A Space-based Layout Algorithm for the Drawing of Co-citation Networks

Arnaud Quirin and Oscar Cordén*

Abstract

We present in this paper a drawing algorithm to rep-
resent graphically co-citation networks (scientograms).
These networks have some interesting and unusual topolog-
ical properties which are often valuable to be visualized. In
general, these networks are pruned with a network scaling
algorithm, then visualized using a drawing algorithm [3].
However, typical drawing algorithms do not work properly,
especially when the size of the networks grows. Edge
crossings appear while the drawing space is not adequately
filled resulting in an unsightly display. The approach
presented in this paper is able to print the networks filling
all the available space in an aesthetic way, while avoiding
edge crossings. The algorithm is detailed and compared
with the classical Kamada-Kawai drawing algorithm on
two maps.

1 Introduction

Social networks have some interesting and unusual topo-
logical properties which are often valuable to be printed
graphically. However, the raw networks cannot be often vi-
sualized easily, especially when their size grows proportion-
ally with the number of data to be dealt with, and thus spe-
cific algorithms for simplifying such large networks have
been developed. Network scaling algorithms, whose goal
is to take proximity data and to obtain structures revealing
the underlying organization of those data, use similarities,
correlations or distances to prune a network based on the
proximity between a pair of nodes. One of the most known,
the Pathfinder algorithm, is used frequently due to its var-
ious mathematical properties [4]. The resulting network
could then be graphically represented using a network draw-
ing algorithm. The Kamada-Kawai [6] or the Fruchterman-
Reingold [5] algorithms are usually applied for this task.

*A. Quirin and O. Cordén are with European Centre for Soft Com-
puting, Edificio Cientifico-Tecnoldgico, planta 3. Gonzalo Gutiérrez
Quirds, s/n, 33600 - Mieres (Asturias), SPAIN {arnaud.quirin,
oscar.cordon}@softcomputing.es

This methodology ensures the network is represented in an
aesthetic way, by the mean of some spatial constraints. If
the network represents the complex tissue of relationships
between individuals or organizations, we may be interested
in viewing some specific properties. For instance, the back-
bone could be better highlighted if it is drawn in the center,
and minor links could be represented in the border of the
map.

There are some kinds of Social Network Analysis (SNA)
applications which could benefit from such methodology,
giving to the domain expert or even a simple user a simple
access to the information contained in these networks. One
of these applications is co-citation network analysis. Co-
citation network models depict the complex tissue of rela-
tionships occurring in the scientific literature. The graphical
representation of these kinds of networks while preserving
their information is still a challenge. However, some work
has been done using scientograms [3], visual representa-
tions showing the spatial distribution of the scientific actors
in a given domain, where these actors can be as diverse as
scientific categories, authors, journals or papers. Because
of the complexity of the domain they aim to represent, these
maps usually contain a large number of links and are really
dense and hard to be directly represented.

The said methodology has already been described in the
literature for the design of the scientograms [12]. But, until
so far, no attention has been paid to the drawing algorithm
itself. Classical drawing algorithms suffer from some aes-
thetic problems. For instance, the Kamada-Kawai algorithm
has no explicit procedure to avoid edge crossings, and the
Fruchterman-Reingold algorithm does not fill properly the
full space allocated for the drawing. In fact, for the analysis
of scientograms, the drawbacks of these algorithms could
prevent an expert from an optimal interpretation of the re-
lationships taking place inside the considered scientific do-
main. For instance, edge crossings can make a node and
its labels overlap, thus avoiding a good reading of the map.
Another point is the absence of some specific spatial con-
straints to avoid the links going back to the center of the
map. Spatial artifacts, such as nodes appearing close to-
gether even if they are spatially-separated by several links,
could convey false or misinterpreting information.

In this paper, we propose a new drawing algorithm to

overcome these drawbacks. The structure of the current
contribution is as follows. In the second section, we review
the existing methodologies to design scientograms. In the
third section, we describe our proposal. In the fourth section
some experiments will be shown. Finally, some concluding
remarks are pointed out in the last section.

2 A Methodology to Generate Scientograms

The achievement of a vast scientogram is a recurrent idea
in the modern age. In 1998, Chen [3] was the first researcher
to bring forth the use of Pathfinder Networks (PFNETSs) in
citation analysis. This is due to the fact that scientograms
are the most appropriate means to represent the spatial dis-
tribution of research areas, while also affording informa-
tion on their interactions [11]. Taking the latter as a base,
Vargas and Moya [12] proposed a method for the visualiza-
tion and analysis of vast scientific domains using the ISI'-
JCR category co-citation information. They represented it
as a social network, simplified that network by means of the
Pathfinder algorithm, and graphically depicted its layout us-
ing the Kamada-Kawai algorithm, thus getting a structural
model of the scientific research in a vast domain.

The different method stages are briefly described as fol-
lows. The last step is the one replaced by our proposal.

2.1 Category co-citation measure

Co-citation is a widely used and generally accepted tech-
nique for obtaining relational information about documents
belonging to a domain. Because we strive to represent and
analyze the structure of vast domains, whether they be the-
matic, geographic or institutional, we fall back on to ISI-
JCR co-citation categories [12] as a tool for this purpose.

Hence, once the rough information of the ISI-JCR co-
citation for the categories present in the domain to be ana-
lyzed is obtained, a co-citation measure C'M is computed
for each pair of categories ¢ and j as follows:

CM (ij) = Cel(ij) + 1
where Clc is the co-citation frequency and c is the citation
frequency.

2.2 Network pruning by Pathfinder

Then, the Pathfinder algorithm is applied to the co-
citation matrix to prune the network. Since co-citation net-
works are usually very dense, Pathfinder is parameterized
tor = oo and ¢ = n — 1, in order to obtain an schematic
representation of the most outstanding existing information

ICurrently registered as Thomson Scientific.

by means of a network showing just the most salient links.
In general, the weights of the links of the co-citation ma-
trix belong to R and are all different, so the final result of
the Pathfinder algorithm is a tree. To perform this step, the
MST-Pathfinder algorithm, a quick version of the original
Pathfinder algorithm based on Minimum Spanning Trees is
used [10].

2.3 Network layout by Kamada-Kawai

Kamada-Kawai algorithm [6] is then used to automati-
cally produce representations of the pruned network result-
ing from the Pathfinder run on a plane, starting from a cir-
cular position of the nodes. It generates social networks
with aesthetic criteria such as common edge lengths, forced
separation of nodes, building of balanced maps, etc. Never-
theless, the satisfaction of some criteria are not directly im-
plemented in the Kamada-Kawai algorithm. This is the case
of the number of crossed links: in fact many links crossings
appear making a lot of nodes overlap, and making the read-
ing of the map harder. Another point is the fact that edges
can go backwards to the center of the map, putting close two
nodes linked by a long path. This can give a false impres-
sion of closeness to the expert due to the spatial distribution
of the nodes. These are two of the main drawbacks we ob-
served while using the Kamada-Kawai visualization applied
to co-citation networks. We aim to solve them using a new
visualization algorithm, as we will see in the remainder of
this paper.

3 Overview of the algorithm

This section describes our drawing algorithm. As said,
our methodology ensures that the result of the Pathfinder
algorithm, the network we have to draw, is a tree. Thus, to
develop our algorithm, we took as a base the tree visual-
ization algorithm presented in [8], and extend it to make it
applicable on scientograms. The basic version of the algo-
rithm is first presented, then several variants are discussed
for the specific case of scientogram design.

3.1 Main Algorithm

To ease the understanding of our proposal, some prelim-
inary terminology is first introduced. In the following, we
consider an ordered tree 7', in which each node N has a
parent P=PARENT(/V), except the root node R=ROOT(T).
CHILDREN(N) is the set of nodes having node N as
their parent. ASCENDANT(X) is the chain of nodes from
node N to the root node R, defined as { N, PARENT(N),
PARENT(PARENT(N)), ..., R }. SUBTREE(N) is the sub-
tree having node N as its root. SIZE(N) is equal to the
number of nodes in SUBTREE(/V), including its own root.

For instance, SIZE(NV) is equal to 1 for a node having no
children; 2 for a node having one child; etc. LEVEL(V)
is the number of nodes in the set ASCENDANT(/N). For
instance, LEVEL(N) is equal to 1 for the root node; 2 for
any of the children of the root node; etc. DEPTH(N) is the
maximum value for LEVEL(M) for any node M in the tree
SUBTREE(N). For instance, DEPTH(V) is equal to 1 for
a node having no child; 2 for a node having any number of
children, with none of them having children; etc. By con-
vention, we will also use the notation ROOT(T") to define
the node having the lowest level in a subtree 7.

The algorithm is named Vmap-Layout due to the kinds
of maps it draws, Visual Science Maps, another name for
scientograms. It is divided itself in three sub-functions
which are called in a sequential way. The first sub-function,
Attribute-Computation, computes for each node the at-
tributes needed for the remainder of the algorithm. The
second sub-function, Node-Positioning, is a recursive func-
tion aiming to compute the coordinates of each node. The
last one, Node-Relocation, adjusts the location of the nodes
according to some specific criteria, thus improving the final
visualization. The different sub-functions are detailed in the
following sub-sections.

3.2 Attribute Computation

With the first sub-function, we compute several at-
tributes assigned to each node: SIZE(N), LEVEL(/N), and
DEPTH(N). These attributes will be used later to facili-
tate the generation of the coordinates of each node and to
improve the runtime of the algorithm. The first step is to se-
lect a root node, the one that will be printed in the center of
the map. It will be used to compute some specific attributes
which cannot be computed without the definition of a root
node. The network generated by the Pathfinder algorithm
does not self-contain any root node, thus we have to use an
additional technique to select one. There are many ways to
select a center in a graph. Many of them are described in the
papers by Bavelas [2] and Parlebas [9]. The one used here,
that gives good visual results, is the deliverer criterion: we
compute the sum of the distances between any node and all
the others, and we take as the root the one having the smaller
value. Once we have selected the root node R, we can as-
sign to each node N the values corresponding to SIZE(V),
LEVEL(/N) and DEPTH(N). As the tree is represented in
memory using lists of children, the time complexity of all
these operations is O(n) where n = SIZE(R). The com-
plexity of Attribute-Computation is thus O(n).

3.3 Node Positioning

Using the second sub-function, the algorithm fixes the
location of each node as a pair of 2D coordinates. To do

so, the global idea is to fill as much space as possible. The
tree is drawn from the root node to the leaves, and the algo-
rithm runs in a recursive way: the root node is drawn in the
center of the map and at each iteration the algorithm draws
all the nodes N having the same level L=LEVEL(V). The
algorithm starts by selecting a region of the empty space in
which it can draw the tree (we will call this region initial
polygon in the following). Then, it assigns the root node to
the center of this polygon, it divides the initial polygon into
several slices (as many as the number of children in the root
node), and it assigns one children of the root node to each
slice. After the application of this function, the coordinates
of the center of the polygons are assigned to each node.

There are several ways to design the initial polygon. As
the whole tree will lie inside the initial polygon, the later
will determine the final shape of the full map. This shape
could be a square, a circle or any other n-sided polygon.
Fig. 4 shows some possibilities for the initial polygon. The
assignation of a center C' to a given polygon could also be
done in several ways. Some techniques are shown in Fig. 6.
Lastly, the way of dividing a given polygon into different
slices can also been done in several ways, which are detailed
in the next sections.

Once the coordinates of the first level of the tree are
fixed, the algorithm starts again, considering each of the
slices as a new polygon and the corresponding node N as
the root of a new subtree S=SUBTREE(/N). Once no chil-
dren has been found, the algorithm stops. The sub-function
is outlined in Fig. 1. As we are using a recursive function
based on the children on a given node, the complexity of
Node-Positioning is thus O(n).

1. Let P, a 2D-space region in which to draw the tree,
and T, a tree.

2. Choose a central point C'in P and assign to this point
the root of the tree R=ROOT(T").

3. If CHILDREN(R) is empty, stop.

4. Divide P in different slices (sub-polygons), giving as
many sub-polygons that the number of children of R.
Let R; be a child of R, the area of the corresponding
sub-polygon P; should be proportional to SIZE(R;).

5. For each child R; of R, run Node-Positioning on the
region P; and the tree R;.

Figure 1. The Node-Positioning sub-function.

At the end of this sub-function, all the nodes of the tree
have been assigned to a pair of coordinates in the 2D-space.
An example of the execution of this sub-function on a tree
is shown in Fig. 2.

Figure 2. An example of the execution of the
Node-Positioning sub-function.

3.4 Node Relocation

The goal of the third sub-function is only aesthetic. At
the end of the application of the previous sub-function,
some graphical elements, such as the nodes or the text la-
bels, can overlap. Here, having the coordinates of the nodes
generated previously, the algorithm fixes the final location
of each node to avoid the presence of overlaps as much as
possible. We say that two nodes overlap when they are too
close from each other, according to a distance defined by
the expert, and we call them problematic nodes. Problem-
atic nodes cause text labels not to be read in a clear way,
and reduces in general the readability of the map. The main
idea of this function is to apply a node relocation process
in which the problematic nodes are moved according to a
repulsive force depending on the surrounding nodes, like if
they were connected with repulsive springs. To avoid dead-
locks in some cases (for instance, when a node is located
exactly between other two nodes and at an equal distance),
the problematic nodes are also slightly moved in a random
direction, until they met a criterion set by the expert.

The sub-function is outlined in Fig. 3. As the time com-
plexity of the KD-Tree preprocessing is O(n - log(n)) and
the time complexity of the KD-Tree search for one node is
O(log(n)) [1], the time complexity of Node-Relocation is
O(n -log(n)). Thus, the complexity of the full algorithm is
O(n -log(n)).

At the end of the third function, the final coordinates of
the nodes have been computed. During the final drawing
of the nodes, additional improvements could be made in
order to improve the aesthetic aspect of the map. For in-
stance, nodes and labels sizes can be varied depending on
their depth in the tree to better highlight the center of the
map.

1. Apply a KD-Tree technique to compute the distance
between all the nodes of 7'

2. Select only the problematic nodes, i.e. the nodes
close enough according to a criterion defined by the
expert.

3. For each node of this set, do:
e Apply arepulsive strength § and move the node
along this force.
e Move it around its final position using a small

random distance in the interval [—o,0].

4. Execute again the Node-Relocation sub-function un-
til a given amount of iterations defined by the expert
has been reached.

Figure 3. The Node-Relocation sub-function.

3.5 Selecting different initial polygons

During the initialization of the Vmap-Layout algorithm,
we have to select the initial polygon, within which the full
tree has to be drawn. This polygon encloses all the layout
and its shape will determine the global shape of the drawing.

Figure 4. Initial polygons with 4 or 8 sides.

Figure 5. On the left, the tree to draw. On
the right, the initial polygon and the center
in black. The polygon is first divided in four
slices, because the node A has four children,
then we assign the corresponding nodes to
the corresponding sub-polygons. The little
circle is the starting point giving the direction
of the polygon assignment.

In order to improve the general aspect of the final map
and to customize the result for several uses (paper or on-

line drawing), several options can be used. The definition
of this shape is controlled by an expert parameter, giving the
number of sides the inital polygon should have (see Fig. 4).
The larger this value is, the more circular the shape will be,
but the slower will the algorithm run. This is due to the
fact that, as at later stages, the computation of the areas and
the angles of a sub-polygon would be more complex. This
number of sides does not change in any manner the further
execution of the algorithm but has only an aesthetic aspect.
Once the initial shape is designed, it is used to draw the
initial tree, composed of its root and of all its first-level chil-
dren (see Fig. 5). Any shape surrounding the graph could be
used. For the application to co-citation networks, we opted
by a circle because the SCImago Research Group? experts,
with whom we collaborate, prefer this shape. Thus, in or-
der to have a good compromise between time and aesthetic,
a value of 15 sides seems to be well suited. Larger values
than 30 will unnecessarily increase the runtime and smaller
values than 12 would give an impression of dicontinuity.

3.6 Selecting different ways to compute
the central point of a polygon

For each polygon, a central point has to be selected to
become the starting point of the next sub-tree to print (see
step 2 in Fig. 1). We have explored at least three different
methods to choose the central point C' of a polygon P (see
Fig. 6). The first method, called ’Center of Mass’, takes
for C' the center of gravity of P. This center is defined in
any case, but suffers from two problems: it could be out-
side of the polygon (this can occur when the polygon is
non-convex) and a polygon with a lot of segments could
attract the center far away from the natural center of the
polygon. The second method, called ’Angle-based Central
Point’, uses the angle to compute the central point. For a
given polygon P, we first select a point on its border, that
we call origin O. This origin O has itself to be defined by
some methods. For instance, the origin could be the cen-
ter of the parent polygon (the one used to generate the cur-
rent polygon), or the left-most point of the polygon. We
then draw a line dividing the angle O in two equal parts.
Then we take the middle point of this line as the center C'
of the polygon. The third method, called ’Area-based Cen-
tral Point’, applies the same procedure, but by dividing the
polygon into two parts having the same area.

Our tests have shown that the Area-based Central Point
is the best method. However, some problems could occur
for some specific shapes of polygons in which it is impos-
sible to divide a sub-polygon into two areas of equal sizes,
pushing the central point C' outside the polygon. This can
happen when the polygon has internal angles greater than 7
(see Fig. 7), when the chosen initial polygon is non-convex

Zhttp://www.scimago.es/

Figure 6. Centers positioned with the Cenrer of
Mass, the Angle-based Central Point and the Area-
based Central Point methods.

or when the structure of the tree is quite uncommon. This is
why other methods are provided.

Figure 7. A problem that can occurs with the
Area-based Central Point method: the two areas
cannot be made equals.

For the Angle-based Central Point and the Area-based
Central Point methods, once the line dividing the polygon
in two parts has been determined, we still have to place the
point C' over this line. The usual way is to use the mid-
dle of the line, as described in the first paragraph of this
section. But other values for the measure of the distance
OC have been explored. This distance has a direct influ-
ence on the length of the edges and the location of the next
sub-polygons, and playing with this value can lead to inter-
esting results on the final drawing. An expert parameter has
been set for this measure and is named Cutpoint Value. It
is the ratio between the distance OC and the distance OX
(see Fig. 6). With a small value for this parameter, we get
maps where the centers are close among them, and with a
larger value, we get maps where the centers are more far
away among them. Several values for this parameter have
been tried, such as 0.25, 0.5 and 0.6. The best results have
been obtained with values lower or equal to 0.5.

3.7 Selecting different dividing slice meth-
ods

The way to divide a polygon in different slices (see step 4
in Fig. 1) will determine the respective areas for the drawing
of the next sub-polygons. Small areas should be allocated
to small sub-trees whereas larger areas should be allocated
to larger sub-trees. This operation can be achieved by at

< &

Figure 8. The result of the dividing using the
Angle-based Dividing (on the left part) and the
Area-based Dividing (on the right part) methods.

least two methods (see Fig. 8). With the first method, called
Angle-based Dividing, the algorithm defines the size of the
slices in order the angle around the center C' is proportional
to the size of each sub-tree R;. With the second method,
called Area-based Dividing, the algorithm defines the size
of the slices in order the area around the center C' is propor-
tional to the size of each sub-tree R;. In many scientograms
generated using real world data, the second method does not
work properly because the non-convex shapes of the poly-
gons make the finding of a percentile using the area an im-
possible problem (see Fig. 7). Therefore, in our application,
we always used the Angle-based Dividing method.

o >C< 0 C<<
Figure 9. On the left, the normal behavior in
which all the space is used to compute the
size of each slice. On the right, a modified be-
havior in which a constraint is applied before

computing the size of each slice, allowing us
to direct the network in a given way.

Any use of the two previously described methods needs a
measure defined for each node in order to compute the pro-
portion in percentage allocated to the corresponding sub-
polygon. The simplest way, called the Sub-size-based Ratio
Computation, is to take the size of each node (defined by
the SIZE(T) attribute), i.e. the number of nodes in a subtree
T, to compute a proportional ratio assigned to the children
of T'. Then, this ratio is used as a percentage to compute
the size of all the slices of the corresponding sub-polygons.
Nevertheless, this method suffers from a lack of customiza-
tion possibilities by the expert.

Another method, called the Sub-depth-based Ratio Com-
putation, has been explored. It uses the depth of the trees,
defined by the DEPTH(T) attribute, to modify the propor-
tion allocated to each slice depending on if they are close

(1) Normal behavior

Tree Measure : the ‘sub_size’ attribute
Node Measure Proportion
A B 1/8 12.5%
C 5/8 62.5%
%\ F 3/4 75%
D E H 1/2 50%

B C

/ \ (2) Modified behavior

F G Measure : the ‘sub_depth’ attribute
Node Measure Proportion
/ \ B 22 the value ‘START
C 2/4 0.5 ‘'START’ + 0.5 ‘END’
H | F 3/4 0.25 ‘START’ + 0.75 ‘END’
H 4/4 the value ‘END’

Figure 10. Different ratio computation meth-
ods for dividing the slices: an example of a
tree (left); the proportions obtained using the
Sub-depth-based Ratio Computation method (top);
and the proportions obtained using the Sub-
depth-based Ratio Computation method (bottom).

or far away from the center of the map. The expert has
to set two additional parameters, the proportion given for
the allocation of the slice of the lowest level, correspond-
ing to the initial root of the tree (this value has been named
’START”), and the proportion given for the allocation of the
slice of the deepest level, corresponding to a given leaf of
the tree (this value has been named "END’). Because only
these two values, START and END, have to be specified
by the expert, the remaining values used to fix the propor-
tion of the intermediate levels are computed using a linear
regression. Using another point of view, the START value
fixes the behavior of the nodes close to the center of the map
(or the backbone), which are the most important ones, and
the END value fixes the behavior of the minor nodes shown
in the periphery. These parameters are thus useful for our
application of co-citation networks. We have obtained the
best results using 0.5 and 0.25 for the respective values of
START and END.

The behavior of the Sub-depth-based Ratio Computation
method is very simple. It allows us to constrain the angle of
the links to go only forward when we are close to the center
of the map (see Fig. 9). In fact, when drawing scientograms,
having edges going mainly forward gives a better represen-
tation as nodes located far away in terms of number of edges
are spatially dissociated. This is why we selected the Sub-
depth-based Ratio Computation method as the default one
for our experimentations.

To show how the proportion of the slices are computed
using the Sub-size-based Ratio Computation and the Sub-
depth-based Ratio Computation methods, an example is
presented in Fig. 10 using a small tree. For some selected

nodes, the values are computed for both methods. The pro-
portion is always computed as a ratio between two numbers,
the current attribute of the node (respectively the SIZE and
the DEPTH) and the maximum value for this attribute (so,
the maximum size of the current sub-tree or the maximum
depth if the second measure is considered). Note that the
ratio computation method is totally independent from the
method of dividing these slices, i.e. the ratio can be used
independently with the Area-based Dividing or the Angle-
based Dividing methods.

3.8 Details on the Node-Relocation function

Once the coordinates of the nodes have been found by
the Node-Positioning sub-function (see Fig. 1), a node re-
location stage occurs in order to improve the location of
the overlapping nodes. This stage is done by the Node-
Relocation sub-function (see Fig. 3).

The goal of this sub-function is to identify the nodes
which are too close, according to an expert criterion, and
to move them randomly in order to avoid the overlapping
of the nodes. The process is iterated several times until a
perfect configuration is found by the algorithm. Because of
the cost of the computation of the distance between nodes,
and since this process has to be iterated, we use a KD-Tree
technique to compute these distances?.

The Node-Relocation sub-function works as follows. A
parameter named radius is defined by the expert to specify
the minimum allowed distance between two nodes. Only
the coordinates of any node having a smaller or equal dis-
tance to this radius will be modified by the algorithm, while
the coordinates of the nodes located at a greater distance
will not be changed. Two additional parameters are defined,
the spring-strength § giving the strength of the movements
during the relocation of the nodes and the random-strength
o giving the quantity of randomness applied to the nodes
that have to be relocated.

From each node N of the set defined by the radius pa-
rameter, we apply a force defined as the sum of all the re-
pulsive forces generated by the nodes close to /N, multi-
plied by the value defined by the spring-strength 6 param-
eter (a repulsive strength), and add a random value chosen
into the interval [—o,0] to it. Fig. 11 shows how the re-
pulsive forces generated by all the surrounding nodes apply
on a given node, and how this node is moved. This is done
until a given number of iterations have been completed. A
higher value for this parameter can be used to establish the
convergence of the coordinates of the nodes, but at the cost
of slowing down the process. We have obtained good and
fast results with a value of 100 iterations.

The spring-strength § parameter is used to define the
step size of movement applied to the node. A small value

3 Actually, the ANN Library has been used for this purpose [7].

o] o
_> 0.07
o \\
£0.17
0.2 s
‘2;0

Figure 11. An example of the modification of
the coordinates of a node after applying the
Node-Relocation function.

moves the nodes slowly through the iterations of the algo-
rithm, while a bigger value allows sudden changes of the
coordinates of the nodes. A value of 0.10 was used in our
experiments. The random-strength defines the quantity of
randomness applied to the location of the node at the end
of each iteration. A value of zero disables any randomness
during the movement of the nodes. A value of 0.05 was
used.

4 Experiments

In this section, we will show the results obtained on two
maps. The first map is a random network of 300 nodes.
The second one is a network of 218 nodes extracted from
a database of co-citation measures for Europe, generated in
2002. The resulting file encodes a fully connected network,
with labeled nodes and weighted links, ready to be pruned.
Thus, the first step is to use the MST-Pathfinder algorithm
to prune these networks in order to get trees. The comput-
ing time for this step is roughly 9 ms on an Intel dual-core
Pentium 3.2 GHz with 2 GB of memory.

The last step is to print the maps using the Vmap-Layout
algorithm. The algorithm has been written in C++, com-
piled on Linux with the GNU GCC compiler with the -03
option, and is available upon request. The computing time
using the Vmap-Layout algorithm is roughly 125 ms for the
random map and 69 ms for the real-world scientogram. The
main parameters used are as follows. The initial polygon
has 15 sides. The central point has been computed using
the Angle-based Central Point method. The Cutpoint Value
has been set to 0.5. The slices have been divided using the
Angle-based dividing method. Finally, the Sub-depth-based
Ratio Computation has been used to position the central
point in the polygon.

A comparison has been performed using the Kamada-
Kawai algorithm. For this purpose, we have used the
GraphViz library. GraphViz is an open source network
drawing software, freely provided by AT&T Labs, and
available at: http://www.graphviz.org/. It integrates the

Kamada-Kawai algorithm in the form of the neato utility.
The computing time is roughly 1540 ms for the random map
and 660 ms for the scientogram.

Figure 12. The scientogram of a random map,
drawn with the Kamada-Kawai algorithm.

Figure 13. The scientogram of random map,
drawn with the Vmap-Layout algorithm.

Figure 14. The scientogram of Europe in
2002, drawn with the Kamada-Kawai algo-
rithm.

Figure 15. The scientogram of Europe in
2002, drawn with the Vmap-Layout algorithm.

The final results, for the Vmap-Layout and the Kamada-
Kawai algorithms are shown in Fig. 12 and Fig. 13 for the
random map and in Fig. 14 and Fig. 15 for the Europe sci-
entogram. Notice that, the comparison of two visualiza-

tions is a subjective process and we are actually collabo-
rating with the SCImago Research Group for the validation
of the results. Nethertheless, several remarks can be made
from these pictures. First, we have to notice that the Vmap-
Layout algorithm avoids the edge crossings as expected, as
each sub-tree is drawn in its own sub-space. Secondly, the
nodes connected to the central node are properly spaced,
and aligned on its own circle, allowing an expert to read
properly the labels. In the case of the Kamada-Kawai maps,
the reading of the top-level labels is not clear. Finally, all
the space available in the figure is properly filled with the
Vmap-Layout in the sense that more space is given to the
larger sub-trees.

5 Conclusion

The Vmap-Layout algorithm is an effective and a fast
technique - at least 10 times - for the representation of co-
citation networks. Our algorithm can print real world net-
works in an aesthetic way, highlighting the backbone and
pushing the less important links to the boundaries. Several
variants have been described, allowing an expert to tune the
representation depending on his needs. The only limitation
we found with this approach corresponds to deep and large
subtrees, which cannot be printed properly on a large area
due to the recursive partitioning process.

We are currently investigating other improvements of
this algorithm. One option is to allow it to use extra space
over the polygons in order to reduce the white space be-
tween the edges. Another option is the use of different
techniques for the node relocation, for instance based on the
simulated annealing metaheuristic, to find a better position-
ing of the nodes. We are also planning some experiments
on other kinds of real network datasets.

References

[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu. An optimal algorithm for approximate nearest
neighbor searching fixed dimensions. J. ACM, 45(6):891—

923, 1998.

A. Bavelas. Réseaux de communications au sein de groupes

placés dans des conditions expérimentales de travail, Les

sciences de la politique aux Etats- Unis. Armand Colin,

Paris, 1951.

C. Chen. Bridging the gap: the use of pathfinder networks

in visual navigation. Journal of Visual Languages and Com-

puting, 9:267-286, 1998.

D. Dearholt and R. Schvaneveldt. Properties of pathfinder

networks. In R. Schvaneveldt, editor, Pathfinder associative

networks: Studies in knowledge organization, pages 1-30.

1990.

[5] T. M. J. Fruchterman and E. M. Reingold. Graph drawing
by force-directed placement. Software - Practice and Expe-
rience, 21(11):1129-1164, 1991.

2

—

3

—

[4

—

(6]

(7]

(8]

(9]

(10]

[11]

[12]

T. Kamada and S. Kawai. An algorithm for drawing general
undirected graphs. Information Processing Letters, 31(1):7—
15, 1989.

D. M. Mount and S. Arya, 2006. ANN: A Library
for Approximate Nearest Neighbor Searching, version
1.1.1, online software available on http://www.cs.umd.
edu/~mount/ANNY/, released the 4/8/2006.

Q. V. Nguyen and M. L. Huang. A space-optimized tree vi-
sualization. In Proc. of the IEEE Symposium on Information
Visualization (InfoVis 2002), pages 85-92, 2002.

P. Parlebas. Centralité et compacité d’un graphe. Mathéma-
tiques et Sciences Humaines, 39:5-26, 1972.

A. Quirin, O. Cordén, V. P. Guerrero-Bote, B. Vargas-
Quesada, and F. Moya-Anegén. A quick MST-based al-
gorithm to obtain pathfinder networks. Journal of the
American Society for Information Science and Technology,
59(12):1912-1924, 2008.

H. Small and E. Garfield. The geography of science: disci-
plinary and national mappings. Journal of Information Sci-
ence, 11:147-159, 1985.

B. Vargas-Quesada and F. Moya-Anegén. Visualizing the
Structure of Science. New York: Springer, 2007.

