Abraham, 2002) can be represented by a com-
plete graph G = (N, A) with N being the set of nodes, also called cit-
ies, and A being the set of arcs fully connecting the nodes. Each arc
ði; jÞ 2 A is assigned a value dij which represents the distance be-
tween cities i and j. The TSP is the problem of finding a shortest
closed tour visiting each of the n ¼ jNj nodes of G exactly once.
For symmetric TSPs, the distances between the cities are indepen-
dent of the direction of traversing the arcs, that is, dij ¼ dji for every
pair of nodes. In the asymmetric TSP at least for one pair of nodes
(i, j) we have dij – dji. All the TSP instances used in the empirical
studies presented in this paper are taken from the TSPLIB (Reinelt,
1991) benchmark library.1 These instances have been used in many
other studies and partly stem from practical applications of the
TSP. Structure of the symmetric TSP instance is shown in Fig. 2,
where the first row represents the number of cities in this instance.
Elements of the matrix represent the distance between cities i and j
ðdijÞ.

The description of the TSP instance for the experimental analy-
sis is shown in Table 1, where the column 1 represents the instance
name. The next column, the number of cities that present the
instance, and the last column, represent the maximum run time
for ACO and PTS-ACO algorithms, on each instance. This time is
represented on second.

4.2. Quadratic assignment problem

The QAP (Cela, 1998) is the problem of assigning a set of facili-
ties to a set of locations with given distances between the locations
and given flows between the facilities. The goal is to place the facil-
ities on locations in such a way that the sum of the products be-
tween flows and distances is minimal. Given n facilities and n
locations, two n� n matrixes A½aij� and B½brs�, where aij is the dis-
tance between locations i and j, and brs is the flow between facili-
ties r and s, the QAP is the problem to minimize:

f ð/Þ ¼
Xn

i¼1

Xn

j¼1

aijb/ðiÞ/ðjÞ ð14Þ

where / is an arbitrary permutation of the set of integers 1,. . .,n
(corresponding to an assignment of facilities to locations), and
/ðiÞ gives the location of facility i in /. Intuitively, aijb/ðiÞ/ðjÞ repre-
sents the cost contribution of simultaneously assigning facility i to
location /ðiÞ and facility j to location /ðjÞ. The QAP is an NP-hard
optimization problem and it is considered to be one of the hardest
optimization problems. To date, instances of size n 6 20 can gener-
ally not be solved to optimality and heuristic algorithms must be
applied, which are able to find very high quality solutions in a rel-
atively short computation time. The instances on which we will test
the algorithms proposed in this paper are taken from the QAPLIB
(Burkard, Karisch, & Rendl, 1991) benchmark library2.

For the QAP it is known that there are several different types of
instances and that the particular instance type has a considerable
influence on the performance of heuristic methods. According to,
the instances of QAPLIB which we use in this paper can be classi-
fied into the following four classes.

(i) Unstructured, randomly generated instances. Instances with
the distance and flow matrix entries generated randomly
according to a uniform distribution. These instances are
among the hardest to solve exactly. Nevertheless, most iter-
ative search methods find solutions within 1–2% from the
best known solutions relatively fast.

(ii) Grid-based distance matrix. In this class of instances the dis-
tance matrix stems from an n1 � n2 grid and the distances

http://www.iwr.uniheidelberg.de/iwr/comopt/software/TSPLIB95
http://serv1.imm.dtu.dk/sk/qaplib/


Table 1
Summary description for TSP instances.

Instance name Instance size Time

berlin52.tsp 52 0.65
st70.tsp 70 2
rd100.tsp 100 4
ch150.tsp 150 11
kroA200.tsp 200 26
tsp225.tsp 225 37
a280.tsp 280 68
lin318.tsp 318 98
pcb442.tsp 442 241
rat575.tsp 575 516
rat783.tsp 783 1273

Table 2
Summary description for QAP instances.

Instance name Number facilities Number localizations Time

Tai20a 20 20 20
Tai25a 25 25 25
Tai30a 30 30 30
Tai35a 35 35 35
Tai40a 40 40 40
Tai50a 50 50 100
Tai60a 60 60 120
Tai80a 80 80 160
Sko42 42 42 42
Sko49 49 49 49
Sko56 56 56 112
Sko64 64 64 128
Sko72 72 72 144
Sko81 81 81 162
Sko90 90 90 180
Tai20b 20 20 20
Tai25b 25 25 25
Tai30b 30 30 30
Tai35b 35 35 35
Tai40b 40 40 40
Tai50b 50 50 100
Tai60b 60 60 120
Tai80b 80 80 160
Kra30a 30 30 30
Kra30b 30 30 30
Ste36a 36 36 36
Ste36b 36 36 36
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are defined as the Manhattan distance between grid points.
These instances have multiple global optima (at least 4 if
n1 – n2 and at least 8 if n1 ¼ n2) due to the definition of
the distance matrixes.

(iii) Real-life instances. Instances from this class are instances
from practical applications of the QAP. Real-life instances
have in common that the flow matrixes have many zero
entries and the remaining entries are clearly not uniformly
distributed.

(iv) Real-life like instances. Since the real-life instances in QAPLIB
are of a rather small size, a particular type of randomly gen-
erated problems has been proposed in. These instances are
generated in such a way that the matrix entries resemble
the distributions found for real-life problems.

Fig. 3 represents an instance of the QAP and has the following
structure; the first row determines the number of rows and col-
umns of locations and facilities matrixes. These matrices are sym-
metrical and appear consecutively in Fig. 3. A detailed analysis of
the search space generated by this problem has been presented
in, which used local search algorithms with a fixed number of iter-
ations to determine the characteristics of that space.

Table 2 shows the QAP instances used to the experiments. The
first column represents the instance name’s, the columns second
and third shown the facilities and localizations quantity of each in-
stance, and in the next column the maximum time for each in-
stance is showed. This time is represented in seconds and was
calculated depending on the instance size. For instance sizes lower
than 50, the exploration time is defined as the instance’s size times
10 s while those instances having a size greater than or equal to 50
are assigned a exploration time computed in the similar way to the
previous case but multiplied by 20.

4.3. Statistical methodology for comparison

When a new optimization algorithm proposal is developed, it is
necessary to compare it with previous approaches. Statistical anal-
ysis needs to be carried out in order to find significant differences
among the results obtained by the studied methods. In García,
Fernández, Luengo, and Herrera (2009a); García, Molina, Lozano,
and Herrera (2009b); Luengo, García, and Herrera (2009) are pre-
Fig. 3. Structure of the tai10a instance.
sented the use of some non-parametric tests for comparing the re-
sults in Computational Intelligent.

For pair wise comparison we will use the Wilcoxon Signed-
Ranks Test (Demšar, 2006; Sheskin, 2006; Wilcoxon, 1945), and
for multiple comparison we will employ different approaches,
including the Friedman test (Friedman, 1937), the Iman and Dav-
enport test (Iman & Davenport, 1980) and the Holm method
(Holm, 1979). We will use in all cases a ¼ 0:1 as level of confi-
dence. A wider description of these tests is presented in the Appen-
dix A. This experimental frame will be use for study comparison of
the results presents in Section 5.
5. Experimental study

In this Section we present the experimental study developed for
this paper. In Section 5.1 contains the parameters configuration
used for all algorithms. In Section 5.2, the study to select the best
ACO algorithm among AS, ACS and MMAS for both problems is
shown. In Section 5.3 two-stage strategy is applied for each ACO
algorithm selected in previous subsection with different r values
are studied in. Finally, Section 5.4 the comparative study between
exploration strategies are shown.
5.1. Parameters configuration

The parameter setting used for AS, ACS and MMAS algorithms is
shown in Table 3. The first column represents the algorithms name,
the m column determines the number of ants used for each algo-
rithm, sð0Þ represents the initial value of pheromone trail, for the
MMAS this value is the maximum value calculated for the first iter-
ation (see Eq. (15)). The constant of evaporation is showed in col-
umn q. The columns a and b represent the transition ruler
parameters (see Eq. (1)) and the q0 column is used for the ACS algo-
rithm (see Eq. (5)). The column local search represents at what mo-
ment the 2-opt (Dorigo & Gambardella, 1997a; Gambardella,
Taillard, & Agazzi, 1999) algorithm is executed; the ‘‘best of cycle”
represents that only the best ant in each iteration executes the lo-



Table 3
Parameters setting for experimental studies.

Algorithm m sð0Þ q a b q0 Local search (2-opt) Stop condition

Traveling Salesman Problem
AS 10 0.2 0.1 2 3 – best of cycle time
ACS 10 0.2 0.1 1 5 0.67 best of cycle time
MMAS 10 smax 0.1 2 3 – best of cycle time

Quadratic Assignment Problem
AS 10 0.2 0.8 1 – – all ants time
ACS 10 0.2 0.8 1 – 0.6 all ants time
MMAS 10 smax 0.8 1 – – all ants time

Table 4
Results of the Friedman and Iman–Davenport tests for comparing performance of the
ACO algorithms in two problems studied.

Method Test value Distribution value p-Value

TSP
Friedman 16.666 7.779 2.40E�4
Iman–Davenport 25.000 2.561 1.54E�4

QAP
Friedman 27.796 7.779 9.20E�7
Iman–Davenport 27.580 2.407 6.82E�9

Table 5
Mean ranks of Friedman test for all problems.

Algorithm Mean ranks

TSP QAP

AS 2.8333 1.8703
ACS 1.1666 2.7592
MMAS 1.8000 1.3703
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cal search and ‘‘all ants” represents that all ants execute the local
search. The last column represents the stop condition, it which is
defined by run time (see Tables 1 and 2).

The maximum and minimum value of pheromone for the
MMAS algorithm are calculate according to:

smax ¼ ð1� =ð1� qÞÞ � ð1� f ð/gbÞÞ ð15Þ

where f ð/gbÞ is the quality of the best solution, so far whereas the
minimum values of the pheromone are computed as in expression
(16)

smin ¼ smax=10 � n ð16Þ

where n is the size of the problem instance.
After presenting the parameters configuration, we will carry out

the study of each model.

5.2. Experimental analysis for ACO algorithms

The purpose of this Subsection is to study the performance of
the selected algorithms (AS, ACS, MMAS) in each problem (TSP,
QAP), in order to select the best on for apply the two-stage
strategy.

Two ACO algorithms applied to TSP have been studied recently
in Wu, Zhao, Ren, and Quan (2009a, 2009b). Each ant is initially put
on a randomly chosen city and has a memory which stores the par-
tial solution it has constructed so far (initially the memory contains
only the start city). Starting from its initial city, an ant iteratively
moves from city to city. When being at a city i, an ant k chooses
to go to a still unvisited city j with a probability given by Eq. (1)
or (5), in this case gij ¼ 1=dij. The solution construction ends after
each ant has completed a tour. Next, the local search 2-opt [23]
is applied, only for the best local solution. Then, the pheromone
trails are updated, depending of ACO algorithm used (see Eq. (2)
or (4),

The ACO application to the TSP can be extended to the QAP in a
straightforward way (Gambardella et al., 1999,Tseng & Liang,
2006). The main difference lies in the definition of the solution
components which for the QAP are given by the assignments of
facilities to locations. Hence, the pheromone trails sijðtÞ in the
QAP application correspond to the desirability of assigning a facil-
ity i to a location j. For the solution construction, it can be conve-
nient to use a pre ordering of the facilities (or, equivalently, the
locations) and assign facilities in the given order. The decision
points are related to the assignments: at each decision point an
ant probabilistically decides on which location the next facility
should be put. In ACO for the QAP, these decisions are done accord-
ing to Eq. (1) or (5) using a QAP specific heuristic information. In
this case the feasible neighborhood Nk

i of ant k comprises those
locations which are still free. The single construction steps are re-
peated until a complete assignment is obtained. The pheromone
update is done as in the TSP application.

The complete tables of results obtained for ACO algorithms are
shown in Appendix B. In order to compare these results we have
used a multiple comparison test to select the best algorithm for
each problem. In Table 4, the results of applying Friedman and
Iman–Davenport tests are shown in order to check if there are dif-
ferences in the results for each problem. We employ the X2-distri-
bution with 4 degrees of freedom for Friedman in both
experiments, the F-distribution for Iman–Davenport with 2 and
22 degrees of freedom for a number of instances ðNds ¼ 11Þ in
TSP and for QAP experiments the F-distribution with 2 and 52 de-
grees of freedom for Nds ¼ 27. We emphasize in boldface the high-
est value between the two values that are being compared, and as
the smallest in all cases corresponds to the value given by the sta-
tistic, it informs us of the rejection of the null-hypothesis of equal-
ity of means, telling us of the existence of significant differences
among the observed results in all instances.

Table 5 shows the rankings (computed using a Friedman test) of
the 3 algorithms considered for each problem. In order to empha-
size the results of the rankings showed in Table 5, we depicted
them in Fig. 4.

Now, we apply a Holm test to compare the best ranking method
(ACS for TSP and MMAS for QAP) with the remaining ACO methods.
The result of the test are shown in Table 6, in which the algorithms
are ordered with respect to the z value obtained. Thus, by using the
normal distribution, we can obtain the corresponding p-value asso-
ciated with each comparison and this can be compared with the
associated a=i (see Fig. 5).

Analyzing the results presented in Appendix B and the statisti-
cal study shown in this Subsection is concluded that:

1. For TSP, the best results are obtained by ACS algorithm. Table 6
shows that significant differences were detected by a Holm test
between the control algorithm and other algorithms.



Fig. 4. Mean ranks for TSP and QAP problems by AS, ACS and MMAS algorithms.

Table 6
Statistical result by Holm test for TSP and QAP with a ¼ 0:1 (The control algorithm for
TSP is ACS and MMAS for QAP).

Algorithm z p-Value a=i Hypothesis

TSP
AS 4.0824 4.45E�5 0.05 Rejected for ACS
MMAS 2.0412 0.0412 0.1 Rejected for ACS

QAP
ACS 5.1031 3.34E-7 0.05 Rejected for MMAS
AS 1.8372 0.0661 0.1 Rejected for MMAS

Table 7
Description of the use algorithms.

P-TS-ACS(0.2) Two-stage alternative applied ACS with r = 0.2
P-TS-ACS(0.25) Two-stage alternative applied ACS with r = 0.25
P-TS-ACS(0.3) Two-stage alternative applied ACS with r = 0.3
PTS-MMAS(0.2) Two-stage alternative applied MMAS with r = 0.2
PTS-MMAS(0.25) Two-stage alternative applied MMAS with r = 0.25
PTS-MMAS(0.3) Two-stage alternative applied MMAS with r = 0.3

Table 8
Results of the Friedman and Iman–Davenport tests for comparing performance of the
PTS-ACO algorithms in two problems studied.

Method Test value Distribution value p-Value

TSP
Friedman 5.3749 7.7794 0.0680
Iman–Davenport 3.1744 2.5613 0.0614

QAP
Friedman 0.8888 7.7794 0.8888
Iman–Davenport 0.4351 2.4076 0.6495
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2. For QAP, the best results are obtained by MMAS algorithm.
Table 6 shows that significant differences were detected in
favor of the MMAS with respect to the remainder algorithms.

5.3. Experimental analysis for PTS-ACO

In this Section, we apply the pheromone two-stage alternative
for each ACO algorithm selected previously. We describe now the
two-stage alternative is applied for each ACO algorithm in the solu-
tions of both problems.

In Appendix C, the experimental results for each r value and two
problems are showed. Different r values were tested r ¼ f0:2;
0:25;0:3g in order to measure the behavior of this parameter in
the two-stage strategy. We will employ multiple comparison tests
for the statistical study, using for this purpose Friedman, Iman–
Davenport and Holm tests. As we did in the previous Section, we
will compare the PTS-ACO for TSP and QAP.

I When using P-TS-ACS for TSP, the process begins calculating the
dimension for each stage. We use the configuration of the ACS
parameters shown in Table 3. For instance, using Dataset
rd100.tsp, r = 0.3 and run time equal to 4 s; the process would
be as follows:
(a) In the first stage, the ACS algorithm looks for partial tour

of 30 cities (r � 100 (total number of cities)). Each ant
finds a tour in different cycles. In this stage only 3 ants
are selected (r � 10 (total number of ants, see Table 3)).
The pheromone is updated in this stage depending on
the best global partial tours. This stage stops when the
exploration time is over 1.2 s (r � 4).

(b) In the second stage, the ACS algorithm is executed by 7
ants (10 � 3). In this case, the ants will obtain the tours
Fig. 5. Means ranks for TSP
of all cities (100), that is, each ant finds a tour in different
iterations. The pheromone trails used in this stage are
obtained in the first stage. The ACS algorithm finishes
when the exploration time is over 2.8 s (4 � 1.2).

II The second experimental analysis for QAP is done to MMAS
algorithm using two-stage alternative. For instance, dataset
tai20a, r = 0.2 and execute time equal to 4 s ; the process
would be as follows:
(left) an
(a) In the first stage, the MMAS algorithm looks for partial
assignations of 4 items (r � 20 (total number of facili-
ties or localization)). Each ant finds an assignation in
different iterations. In this stage only 2 ants are
selected (r � 10 (total number of ants). The pheromone
is updated in this stage depending on the best global
partial assignations. This stage concludes when the
exploration time is over 0.8 s (r � 4 s).

(b) In the second stage, the MMAS algorithm is executed
by 8 ants (10 � 2), in this case, the ants will obtain
the assignations of all items (20), that is, each ant
finds an assignation in different iterations. The phero-
mone trails used in this stage are obtained in the first
stage. The MMAS algorithm finishes when the explo-
ration time is over 3.2 s (4 � 0.8).
Table 7 shows the notation of the algorithms used for these
study.

Analyzing the results presented in Appendix B and the statisti-
cal study shown in Tables 8–10 we are conclude that:

1. For TSP, significant difference among PTS-ACS with all r values
have been detected for Friedman and Iman–Davenport tests
(see Table 8). Then, for the PTS-ACS the best r value based on
d QAP (right).



Table 10
Statistical results by Holm test for TSP with a ¼ 0:1 (The control algorithm is PTS-
ACS(0.3)).

Algorithm z p-Value a=i Hypothesis

TSP
P-TS-ACS(0.25) 2.1433 0.0320 0.05 Rejected for PTS-ACS(0.3)
PTS-ACS(0.2) 1.8371 0.0661 0.1 Rejected for PTS-ACS(0.3)

Table 9
Mean ranks of Friedman test for all problems.

TSP QAP

Algorithm Mean ranks Algorithm Mean ranks

P-TS-ACS(0.2) 2.2083 PTS-MMAS(0.2) 1.9259
P-TS-ACS(0.25) 2.3333 PTS-MMAS(0.25) 2.1481
P-TS-ACS(0.3) 1.4583 PTS-MMAS(0.3) 1.9260
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rankings has been r = 0.3, this result is shown in Table 9. Finally
Table 10 contains a Holm test, which shows that the PTS-ACS
with r = 0.3 is better in performance than the remaining r
values.

2. For QAP, the Friedman and Iman–Davenport tests do not detect
significant differences among the r values. For these results, we
select the algorithm that achieves the higher ranking. In this
case, we chose PTS-MMAS with r = 0.2.

5.4. Comparison of algorithms

In the final part of our study, we will analyze the behavior of our
two-stage alternative opposite ACO strategy in each problem. The
Wilcoxon test is used to complete this study.

The main conclusion after this study is that the two-stage alter-
native for ACO algorithms is better than the strategy based on one
stage. For TSP, the Wilcoxon (see Table 11) test found significant
differences in favor to PTS-ACS with r = 0.3. The same results are
obteined for QAP, where the null hypothesis is rejected in favor
to PTS-MMAS with r = 0.2. In both cases, the it p-value is lower
than significance value fixed to these experiments (a ¼ 0:1)
6. The concluding remarks

We have proposed a new two-stage alternative PTS-ACO for
exploration with ACO algorithms. In this alternative, the phero-
mone trails obtained in the first stage are used in order to guide
the exploration into the second stage of the search process.

We have compared the two-stage alternative with ACO model
based in on one stage. For this comparison, we have selected the
best classic ACO algorithm for each problem according to our re-
sults: ACS for TSP and MMAS for QAP.

The experimental results have shown that the use of the two-
stage alternative to the ACO algorithms obtains better results than
the original ACO model,existing a major cooperation between ACO
agents with the new alternative.
Table 11
Wilcoxon test to compare the PTS-ACO against ACO in two problems with a ¼ 0:1.

Algorithm Rþ R�

TSP
PTS-ACS(0.3) vs ACS 64.00 14.00

QAP
PTS-MMAS(0.2) vs MMAS 265.5 112.5
Appendix A. On the use of non-parametric tests based on
ranking

In this paper, we have made use of statistical techniques for the
analysis the used methods, since they are a necessity in order to
provide a correct empirical study (Demšar, 2006; García & Herrera,
2009). Specifically, we have employed non-parametric tests, due to
the fact that the initial conditions that guarantee the reliability of
the parametric tests may not be satisfied, making the statistical
analysis to lose credibility (Demšar, 2006). In this Appendix, we de-
scribe the procedures for performing pairwise a multiple compar-
isons. Specifically, we have employed the Wilcoxon signed-rank
test as non-parametric statistical procedure for performing pair-
wise comparisons between two algorithms. For multiple compari-
sons we have used the Friedman and Iman–Davenport tests to
detect statistical differences and the Holm post-hoc test in order
to find what algorithms partners’ average results are dissimilar.
Next, we will describe both approaches.

A.1. Wilcoxon signed-ranks test

This is the analogous of the paired t-test in non-parametric sta-
tistical procedures; therefore, it is a pairwise test that aims to de-
tect significant differences between two sample means, that is, the
behavior of two algorithms. Let di be the difference between the
performance scores of the two algorithms on ith out of Nds data-
sets. The differences are ranked according to their absolute values;
average ranks are assigned in case of ties. Let Rþ be the sum of
ranks for the data-sets on which the first algorithm outperformed
the second, and R� the sum of ranks for the opposite. Ranks of
di ¼ 0 are split evenly among the sums; if there is an odd number
of them, one is ignored:

Rþ ¼
X
d>0

rankðdiÞ þ
1
2

X
d¼0

rankðdiÞ ð17Þ

R� ¼
X
d<0

rankðdiÞ þ
1
2

X
d¼0

rankðdiÞ ð18Þ

Let T be the smaller of the sums, T ¼minðRþ;R�Þ. If T is less than or
equal to the value of the distribution of Wilcoxon for Nds degrees of
freedom (Zar, 1998, Table B.12), the null-hypothesis of equality of
means is rejected. Wilcoxon signed-ranks test is more sensible than
the t-test. It assumes commensurability of differences, but only
qualitatively: greater differences still count more, which is probably
desired, but the absolute magnitudes are ignored. From the statisti-
cal point of view, the test is safer since it does not assume normal
distributions. Also, the outliers (exceptionally good/bad perfor-
mances on a few data-sets) have less effect on the Wilcoxon than
on the t test. The Wilcoxon test assumes continuous differences
di, therefore they should not be rounded to one or two decimals,
since this would decrease the power of the test due to a high num-
ber of ties.

When the assumptions of the paired t-test are met, Wilcoxon
signed-ranks test is less powerful than the paired t test. On the
other hand, when the assumptions are violated, the Wilcoxon test
can be even more powerful than the t test. This allows us to apply it
p-Value Hipothesis

0.05 Rejected for PTS-ACS(0.3)

0.078 Rejected for PTS-MMAS(0.2)



Table 12
Description of the used algorithms.

Symbolic Description

BK The best know solution
AS Results for Ant System algorithm
ACS Results for Ant Colony System algorithm
MMAS Results for Max–Min Ant System algorithm
Time The run time for each algorithm

Table 13
Experimental results for TSP instances by ACO algorithms.

Instance BK AS MMAS ACS Time

gr24.tsp 1272 1275.64 1278.04 1277.52 0.15
berlin52.tsp 7542 7746.16 7689.92 7729.16 0.65

st70.tsp 675 714.96 703.12 726.68 2
rd100.tsp 7910 8717.36 8694.24 8659.53 4
ch150.tsp 6528 7219.84 6867.68 6908.84 11

kroA200.tsp 29368 40269.76 32858.68 32643.76 26
tsp225.tsp 3919 4124.64 4095.8 4039.4 37

a280.tsp 2579 3493.16 3020.28 2973.72 68
lin318.tsp 42029 53175.84 47739.36 47494.96 98

pcb442.tsp 50778 60781.08 59118.32 59264.12 241
rat575.tsp 6773 9479.68 7795.44 7717.48 516
rat783.tsp 8806 12684.6 10199.16 10038.87 1273

Table 14
Experimental results for the QAP instances by ACO algorithms.

Instance AS MMAS ACS Time

Random problems with uniformly distributed matrix entries (i)
Tai20a 0.01155 0.00462 0.00522 20
Tai25a 0.01419 0.01058 0.01712 25
Tai30a 0.01682 0.01618 0.02068 30
Tai35a 0.01835 0.02388 0.02205 35
Tai40a 0.02619 0.02515 0.02880 40
Tai50a 0.03234 0.03105 0.03158 100
Tai60a 0.03325 0.03089 0.03369 120
Tai80a 0.02556 0.02594 0.03238 160

Random flows on grids (ii)
Sko42 0.01024 0.00664 0.01082 42
Sko49 0.01144 0.01031 0.01303 49
Sko56 0.01377 0.01098 0.01362 112
Sko64 0.01344 0.01350 0.01382 128
Sko72 0.01367 0.01423 0.01583 144
Sko81 0.01207 0.01181 0.01337 162
Sko90 0.04370 0.04433 0.04461 180

Real-life instances (iii)
Tai20b 9.05E�04 0.0 0.0 20
Tai25b 0.0 0.0 0.00140 25
Tai30b 4.41E�04 0.00018 0.00238 30
Tai35b 0.00493 0.00285 0.00518 35
Tai40b 0.00916 0.00423 0.00672 40
Tai50b 0.00780 0.00456 0.00985 100
Tai60b 0.00785 0.00411 0.00814 120
Tai80b 0.02801 0.02289 0.03151 160

Randomly generated real-life like instances (iv)
Kra30a 0.01394 0.00713 0.02464 30
Kra30b 0.00316 0.00208 0.00756 30
Ste36a 0.01870 0.01444 0.02777 36
Ste36b 0.02152 0.02210 0.05204 36
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over the means obtained by the algorithms in each data-set, with-
out any assumptions about the sample of results obtained.

A.2. Friedman test and post-hoc tests

In order to perform a multiple comparison, it is necessary to
check whether all the results obtained by the algorithms present
any inequality. In the case of finding it, then we can know, by using
a post-hoc test, what algorithms partners’ average results are dis-
similar. In the following, we describe the non-parametric tests
used.

� The first one is the Friedman test (Sheskin, 2006), which is a
non-parametric test equivalent to the repeated measures
ANOVA. Under the null-hypothesis, it states that all the algo-
rithms are equivalent, so a rejection of this hypothesis implies
the existence of differences among the performance of all the
algorithms studied. After this, a post-hoc test could be used in
order to find whether the control or proposed algorithm pre-
sents statistical differences with regards to the remaining meth-
ods in the comparison. Of the more solid of them is the Holm
(1979) test, the which reject more hypothesis that other tests.
The working mode of the Friedman test is described as follows:
It ranks the algorithms for each data-set separately, the best per-
forming algorithm getting the rank of 1, the second best rank 2,
and so on. In case of ties average ranks are assigned. Let rji be the
rank of the jth of k algorithms on the ith of Nds data-sets. The
Friedman test compares the average ranks of algorithms,
Rj ¼ 1

Nds

P
ir

j
i Under the null-hypothesis, which states that all

the algorithms are equivalent and so their ranks Rj should be
equal, the Friedman statistic:

X2
F ¼

12Nds

kðkþ 1Þ
X

jR2
j �

kðkþ 1Þ2

4

" #
ð19Þ

is distributed according to X2
F with k� 1 degrees of freedom, when

Nds and k are big enough.
� The second one of them is Iman and Davenport test (Iman &

Davenport, 1980), which is a non-parametric test, derived from
the Friedman test, less conservative than the Friedman statistic:

FF ¼
ðNds � 1ÞX2

F

NdsðK � 1Þ � X2
F

ð20Þ

which is distributed according to the F-distribution with k� 1 and
ðk� 1ÞðNds � 1Þ degrees of freedom. Statistical tables for critical val-
ues can be found at (Zar, 1998).
� Holm test (Holm, 1979): it is a multiple comparison procedure

that can work with a control algorithm and compares it with
the remaining methods. The test statistics for comparing the
ith and jth method using this procedure is:

z ¼ ðRi � RjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6Nds

s,
ð21Þ

The z value is used to find the corresponding probability from the
table of normal distribution, which is then compared with an
appropriate level of confidence a. Holm test adjusts the value for
a in order to compensate for multiple comparison.

The Holm test is a step-up procedure that sequentially tests the
hypotheses ordered by their significance. We will denote the or-
dered p values by p1; p2; so that p1 6 p2 6 pk�1. The Holm test com-
pares each pi with a=ðk� iÞ, starting from the most significant p-
value. If p1 is below a=ðk� 1Þ, the corresponding hypothesis is re-
jected and we allow to compare p2 with a=ðk� 2Þ. If the second
hypothesis is rejected, the test proceeds with the third, and so
on. As soon as a certain null hypothesis cannot be rejected, all
the remain hypotheses are retained as well.

The post-hoc procedure described above allow us to know
whether or not a hypothesis of comparison of means could be re-
jected at a specified level of significance a. However, it is very
interesting to compute the p value associated to each comparison,



Table 15
Description of the used algorithms.

Symbolic Description

PTS-ACS Alternative of the Two-Stage exploration apply to the ACS
PTS-MMAS Alternative of the Two-Stage exploration apply to the MMAS
Time The run time for each algorithm

Table 16
Experimental results for TSP instances by ACO algorithms.

Instance BK PTS-ACS Time

r = 0.2 r = 0.25 r = 0.3

gr24.tsp 1272 1273.96 1274.32 1273.68 0.15
berlin52.tsp 7542 7763.56 7717.76 7647.4 0.65
st70.tsp 675 712.8 712.36 709.2 2
rd100.tsp 7910 8580.96 8733.24 8545.92 4
ch150.tsp 6528 8580.96 8733.24 8545.92 11
kroA200.tsp 29368 32973.04 33242.04 32775.2 26
tsp225.tsp 3919 4077.2 4046.16 4032.44 37
a280.tsp 2579 2956.56 2970.92 2948.44 68
lin318.tsp 42029 47365.16 47556.48 47507.44 98
pcb442.tsp 50778 58610.88 58585.23 58190.92 241
rat575.tsp 6773 7034.43 7074.32 7063.56 516
rat783.tsp 8806 10123.96 10197.96 10033.16 1273

Table 17
Experimental results for the QAP instances by PTS-MMAS.

Instance PTS-ACS Time

r = 0.2 r = 0.25 r = 0.3

Random problems with uniformly distributed matrix entries (i)
Tai20a 0.0037 0.0041 0.0054 20
Tai25a 0.0109 0.0121 0.0121 25
Tai30a 0.0151 0.0160 0.0165 30
Tai35a 0.0237 0.0222 0.0225 35
Tai40a 0.0268 0.0242 0.0253 40
Tai50a 0.0295 0.0288 0.0277 100
Tai60a 0.0308 0.0321 0.0294 120
Tai80a 0.0264 0.0208 0.0261 160

Random flows on grids (ii)
Sko42 0.0064 0.0077 0.0074 42
Sko49 0.0087 0.0091 0.0080 49
Sko56 0.0082 0.0080 0.0092 112
Sko64 0.0096 0.0099 0.0108 128
Sko72 0.0115 0.0123 0.0114 144
Sko81 0.0124 0.0109 0.0121 162
Sko90 0.0443 0.0447 0.0442 180

Real-life instances (iii)
Tai20b 0.0 0.0 0.0 20
Tai25b 0.0 0.0 0.0 25
Tai30b 1.7E�4 3.8E�5 5.3E�4 30
Tai35b 0.0024 0.0024 0.0027 35
Tai40b 0.0200 0.0064 0.0075 40
Tai50b 0.0054 0.0055 0.0038 100
Tai60b 0.0039 0.0040 0.0038 120
Tai80b 0.0198 0.0268 0.0202 160

Randomly generated real-life like instances (iv)
Kra30a 0.0037 0.0083 0.0106 30
Kra30b 0.0025 0.0023 0.0017 30
Ste36a 0.0144 0.0226 0.0186 36
Ste36b 0.0205 0.0301 0.0214 36
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which represents the lowest level of significance of a hypothesis
that results in a rejection. In this manner, we can know whether
two algorithms are significantly different and we can also have a
metric of how different they are. Next, we will describe the method
used for computing these exact p-Values for each test procedure,
which are called ‘‘adjusted p-values” (Wright, 1992).
� The adjusted p-value for the Holm procedure is computed by
pHolm ¼ ðk� iÞpi. Once computed all of them for all hypotheses,
it is not possible to find an adjusted p-value for the hypothesis
i lower than for the hypothesis j, j < i. In this case, the adjusted
p-value for hypothesis i is set to the same value as the one asso-
ciated to hypothesis j.
Appendix B. Results for the TSP and QAP by ACO algorithms

All results that have been showed in this Appendix were com-
puted over 25 independent runs. In the TSP case these results rep-
resent the average and the average percentage excess of the best
solution for QAP.The first Table 12 shows the used symbolic for
each algorithm presented in this appendix.

Best results are printed (see Tables 13 and 14) in italic typeface.
The number in the name gives the instance dimension, that is, the
number of cities for TSP and of facilities and localizations for QAP
respectively.
Appendix C. Results for the TSP and QAP by PTS-ACO

All results that have been showed in this Appendix were com-
puted over 25 independent runs. In the TSP case these results rep-
resent the average (see Table 16) and the average percentage
excess of the best solution for QAP (see Table 17). The Table 15
shows the used symbolic for each algorithm presented in this
appendix.

Best results are printed in italic typeface. The number in the
name gives the instance dimension, that is, the number of cities
for TSP and of facilities and localizations for QAP respectively.
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